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Theory of metallic glasses. II. Transport and optical properties
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The electronic transport and optical properties of a-Ni, a-Mg& Zn„, and a-Cu& „Zr metallic
glasses have been studied based on the first-principles electronic-structure results. The calculation
provides a direct test for the theory of quantum coherence for the electronic transport process in
disordered metals. The calculated low-temperature resistivity values are in good agreement with ex-
periments for all three glass systems. It is shown that the transport properties of metallic glasses are
controlled by the magnitude and the shape of the conductivity function, which appears to have a lo-
cal minimum near the Fermi energy. For a stable glass, the existence of this local minimum gives
rise to a negative temperature coefficient of the resistivity, which is purely due to the elastic disorder
scattering of the conduction electrons. The Mooij correlation is explained in terms of the competi-
tion between this effect and the positive resistivity contribution from the electron-phonon interac-
tion. The phenomenon of resistivity saturation is explained by a model of equivalence of the
configurations of "perfect" amorphous scattering media. The calculated optical conductivity is in
reasonable agreement with limited experimental data. The optical-property calculation at low fre-
quency provides a direct computation of the Drude term for optical transitions in metallic systems.

I. INTRODUCTION

The transport properties of metallic glasses (MG's)
have been the subject of numerous experimental and
theoretical studies for many years. ' Many interesting and
intriguing physical phenomena unique to disordered al-
loys have been observed and investigated. Among
them are the negative temperature coefficient (NTC) of
resistivity, the Mooij correlation for resistivity and ther-
mopower, resistivity saturation, sign reversal of the Hall
coefficient, the observation of superconductivity, negative
magnetoresistance, etc. A large number of theoretical
models have been suggested to explain and interpret these
data. The more well-known ones include the generalized
Ziman model and its extension, ' which are essentially
based on a free-electron model, the Mott s-d scattering
model, " the s-d hybridization model, ' ' the two-level
tunneling model, ' ' phonon-assisted-hopping mod-
el' ' and, more recently, the weak-localization model
based on the idea of quantum interference and coher-
ence. Most of these models usually can explain a
specific set of data or a specific class of MG, but fail on
other instances. The models based on the scattering by
free electrons are inherently unsatisfactory, even after
substantial efforts of modification. This is because the
wave vector k in a structurally disordered solid has very
little physical meaning. One might have argued that in
MG, short-range order (SRO) exists as is evidenced by
the first peak in the static structure factor S(q). The
momentum vector q can then be related to the k-space
concept in developing a free-electron-like theory; the
width of the peak in S(q) should contain the information
about the SRO of a particular glass. However, such
theories contain too many assumptions which are not al-
ways satisfied. The microscopic details of the SRO and

the effect of the immediate-range order are not accurately
built into the theory and many physical parameters such
as the electron mean free path, the number of conduction
electrons per atom, the density of states (DOS) at the Fer-
mi level (EF), and the magnitude of Fermi vector are not
precisely known for a given system under study. In re-
cent years, there is evidence that the theory based on
weak localization is quite successful in explaining many
transport properties of MG. ' ' ' Yet this theory is
suSciently general that in applying it to a specific system,
one still has to estimate some of the important physical
parameters in order to be able to compare with experi-
mental measurements. It is therefore highly desirable
that large-scale quantum-mechanical calculations of
transport properties on a few selected MG systems be
performed to complement the formal theory, and to pro-
vide additional insight about the scattering process in
such disordered systems at the microscopic level.

In this paper, we present the results of such large-scale
calculations on the transport properties on three
representative MG systems, namely a-Ni, a-Mg, „Zn„
and a-Cul „Zr„. The electronic properties of these
three glasses have been discussed in the preceding paper '
(referred to thereafter as I) and some preliminary results
have been presented. Each of these glass systems has
very unique transport properties and a coherent explana-
tion for all of them is a formidable challenge to any of the
theoretical models. In spite of the very intensive theoret-
ical effort to understand the electronic processes in disor-
dered solids in recent years, there exists very little direct
calculation of the transport properties of MG, especial-
ly those involving transition metal elements with tightly
bonded d electrons. Others resort to mathematical ap-
proximations that are not always justifiable. Most of the
theoretical explanations of transport properties on MG
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have to be inferred from the calculated DOS spectra,
while an accurate determination of DOS is itself still a
subject of intense effort by many researchers in this field.
In our approach, the calculation of transport properties
is based on the direct evaluation of the energy-dependent
conductivity function o.E, using the Kubo-Greenwood
formula. Ballentine and co-workers also studied the
transport properties of liquid metals using the recursion
method and a linear combination of atomic orbitals
(LCAO) basis on clusters of a few hundred atoms. Quite
satisfactory results were obtained for several single-
component liquid metals if the LCAO parameters were
carefully chosen. In our approach, the calculation uti-
lizes the electronic-structure results of paper I. There
are several advantages to this approach in addition to the
fact that our electronic-structure results are state-of-the-
art. First, the direct-space approach circumvents entirely
the k-space concept, which is ill-defined for MG. Second,
the direct computation of o.E avoids many approxima-
tions employed in other theories for transport properties.
Some of these approximations are not always transparent
and the validity of the results is diScult to assess. Third,
the first-principles nature of our calculation implies that
the effects of quantum coherence, s-d hybridization, d-
band conduction, and localization effect are all implicitly
taken into account. The effect of an electron-electron in-

teraction is treated at the level of local density functional
theory upon which the calculation of the electronic struc-
tures was based. Finally, our approach is not limited to
any specific class of MG other than some subtle points in-

volving computational details, which will be clarified
whenever needed.

There has not been much experimental work on the op-
tical properties of MG, and even less theoretical
efforts. It may have been conceived that the optical spec-
trum of a MG could not be very interesting because it
would most likely be featureless, in contrast to the crys-
talline solids where the Van Hove singularities give rise
to structure-rich optical spectra. We find the study of op-

tical transitions in MG to be highly interesting. Precisely
because of the absence of the translational symmetry in a
structurally disordered solid, the concept of band struc-
ture [E(k) dispersion] is no longer valid and there is no
distinction between interband and intraband optical tran-
sitions. At low photon frequency, the usual Drude
term, which is approximated by the formula
o 8 =Ne rim *( ]+co r ) (r is the relaxation time and m *

is the effective mass of the conduction electrons), can be
calculated exactly in the case of MG subject only to the
size of the structure model. We shall study the results of
such a calculation for the three different MG's.

The plan of this paper is outlined as follows. We will

first describe the method of transport and optical calcula-
tion in Sec. II. The results of transport properties will be
presented in Sec. III and those of optical properties in

Sec. IV. These results are discussed further in Sec. V
with some concluding remarks made in Sec. VI.

II. METHOD

In paper I, we have calculated the energy eigenvalues
and eigenfunctions for the three MG's using the OLCAO
method and large unit cells with periodic boundary con-
ditions. The wave functions thus obtained can be used to
evaluate an energy-dependent conductivity function o.E
according to the Kubo-Greenwood formula:

cTF=
p y l(n lplm ) l 5(E„E)5(E —E) . —

nm
(n&m)

The double summation is over all energy states and the
double 5 function describes the scattering process of an
electron at energy E„ to that of energy E . (n lplm ) is
the momentum matrix element (MME) between states
(nl and lm). With the OLCAO method, the MME
takes the form

&n lplm ) = J +„*(k,r)p+ (k, r)d'»

=pe "gC„*; (k)C ~&(k) Ju;*(r—r )Vu (r —R„—r&)d r,
I, a,

which can be evaluated exactly without resorting to any
approximations. In Eq. (2}, C„, are the eigenvector
coefficients of the wave function of the nth band and
u;(r —r ) is the ith atomic orbital centered on the atom
e. R„ is the lattice translational vector of the supercell.
u;(r} are themselves expressed as a linear combination of
Gaussian-type orbitals (GTO) so that the integrals in (2)
can be expressed as a multiple sum of integrals of the
gradient operator over GTO.

The temperature-dependent dc conductivity cr(0, T)
can be obtained from o.E through

cr(0, T) = I — ( o ~ )dE,8 (E)

where f is the Fermi distribution function. (o z ) implies

the configurational average of o.E. In principle, one
should calculate o E based on as many independent
structural models as possible to obtain the best
configurational average. With large models, this is not
practical and the configurational average is usually car-
ried out by using the energy eigenvalues and eigenfunc-
tions obtained at several different "k" points of the
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quasi-Brillouin-zone.
The temperature dependence of o (0, T) is strictly

through the Fermi distribution function f. At low tem-
perature, f is a step function at EF and the conductivity
of the MG is simply o.E, while the resistivity p is given

by 1/Oz . The resistivity obtained according to (3) is

purely due to the elastic scattering of the conduction
electrons from the disordered atoms in the glass. The
MME and the distribution of energy E contain all the
information about the quantum coherence and multiple
scattering associated with the electron transport. Expres-
sion (3) is valid only at low temperature. As the tempera-
ture is increased, the electron-phonon (e-p) interaction,
which is totally ignored in the present calculation, may
become important.

It should be pointed out that in a calculation with a
finite number of atoms in the model, the energy spectrum
is discrete instead of continuous as would be the case for
a real amorphous solid. This discrete energy spacing im-
plies that the 5-function condition in Eq. (1) can never be
satisfied at all energies. This difficulty is circumvented by
replacing each discrete energy level by a Gaussian of unit
area and a finite width. The larger the model, the smaller
the width of the Gaussian should be and the more closely
related would be the description for the amorphous sys-
tem. A similar approach has been used by Ballentine,
although he used a cluster model and a quite different
computational method. In the present work, the 5 func-
tion in expression (1) is replaced by a Gaussian function
with a width of about 0.03 eV. This corresponds roughly
to the separation in energy levels near the Fermi level.
The accuracy in determining o E, p, or uE depends criti-

F

cally on the state density at the Ferini level, which is
different for different MG. In a system such as a-Ni, the
DOS at EF is high, and one may obtain reasonably accu-
rate values of p with a modest size model. However, for a
free-electron-like MG such as a-Mg, „Zn„, the DOS at
EF is very low, and a calculation based on a larger model
to increase the statistics of the energy sampling would be
desirable. We shall return to this point when specific re-
sults are discussed.

The conductivity function 0.E is the principal part of
our calculation of transport properties in MG. From this
function, a number of other physical properties can be
derived. The thermopower S ( T) is given by

E E—
(4)

Because S(T) involves the derivatives of the log of the
conductivity function, it is even more difficult to evaluate
accurately; not only o.E at EF, but also its derivatives
near EF must be accurately determined. For that reason,
we can at most expect the correct sign and magnitude for
S( T) in the present calculation.

It is also possible to define approximately an average
electron mobility in a given MG by writing & cr F )

,
'

1&nIPIm)1', y 5(E —E„)5(E—E. )
3m 0 n, m

(num)

or

& ~, ) = IDg I.',[&(E)]'

The ID@,„defined above gives an approximate measure

of the mobility of a single electron at energy E and is

somewhat different from that defined in Ref. 1.
The real part of the frequency-dependent optical con-

ductivity 0, (co) can be calculated straightforwardly, us-

ing the same MME as in the conductivity function calcu-
lation:

and the real part of the dielectric function can be extract-
ed from e2 through the usual Kramers-Kronig relation

ski(s)
e,(co)=1+—P f z, ds .

7T 0
(8)

The integration limit in (8) has to be replaced by a finite

cutoff value, since cr&(cu) is calculated only for a finite

range of photon frequencies. In the present calculation,
dipole transitions up to an energy interval of 10 eV are
included. The results are then linearly extrapolated to a

higher-energy cutoff in the numerical evaluation of (8).
It is sometimes convenient to express e2 into optical ab-

sorption power to have a more direct comparison with
experiment. This is carried out through the expression

a(co) =@i(co)/A, . (9)

In the electronic-structure calculation of paper I, we
used 200-atom models for all three MG systems. Then
the same models are used for the transport calculation
except for a-Ni, in which the 100-atom model is used.
For the optical calculation, the computational resource
needed is even more demanding because dipole transi-
tions between each pair of energy levels need to be con-
sidered. For that reason, the optical calculations have to
be carried out with smaller models containing 100 atoms
for a-Ni and 150 atoms for a-Cu6QZr40. The same 200-
atom model is used for optical calculation in a-Mg7QZn3Q.
The smaller model size could affect the accuracy of the
result, especially on the transport properties, mainly be-
cause of the reduced statistics in the energy eigenstate
distribution. For optical results, the only effect of smaller

2~e h
o &(co)=

3m NQ

XQI &n P I )I fi(1 f„)5(E—„EI fico—) —. (6)
n, I

The MME in (6) is averaged over three Cartesian direc-
tions since we expect the optical properties of a MG to be
isotropic. The imaginary part of the dielectric function

e2 can be obtained from 0. ,

ei(co =4no, (co.)/. co,
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size model is in the extremely low-frequency range. We
will comment further on this point in later sections.

III. RESULTS OF TRANSPORT CALCULATION
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FIG. 1. Conductivity function cr(E) (left-hand scale) and
average mobility D(E) (right-hand scale) for a-Ni calculated
with 100-atom model.

The calculated (os ) averaged over configurations of
eight k points for the 100-atom a-Ni model is shown in
Fig. l. Also shown is the average mobility ~DE~,„as
defined by Eq. (5). A distinct feature of (oz) is that
there exists a minimum in ( cr E ) near EF. This feature is
very important in understanding the physical process of
electron transport in MG. The low conductivity value
near EF is consistent with the localized nature of the elec-
tron wave functions near and above EF (see paper I for
details). For the same reason the mobility DF is also
quite small for a-Ni. The calculated temperature-
dependent resistivity p( T) and thermopower S ( T) are
shown in Fig. 2. In the temperature range of 0-200 K,
the temperature coefficient of resistivity a is negative in
agreement with experimental observation. The calcu-
lated thermopower at low temperature is also negative
and decreases rather rapidly as temperature is increased.
We are not aware of any thermopower data for a-Ni to
compare with our result. The measured room-
temperature resistivity is about 100 pQ cm, which is close
to the calculated value of 111pQ cm at 200 K. However,
it must be pointed out that a-Ni is metastable and very
difficult to fabricate. The experimental data on the resis-
tivity of a-Ni is scattered and presumably very much
sample dependent. The liquid-metal data for Ni, which
give a resistivity of 85 —87 pQ cm, may be more reliable.

The calculated transport properties of a-Ni are summa-
rized in Table I.
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FIG. 2. Resistivity p(T) (solid line) and thermopower S(T)
(dashed line) for a-Ni calculated with 100-atom model.

B. a-Mg& „Zn„

a-Mg, Zn„ is a free-electron-like MG with a much
smaller resistivity than a-Ni. The calculated conductivity
functions for x=0.30 and 0.25 are shown in Fig. 3.
Configurational averages for (o E) are carried out over
eight k points of the quasi-Brillouin-zone of the 200-atom
model. For both compositions, (crF ) again has a local
minimum around EF, which is similar to a-Ni. The cal-
culated p(T) for both compositions are shown in Fig. 4.
It shows that a-Mg& „Zn, also has a negative a in con-
trast to the Mooij correlation. ' This unique experimen-
tal observation for a-Mg, „Zn glass has not yet been
satisfactorily explained by any theoretical model. Models
based on free-electron scattering generally predict a posi-
tive u for a free-electron-like MG. However, we are un-
able to explain the experimentally observed fine struc-
tures in p( T) at low temperature.

Our calculated resistivity values for a-Mg75Zn30 and

a-Mg75Zn25 at 2k are 68 and 67.8 pQcm, respectively.
For coevaporated a-MgZn films, a resistivity of 76—85
pQ cm was reported, ' while for the melt spinning sam-
ples, the resistivity is about 55+5 pQ cm. ' ' Our calcu-
lated resistivity for a-Mg70Zn3o lies between these two
sets of data as illustrated in Fig. 5.

The thermopower S(T) is more difficult to calculate,
especially for a-Mg, „Zn, . Because S(T) is proportion-
al to the derivative of (0 z ), which is quite small, any nu-

merical inaccuracy, whether it arises from an insufficient
configurational average or inadequate cell size, will great-
ly affect the calculated S(T) values. To obtain an order
of magnitude type of estimation, we find it necessary to
smooth the (o.z ) curve in order to obtain S(T) values
comparable to that of experiment. These are shown
in Fig. 6. As mentioned earlier, our calculation shows
that there exists a minimum in (oz) around EF. Be-
cause the derivative of (oE ) at the two sides of the
minimum will have different signs (+ or —), so a small
shift of EF or (o s ) can give different signs for the ther-
mopower. Our calculated value for S ( T) is —0.95
pVK ' and appears to be in good agreement with one of
the published data of —0.80 pVK '. However, it was
pointed out by Muir that the correct experimental value
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should be —0.20 pVK ', thus nullifying the good
agreement claimed. In any case, we can expect at most
the correct order of magnitude for the calculated S(T)
value. The calculated and experimental values of p(T),
S ( T), and the temperature coefficients are summarized in
Table I.

C. a -Cu& Zr„

0.02-

O

~ 0.01-
0.02-

0.3

The transport properties of a-Cu, ,Zr MG are well
studied experimentally, ' This is a nonmagnetic
glass with a high resistivity, which means that the con-
duction electrons undergo strong scattering from the to-
pologically disordered atoms. Clearly, a free-electron-
like type of theory will not be applicable and a direct
space, 6rst-principles type of calculation is necessary.
Our calculated conductivity functions for a-Cu60Zr40 and
a-Cu50Zr50 are shown in Fig. 7. Again, there exists a
minimum in (oE) around the Fermi energy similar to
a-Ni and a-Mg& „Zn . The temperature-dependent
resistivity for a-Cu60Zr40 and a-Cu5OZr50 are shown in

X =O.25

0.01-

0.0 ,

—0.2 -0.& 0.0
fNf RGY (eV)

0.1 0.2

FIG. 3. Conductivity functions near EF for a-Mg7pZn3p and

a-Mg&5Zn2&.

TABLE I. Transport properties of a-Cu& „Zr, a-Mg& „Zn„, and a-Ni. The asterisk denotes exper-
iment at 300 K. The dagger denotes experiment at 160 K.

Metallic
glass

a-Cu, pZrsp

(200 atoms)

p (pQcm)

Theory (2 K, 200 K)

192.4, 185.7
177+3' '*
200'
210+20 *

S (RVK ')

Theory (160 K)

2.04
1.40't
1.50 '

1 dp
( 1)

p dT
Theory (200 K)

—2.70 X 10-'

a -CU6pZrgp

(200 atoms)

196.6,182.2

195~'

182.0"'*
179+3'*

2.01

1.40"

—4. 12X 10

a-Mg70Zn3Q

(200 atoms)
68.0,65.4

56m, +

76—85"'*

—0.47

—0.58'

—8.5X10

a-Mg75Znz&
(200 atoms)

67.8,67.2
55+5

—75'*

—2.0X10-'

a-Ni
(100 atoms) 120.3,110.8

—100"'*
85-87'

—7.79 (120 K) 3.97 X 10-'

'Reference 55.
Reference 52.

'Reference 56.
Reference 57.

'Reference 53.
'Reference 58.
Reference 50.

"Reference 51.

'Reference 42.
"Reference 43.
"Reference 39.
'Reference 46.

Reference 44.
"References 30 and 31.
'Reference 40.
Reference 47.
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160 200 FIG. 6. Comparison of calculated and experimental values of
S( T) for a-Mg7oZn» and a-Mg75Znz5.

FIG. 4. Calculated p( T) for a-Mg7oZn3o and a-Mg75Zn».

Fig. 8. The reduced resistivity p( T)/p(2k) and the exper-
imental data are shown in Fig. 9. For both compositions,
a negative a is obtained in agreement with experiment. '

At low temperature, the calculated resistivity is in close
agreement with the measured data, especially for a-
Cu6oZr4O. At a higher temperature (T) 150 K), the cal-
culated resistivity starts to deviate from the measured one
with a faster decrease in p as T is increased. It should be
reminded that our calculation does not include the con-
tribution to p(T) due to the e-p interaction. Apparently,
as the temperature is increased, the e-p interaction starts
to set in, which gives a positive contribution to p( T). The
calculated resistivity values at low temperature for both
a-Cu60Zr40 and a-Cu5OZr50 are 197 and 192 pAcm, re-
spectively. The experimental values range from 180 to
250 pQ cm. Considering the uncertainty in the mea-
surements under different experimental conditions, we
consider the agreement to be quite satisfactory. The cal-
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culated thermopower S( T) for a-Cu6pZrgo and a-

Cu&OZr5o are shown in Fig. 10 together with some experi-

mental data. The agreement is not as good as in a-

Mg&, Zn„glasses, but the calculation still gives the

correct sign for S(T). Again it must be reminded that
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FIG. 5. Comparison of calculated p(T) (solid line) of a-
Mg7oZn3o with experiments Dashed line, data from Refs. 30
and 31; dash-dotted line, data from Ref. 44.
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FIG. 7. Calculated conductivity function o.E near EF for a-
Cu& Zr„. (a) a-Cu6oZr4o (b) a-CusoZrso
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FIG. 8. Calculated p( T) for (a) a-Cu6pZr4p and (b) a-
Cu&pZr&p.

calculation for the thermopower at a higher temperature
is not expected to be accurate since the e-p interactions
are neglected.

We also have used the case of a-Cu6QZr4p to test the
sensitivity of our result on the models of different sizes.
We obtained the conductivity values at the Fermi level
crz(EF) to be 0.0057, 0.0055, and 0.0052 (pQ cm) ' for
the 100-, 150-, and 200-atom models, respectively. The
calculation on the 100-atom model is averaged over eight
k points as in the case of a-Ni. This test shows a reason-
ably stable result with regard to the model size. Howev-
er, no extensive tests on many differently prepared mod-
els have been attempted and we are unable to test models
with size larger than 200 atoms. The calculated transport
properties for the a-Cu& Zr glass, together with exper-
imental data, are summarized in Table I.

FIG. 9. Comparison of calculated p(T) (solid line) with ex-
periment (dashed line from Ref. 48) for (a) a-Cu6pZr4p and (b)
a -Cu&pZrsp.

culated real part of optical conductivity crt(co) for a-Ni is

shown in Fig. 11(a). It is clear that below 0.5 eV, the op-
tical absorption increases dramatically, which is charac-
teristic of a Drude type of behavior. There appear to be
some broad structures at 1.0, 2.5, 4.0, and 5.2 eV which

need detailed experimental data to confirm. In the same

diagram, we have plotted the experimental data on opti-
cal conductivity from c-Ni (Ref. 61) for comparison. Our
calculation gives the right order of magnitude for cr t(co).

Most important is that the Drude type of absorption at
low photon energy is well reproduced. In Fig. 11(b), the

converted real and imaginary parts of the dielectric func-
tion are presented. Also shown are the recent optical
data on a-Ni95Tbp 5. The agreement is reasonably satis-

factory.

IV. RESULTS ON OPTICAL CALCULATIONS b. a-Mg7eZn3e

A. a-Ni

For the optical calculations, the amount of computa-
tional time required increases dramatically even for a
modest photon-energy range of about 10 eV. This is be-
cause each pair of transitions from a state below EF to a
state above EF needs to be considered. For that reason
the calculation of optical properties of a-Ni according to
Eq. (6) has to be limited to the 100-atom model. The cal-

The optical properties of a-Mg7QZn3Q have been calcu-
lated based on the 200-atom unit cell. The calculation is
limited to transition energies of less than 10 eV. The re-
sults are shown in Fig. 12. At low energy, a Drude type
of absorption is even more evident since a-Mg7QZn3Q is
expected to be free-electron-like. Also shown in Fig.
12(a) is the experimental data of Theye et a/. Above 2
eV, the agreement with experiment is excellent. Both the
calculation and the data show a featureless, graduate de-
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FIG. 11. Calculated optical properties of a-Ni: (a) o&(co); o
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ed dielectric function for a-Ni. + represent the experimental
data from Ref. 29.

creasing absorption. This result is consistent with a rath-
er featureless DOS above and below Ez for a-Mg7QZn3Q
(see paper I, Fig. 6). Below 2 eV, the calculation predicts
a stronger absorption than the data had indicated. This
kind of discrepancy is quite common for optical absorp-
tion calculations. Clearly, more experimental measure-
ments are called for.

In Figs. 11(b) and 11(c), the converted data for the
dielectric function and the reAectivity for a-Mg7QZn3Q are
illustrated. At low energy, the dielectric function of a-
Mg7QZn3Q is much higher than that of a-Ni. This again
shows that the conduction electrons in a-Mg7QZn3Q are
much more free-electron-like. The reAectivity of a-
Mg7QZn3Q decreases monotonically with photon energy
and is smaller than 0.03 above 7 eV.

same radial distribution function and electron DOS spec-
tra. The calculated real part of optical conductivity, the
dielectric function, and the absorption power are shown
in Fig. 13. At low energy (below 0.3 eV), a similar Drude
type of behavior is again quite evident. The main
features are the existence of some minima in the back-
ground of a gradually decreasing absorption up to 8 eU.
These minima are located at photon energies of 0.3, 0.7,
and 3.4 eV. %e find only one preliminary experimental
datum for comparison. This is shown in Fig. 13(c) for
the absorption spectrum. The agreement is reasonably
satisfactory, although the calculation seems to overesti-
mate the strength of absorption. But again, this type of
disagreement is quite common, especially for systems that
are very much sample dependent.

C. a-Cus&Zrso

Because of limitations on computer resources, the cal-
culation of optical properties of an a-Cu, Zr alloy is
limited to one composition, a-Cu~QZr5Q, and that of a
150-atom model. The 150-atom model is constructed in
the same manner as the 200-atom model and gives the

V. DISCUSSION

From the above results of the transport properties of
three very different MG's, it is obvious that such first-
principles calculations include all the effects of multiple
scattering, localization, and quantum interference effects
within the limitations of the local density theory and the
underlining structural model. This is because all the
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occurring at a resistivity value of about 150 pQ cm. Let
us write the total resistivity p„,( T) as

p„,( T) =p,&( T)+p, „(T) (c ~&=(o,&+
&( )

E+-
i3E 0 2I ()E2

about its minimum at EF up to, say, fourth order,

E2

0

so

1 dPtot
tot

Ptot

1 dPe] 1 Pe ph+
dptot d T ptot d T

~e]+~e-ph

8'(o ~ )+-
()E3

84( oE&.+—
41 BE4

0

+ 0 ~ ~ (12)

Here el and e -ph mean elastic and e -p interaction, respec-
tively. For very good amorphous systems at low temper-
ature, e-p scattering can be ignored so p„,( T) =p, ~( T) and

a„t-=a,~, where p, &
dominates and e,&

is negative. At
finite temperature in a real system the vibration of atoms
will introduce some additional disorder. The e -p interac-
tion cannot be totally ignored and will contribute a posi-
tive a, ph. Therefore it is the competition between the
negative a,] and the positive a, h that determines the
overall sign of a„t. Naturally, the Mooij correlation
could not be strictly universal, as pointed out by Tsuei,
because the nature of the disorder scattering and the e -p
interaction depends on the details of the electronic struc-
ture of the system in a much more complicated and sub-
tle way than simply suggested by the resistivity values.

Numerous experimental measurements show that al-
most all disordered metallic alloys tend to have a satura-
tion in resistivity p, at high temperature, independent of
the residual resistivity PQ at low temperature. ' ' A tradi-
tional theory of electron-phonon scattering would predict
a linear temperature dependence of p at high T. This
phenomenon of resistivity saturation can be understood
based on a model of equivalence of the configurations of
"perfect" amorphous scattering medium. We define a
perfect amorphous scattering medium to be one whose
atoms are randomly distributed according to the short-
range interatomic forces and cannot be further disor-
dered. The different atomic configurations of the perfect
amorphous system (e.g. , at different temperature) are
equivalent as far as the scattering effect to the conduction
electrons is concerned. This means that the e -p scatter-
ing cannot have a significant effect in the perfect amor-
phous system. At a temperature much higher than, say,
the Debye temperature OD, the vibrations of atoms will
make the real system almost equivalent to a perfect amor-
phous one, because if the temperature is raised, the sys-
tem cannot be further disordered. In this case, we shall
have p( T, )-p( T2 )-p„where Tz ) T, ))8D. p, is the
resistivity that the system becomes equivalent to a perfect
amorphous medium. Also p, will be close to the residual
resistivity PQ if the system is close to an ideal amorphous
solid which is almost equivalent to a perfect one at low T.

The most fundamental quantity that controls the trans-
port properties of MG is its conductivity function ( cr@ ) .
Of particular importance is the functional behavior of
( o z ) near EF. For all the MG studied in this paper, we
find that there exists a minimum in ( crz ) at or near EF.
We may argue that this is a general property for MG,
which has a NTC cz and a small thermopower. To see
this more clearly, let us expand (oz ) in a Taylor series

-- - - a- Cu»Z r»—a —Mg "Zn
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FIG. 14. Converted & o z ) curves from experimental data us-

ing Eqs. ( 1 ), (4), and ( 12) for a -Cu&OZr, o (dash-dotted line) and
a Mg7oZn3O (solid line). See text for detail.

We can use the experimentally determined values of
[T, p( T)] and [ T,S(T)] to determine the derivatives of
( o z ) and hence determine the ( o.z ) curve near EF.
Such experimentally converted ( o z ) curves are shown
in Fig. 14 for a -Mg70Zn30 and a -Cu5QZr50. These curves
are very sin1ilar to the ones directly obtained from the
first-principles calculations. It can be roughly estimated
that for a MG system with [p(200K )

—p(2K)]/p(2K)
& —0.02 to —0.01, and ~S(200K)~ & 5 to 10 pVK ', the
system is likely to have a minimum in ( o z ) around EF.

Many MG systems exhibit resistivity anomalies, which
is quite difficult to explain by any theory. They may be
related to the detailed structures of ( o z ) near EF. Simi-
larly, the thermopower S ( T), which is diScult to calcu-
late accurately, is related to the curvatures of ( crz ). For
a system with a minimum in ( o z ) around EF and a sym-
metric curvature on both sides of the minimum, S( T) is
likely to be small. It is difficult to calculate ( cr@ ) to such
a high degree of accuracy. This is probably the reason
why our calculated S ( T) values listed in Table I generally
overestimate the experimentally determined values.

The existence of a minimum in the ( o z ) curve for all
the three MG's can also be related to the relative stability
of the glass. Since ( o z ) is proportional to the transition
probability between different states when the system un-
dergoes a disturbance as a result of scattering, a
minimum in ( o z ) at EF implies that the system is stable
against the configurational change. In a given series of
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binary MG, a composition which gives a deeper
minimum in ( o.z ) would indicate a more stable composi-
tion. In the a-Cu„Zr& „series, experimental data indi-
cate that a-Cu6ozr4O has a higher resistivity (low oz}
while being the easiest to form. ' Alternatively, this
can be interpreted as indicating that the electronic states
at the Fermi level are more strongly affected by the disor-
der than those immediately above or below the Fermi lev-
el. In principle, the stability of a MG should be deter-
mined by the total energy of the system in both the elec-
tronic and the nuclear coordinate space. While an accu-
rate total energy calculation within the local density ap-
proximation becomes quite routine for simple crystals,
such a calculation for MG is obviously not possible at the
present moment. We speculate that the equilibrium
configuration which has a minimum in ( o z ) at EF is
also the one with a minimum in the total energy. Our
conjecture that a stable MG should have a minimum in

(es ) at EF is in contrast to the conclusion based on the
free-electron theory which predicts that a stable glass
should have a minimum in the DOS curve. However,
because of the finite size of the model and the limited
statistics for states near the Fermi level, we must caution
the readers that our interpretation of a minimum at FF in

e(E) is admittedly speculative even though such minima
were obtained for all three metallic glass systems studied.

The results of the optical properties calculation show
good agreement between the theory and experiments. Of
particular significance is the result of optical transition at
low frequency, i.e., the Drude term, can be evaluated
from first-principles. This is because in amorphous sys-
tems, one need not differentiate between the interband
and intraband transitions. The information on the
scattering process in a disordered environment and the
accompanying relaxation process of the conduction elec-
trons are all contained in the electron wave functions,
which are calculated from first-principles. It is therefore
not necessary to include the lifetime broadening in the
optical conductivity calculation of an amorphous system.
For crystalline materials, it is often necessary to include a
finite lifetime broadening in the calculation in order to
have a more direct comparison with the experiment.

VI. CONCLUDING REMARKS

By means of the realistic direct-space calculation on
the transport properties of three very different MG's, we
have obtained a microscopic understanding of the elec-
tronic process in disordered metals. The good agreement
between the calculated resistivity values and the experi-
mental data indicates that the local density theory is cap-
able of explaining all major features of transport proper-
ties. It is shown that the transport properties of MG are
controlled by the conductivity function (o z ). The ex-
istence of a minimum in ( o z ) near EF as a result of elas-

tic disorder scattering gives rise to a NTC a. This
minimum in ( o z ) may also be related to the relative sta-
bility of the glass. The Mooij correlation can be ex-
plained simply in terms of mutual competition between
elastic disorder scattering, which gives a NTC, and that
of the electron-phonon interaction, which gives a positive
contribution to the temperature coefficient.

The optical conductivity calculation for the same three
MG's also gives results in reasonable agreement with a
limited number of available experiments. At low frequen-
cy, our calcu1ation gives a direct account for the Drude
term for the metallic systems.

The present results represent a very realistic calcula-
tion for transport properties in MG. Still, further im-
provements can be made. First, one can always use
larger models containing, say, 250—500 atoms per unit
cell. This could reduce the numerical noise and lead to
higher accuracy, especially in the case of a thermopower
calculation. The optical calculation can also be pressed
towards an even lower photon frequency. Since the com-
putational time generally increases as X, where N is the
total number of orbitals involved in a given model of
MG, a more practical approach is to carry out the
configurational average over calculations with several in-

dependent models of modest size. This will increase the
required statistics for the number of states involved in the
transition process and give a more accurate conductivity
function. Second, the accuracy of the wave functions
may be improved by an improved electronic-structure
calculation as discussed at the end of paper I. Third, for
MG containing magnetic atoms, such as Ni or Fe, a
spin-polarized calculation may be feasible.

Using the approach and procedure outlined in this pa-
per, we can extend our calculation to other MG systems.
For a given compositional series, a first-principles study
of the dependence of transport properties on the compo-
sitional ratio will be very revealing. For example, the na-
ture of metal-insulator transition ' in a-Si& „Cr„ora-
Si, „Ni series can be investigated fully. One can also
study the temperature dependence or pressure depen-
dence of the transport properties by performing calcula-
tions on MG models whose atomic positions are con-
sistent with a given set of temperature and pressure con-
ditions. It is also within reach to study the e-p interac-
tion in MG since such a calculation in crystalline solid
has been quite well developed, ' and the present calcu-
lation is tantamount to that of a very complicated crystal
of null symmetry. These and other studies on MG will be
the subjects of future publications.
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