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Theory of metallic glasses. I. Electronic structures
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The electronic structures of three different metallic glasses, a-Ni, a-Mg, Zn„, and a-Cu, „Zr,
are studied by means of the first-principles orthogonalized linear combinations of atomic orbitals

(OLCAO) method. Large structural models containing 200 atoms each in a cubic cell with periodic

boundary conditions are constructed using the Monte Carlo relaxation method and utilized in the

calculation. Results on the density of states (DOS), partial DOS, localization index, effective atomic

charges, etc., are presented and discussed. It is emphasized that local short-range order and

intermediate-range order, as well as the orbital nature of the constituent atoms, are all important in

determining the electronic structures of metallic glasses. Further calculations on metallic glasses

with the OLCAO method and other applications of the present results are also discussed.

I. INTRODUCTION

In the past decade, considerable progress has been
made in the realistic theoretical calculation of electronic
structures of disordered amorphous alloys. ' Electronic
structure provides the most basic information that is
necessary for the understanding of transport and other
properties of disordered alloys at the microscopic level
and for the interpretation of many different types of ex-
perirnents. The unprecedented fast development of com-
puting technology in recent years has facilitated the
large-scale computation necessary for the electronic-
structure studies of disordered solids. In the study of
disordered alloys, it is desirable to distinguish two
structurally different disordered alloys: the randomly
substituted binary or other multicomponent alloys and
the metallic glasses (MG's). The disordered nature of the
former comes from the potential fluctuation because of
the randomness in the substitution site, which is distri-
buted over a crystalline lattice. In this case, the concept
of reciprocal lattice is still valid, and many methods of
electronic-structure calculation, which depend on the k-
space description of the scattering process such as the
coherent-potential approximation (CPA) or its deriva-
tives, have been widely used. ' On the other hand, for
metallic glasses with one or more atomic species, there is
an additional topological disorder associated with the
structure of the glass on top of the random distribution of
the atomic species. Although the short-range chemical
order will be present in most of the MG's, wave vector k
is no longer a good quantum number and a direct-space
approach becomes more appropriate. Atomic models
representing the structures of the glasses are the prere-
quisite for any electronic-structure calculations for MG's.
Apart from the less accurate empirical type of calcula-
tion, there are two computational approaches corre-
sponding to two different types of boundary conditions of
the atomic model. The first is based on the small clusters
of atoms with free boundaries and the second is based on
the large unit cell with periodic boundary conditions. We
prefer the second approach because the periodic model

gives a better representation for an infinite solid provided
the unit cell is sufticiently large, much larger than the
electronic mean free path in the glass. Carefully con-
structed periodic models are more homogeneous with a
correct bulk mass density; and the calculated electronic
states will not be contaminated by the surface states.

The direct-space orthogonalized linear combination of
atomic orbitals (OLCAO) method has been used to study
the electronic structures of noncrystalline solids since
mid-1970's. Over the years, the method has been steadily
refined and applied to larger and larger periodic model
structures for both the insulating glasses" ' as well as
the metallic glasses' ' with great success. Since all the
interaction integrals, regardless of the interatomic dis-
tances and the nature of the local bonding patterns, are
evaluated exactly, the method is essentially first-
principles in nature. This is particularly important for
MG's since both short-range order and intermediate-
range order must be accounted for the calculation. This
also implies that the resulting electronic wave functions
contain all the information about the quantum interfer-
ence and multiple-scattering effect, which is of
paramount importance in the study of transport proper-
ties of MG. The use of an atomic-orbital basis also facili-
tates the interpretation of the results. From a purely
computational standpoint, it is much more economic to
use an atomic basis than using plane waves. Thus, for a
given amount of computer resources, much larger models
of MG can be studied by the OLCAO method.

In this paper, we report the results of electronic-
structure calculation of three very different glasses using
the OLCAO method. They are a-Ni, a-Mn& Zn, and
a-Cu, Zr glasses, each representing a very different
class of MG. a-Ni is a single-component, metastable,
weakly ferromagnetic transition-metal (TM) glass; a
Mg, ,Zn„ is a free-electron-like glass with many unusual

properties; and a-Cu, Zr is a well-studied glass con-
sisting of the early TM Zr and the late TM Cu. We have
used the structural models containing 200 atoms in the
cubic cell for the electronic-structure calculation. We
have studied previously the electronic structure of the a-
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Cu, Zr glass with only a 90-atom model and a-
Ni P, glass with 100-atom models. The present calcu-
lation for a-Cu, ,Zr, is therefore a significant extension
of the previous study with much larger models and more
accurate and rigorously derived potentials. The inter-
comparison of the electronic structures of these three
very different MG's calculated by the same computation-
al method will be highly interesting. In the following pa-
per (referred to as II), we will discuss the calculation of
transport and optical properties of the same three MG's
based on the results of electronic structures presented in
this paper.

The organization of this paper is as follows. We first

briefly describe the procedures of model construction in
Sec. II. This is followed by a short description of compu-
tational procedures in Sec. III. The calculated results for
each of the three glasses are presented and discussed in
Sec. IV. These results and their implications are further
discussed in Sec. V together with some concluding re-
marks.

II. MODEL CONSTRUCTION

The periodic models were constructed by means of the
Monte Carlo relaxation method. For each of the three
glasses considered, 200 atoms in a cubic cell of volume L
are considered. The cell dimension L is fixed by the mass
density of the glass, which is usually extracted from ex-
perimental information. A Leonard-Jones type of poten-
tial is used to describe the effective interaction between
each of the pairs of atoms. The parameters of the poten-
tial for a-Ni and a-Cu, Zr, glass were the same as in
the previous work. ' The parameters for the a-
Mg, „Zn were fixed in a similar fashion by considering
the cohesive energies and interatomic distances of crys-
talline Mg and Zn. A small adjustment in the parameters
of the pair potential was made so as to give the first peak
position in the calculated radial distribution function of
the relaxed model the same as experiment.

The interactions between each pair of atoms up to a
distance of L/2 were included with periodic boundary
condition imposed. Initially, the atoms were randomly
distributed in the cell. This corresponds to the case of a
high-temperature configuration. The elastic energy of
each atom was calculated and the movement of the atom
was governed by the standard Monte Carlo algorithm'
according to the Boltzmann distribution. The fictitious
temperature "T"was then successively reduced, accom-
panied by a graduate reduction in the average elastic en-

ergy of the cell, over a period of Monte Carlo steps.
After a sufficiently large number of Monte Carlo steps,
the total elastic energy stabilized to within 10 eV per
atom and an equilibrium model structure for the glass
was obtained.

The quality of these periodic models are very good as
judged by the calculated pair correlation functions in
comparison with the experimental measurements. A typ-
ical case for a-Cu6OZr4o is shown in Fig. 1 of one of our
earlier publications. ' In spite of the rather modest size
of the model, the periodic boundary condition ensures
the model representing a truly infinite array of amor-

phous solid. The cell volume is determined by a number
of atoms in the cell so as to give the correct (measured)
mass density for the glass. In a cluster type of model
which has a free surface, the density cannot be fixed ex-
actly and the simulation process frequently results in in-
homogeneous and porous regions in the model. A satis-
factory pair-correlation function can be obtained only for
sufficiently large models with 1000 atoms or more.

With the periodic models constructed in the above
manner, one can study the short-range order of each
model in detail and correlate them to the electronic-
structure properties. For example, in the one-component
glass such as a-Ni, the distribution of atoms with a
different number of nearest-neighbor (NN) or different
average NN distances may be studied. (For a metallic
glass, a NN atom is defined as one whose distance of sep-
aration is less than the position of the first minimum in
the pair-correlation function. ) For two- or multicom-
ponent glasses, this can be generalized to include the
different cases in which different types of atoms may
bind, as was done in Ref. 5 for a-Ni, P, glasses.

III. PROCEDURES FOR THE ELECTRONIC
STRUCTURE CALCULATION

Since the computational details of the OLCAO method
as applied to the amorphous solids have been described
amply in the published literature, ' we will only outline
the major steps of our calculation, emphasizing the new
aspects of the computational detail. Structural models
containing 200 atoms in the unit cell as described in II
are used for the electronic-structure calculation. Because
of the periodic boundary condition, the calculation is
identical to that of a band-structure calculation for a sim-

ple cubic crystal, but with many atoms in the unit cell.
The concept of band dispersion E(lt) is no longer valid
for amorphous material, and the density of state (DOS) is
the essential physical quantity to be obtained. The DOS
spectrum is obtained from the energy eigenvalues ob-
tained by diagonalizing the secular equation at the center
of the quasi-Brillouin-zone (BZ). As the model becomes
larger, this quasi-BZ becomes very small and the energy
spectrum at the zone center gives a true representation of
the DOS of an infinite amorphous solid. In the cluster
type of calculation, the DOS spectrum is also obtained by
enumerating the energy eigenvalues from a single diago-
nalization of the secular equation, except for the fact that
the states obtained in this way are contaminated by the
surface states because of the free surface of the cluster
model.

The calculation starts with the expansion of the solid-
state wave function of the amorphous solid in terms of
minimal atomic basis sets centered at each atomic site in
the model. A minimal basis is one which consists of all
the atomic core states plus the complete valence-shell
states of the atom, both occupied and unoccupied. For
Ni, Cu, and Zn, the valence shell has nine orbitals con-
sisting of 4s, 4p, and 3d atomic states. For Zr, the nine
valence orbitals are Ss, 5p, and 4d, and for Mg, only four
valence orbitals corresponding to 3s and 3p states are
needed. Such a minimal basis set generally leads to
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suSciently accurate results for the ground-state proper-
ties. By means of the core-orthogonalization pro-
cedure, ' the core states are eliminated from the final sec-
ular equation so that the final dimension of the matrix
equation depends only on the number of atoms in the cell
and its valence-shell orbitals. In the present study with
200-atom models, the matrix equations for a-Ni and a-
Cu, ,Zr have the dimension 1800X1800, while those
of a -Mg, Zn, are somewhat smaller.

The potential function for the Mg is constructed from
a superposition of atomiclike potentials centered at the
atomic sites. In the previous studies' ' for MG, these
potentials were constructed in a partly ab initio manner
such that when applied to a crystalline band-structure
calculation, they yield good results comparable to those
obtained by other accurate self-consistent calculations.
In the present study, we take a more direct and rigorous
approach by first performing a self-consistent OLCAO
calculation' ' in the simpler pseudocrystalline com-
pounds and using the resulting site-decomposed atomic-
like potentials for the amorphous calculation. In the case
of binary MG, we use an idealized Cu3Au structure for
the pseudocrystalline calculation. It may be argued that
such a procedure is not self-consistent per se, since the
potentials are derived from the calculation on an ideal-
ized structure. We feel that had a truly self-consistent
calculation been performed on the 200-atom model, there
would be very little difference in the calculated results;
present procedure is a best compromise between compu-
tation practicality with large model structures and the
desired accuracy.

With the basis functions and the potentials well

defined, the overlap and the Hamiltonian matrix elements
between any pairs of atoms in the unit cell and the adja-
cent cells are calculated and a supercell lattice sum is per-
formed. This lattice sum converges very rapidly because
the unit cell is very large. It is this lattice sum that stems
from the quasiperiodicity of the large unit cell that has
circumvented the free surface problem encountered in the
cluster type of calculations. After the core-
orthogonalization process to eliminate the core states, the
secular equation is diagonalized and energy eigenvalues
and eigenvectors are obtained. From the sampling of the
energy eigenvalues, one obtains the DOS. The DOS
curves can be resolved into partial components by Mul-
liken analysis using the wave functions (eigenvectors) ob-
tained for each of the energy eigenstates. The wave func-
tion can also be used to calculate the effective charges Q'
and their orbital decompositions. A localization index
(LI) for each energy state can also be defined which pro-
vides a qualitative measure of the localized or extended
nature of the wave function for all the states across the
entire energy spectrum. LI ranges from 1 for a 100/o lo-
calized state to 1/X for a 100% delocalized state, where
N is the dimension of the secular equation.

It is worthwhile to point out again that a secular equa-
tion needs to be solved only at the center of the quasi BZ
if the unit cell is large enough. Actually, one can monitor
the adequacy of the cell size by comparing the DOS
curves obtained from the eigenstates by diagonalization
of the secular matrix at the zone center and that at the

zone corner. In the present calculation, these two DOS
curves are practically the same for a-Ni and a-Cu, Zr
glasses and only slightly different for a-Mg, Zn, indi-

cating that the present cell sizes are suSciently large for
general electronic-structure studies. However, for trans-
port property calculations (to be discussed in paper II),
there is another fact related to the size of the cell which
may affect the accuracy of the calculation. This is related
to the number of states available for dipole transitions in
the vicinity of the Fermi level (EF). This point will be
further elaborated in the following paper. '

IV. RESULTS AND DISCUSSION

A. a-Ni

The calculated DOS and partial DOS (PDOS) for a-Ni
are shown in Fig. 1. Also shown in the same figure for
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FIG. 2. Localization index (LI) of the states of a-Ni in Fig. l.

comparison is the DOS for fcc crystalline Ni (c-Ni) calcu-
lated self-consistently. It is clear that the DOS for a-Ni is
dominated by the Ni-3d states and is peaked at about
—1.8 eV below EF. This peak is slightly below the ex-
perimental photoemission peak for c-Ni, which is also
depicted in Fig. 1. The difference in the peak positions
between the theoretical and the experimental curve is not
necessarily due to the difference in the long-range order.
It could be related to some uncorrected many-body
effects. On the whole, we expect the photoemission spec-
tra for c-Ni and a-Ni to be quite similar. The width of
the occupied band for a-Ni is about 10 eV. Other than a
weak shoulder above the EF, there is no other prominent
structure visible. The EF cuts at the the steep side of the
Ni-3d peak, resulting in what is called a d-band hole.
The DOS value at E~, N(E~), is 0.47 statesleV. The
large number of available states both above and below EF
have rather profound implications in their transport
properties. '

The LI for states in a-Ni is shown in Fig. 2. As expect-
ed, there are highly localized states immediately above
and near EF up to +2.0 eV and at about —4 to —10 eV.
These are states at the edge of the Ni d band. The major-
ity of states at the center of the d band are relatively delo-
calized, which is consistent with the formal theory of lo-
calization but is opposite to the conventional wisdom"
that all the d states in TM glasses are highly localized.
The localized nature of states near EF is one of the
reasons for high resistance in a-Ni or a-Ni, ,P MG.
The higher conduction band states above 2.0 eV, which
consist mainly of 4s and 4p orbitals, are almost complete-
ly delocalized.

In Fig. 3, we plot the effective charge Q' of the 200 Ni
atoms. This picture contains much of the microscopic in-
formation about the electronic structure of an amorphous
metal. Q" ranges from a high value close to 12 to a low
value of less than 2. If we envision the total DOS of Fig.
1 as being formed by a superposition of PDOS of each in-
dividual Ni atom with different peak positions, we can see
that those Ni atoms with lower peak positions will have
all of its ten 3d electrons occupied, while those with
higher peak positions will have only a fraction of their 3d'
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FIG. 3. Effective charge (Q") for the 200 Ni atoms in the
model.

electrons occupied. This is because the Fermi level cuts
at the d-band edge as discussed above. The precise loca-
tion of the peak position of the atomic PDOS (and hence
its effective charge Q*) depends on the microscopic
short-range order of that atom within the amorphous en-
vironment. For atoms with more nearest neighbors and
shorter interatomic NN distances, the interatomic in-
teraction will be strong and the peak in the atomic PDOS
will be at a lower binding energy and the effective charge
will be large. (The NN in an amorphous solid is defined
as those atoms whose distances of separation are less than
the first minimum in the calculated radial distribution
function of the model. ) For atoms with fewer nearest
neighbors and/or with relatively larger interatomic dis-
tances, the peak positions are likely to be higher, result-
ing in the low Q' values. It is also obvious from Figs. 2
and 3 that those Ni atoms with low Q* values are also
the ones that give rise to the localized states near the EF.
The above argument is supported by the results shown in
Fig. 4 in which we plot the PDOS per Ni atom for
different groups of Ni atoms according to the number of
NN's. Clearly, the group with least number of NN's has
the highest peak positions (lower binding energy) and
vice versa. Similar PDOS curves have been obtained in
which the Ni atoms were grouped according to their
average NN distances.

In the previous study of a -Ni, „P MG, a similar
conclusion of a strong dependence of the electronic struc-
ture on the local short-range order was obtained. In that
study we used a carefully constructed atomiclike poten-
tial, which is capable of giving a good bulk band struc-
ture for c-Ni, and then implemented an ad hoc orbital
charge self-consistent procedure ' to obtain the final elec-
tronic structures. The Ni potential used in the present
study for a-Ni is directly obtained from the accurate self-
consistent band calculation on c-Ni. We have also used
the Ni potential used in the a-Ni& P calculation for
the a-Ni study and found a considerable difference in the
DOS curves as shown in Fig. 5. The main difference is
that the old potential is of shorter range and hence gives
a more sharply peaked DOS spectra. This brings us to an
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they had to use a ten-k-point average in order to obtain a
reasonably smooth DOS curve. This is, of course, due to
the relatively small size of the cell used. However, even
in the present study in which we have used a 200-atom
cell, there is still a certain degree of Auctuation in the
DOS curves calculated at different k points. This is
shown in Fig. 9, in which we compare the DOS curves
obtained at the k = (2tr/a )(0,0,0) and (2tr/a )( 1, 1, 1)
points. For TM based glasses, such as a-Ni discussed
above and a-Cu& „Zr, to be discussed below, models
containing only 100 or 90 atoms appear to be able to ob-
tain almost identical DOS curves at different k points. '

This contrast is clearly related to the nature of electron

mean free path in different MG. In a free-electron-like
glass such as a-Mg, Zn, the electron wave functions
are very extended and one needs a much 1arger model to
diminish the effect of the quasiperiodicity imposed by the
boundary conditions. In TM-based galsses, the electron
wave functions are dominated by the d orbitals, which
are relatively localized. A 200-atom model is more than
sufficient for electronic-structure studies. It is ironic that
while a free-electron-like glass is simpler to understand in
terms of theoretical models, it is computationally more
difficult to obtain accurate results. The same is true for
the study of transport properties, which will be further
elaborated in paper II.
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FIG. 9. Comparison of DOS spectra obtained at the zone
center (solid curve) and the zone corner (dashed curve) for a-
Mg75Zn25 ~
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In Table II we list the calculated effective charges, the
DOS at EF, and their orbital decompositions for a-
Mg75Zn25 and a -Mg7OZn3o glasses.
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FIG. 12. Effective charge (Q ) of Cu and Zr atoms in a 200-
atom a-Cu«Zr40 model. Open circle, Cu atom; solid circle, Zr
atom.

localized while those at the edge of the Zr 4d band are
not. This is because the Zr 3d band is much wider than
the Cu 3d or the Ni 3d band. As a result, the states near
EF in a-Cu60Zr40 glass are not highly localized as would
be envisioned for a TM glass. On the other hand, they
are not as delocalized as those in the free-electron-like
MG of a-Mg»Zn25 shown in Fig. 7.

The effective charges for Cu and Zr atoms in a-
Cu6oZr4o are plotted in Fig. 12. The mean values of Q'
are 11.60 electrons or Cu and 3.10 electrons for Zr, indi-
cating a considerable charge transfer from Zr to Cu. Q"
values for Zr actually range from 2.0 to 4.5, while the
dispersion for Q' of Cu is much smaller. This is again
due to the larger bandwidth of the Zr band.

In Table III, we list the quantitative values of the
orbital-resolved effective charges and the DOS value at
EF for a-Cu60Zr40 an a-Cu50Zr50. These values are quite
similar to the earlier reported values and that deduced
from the experiments. ' Although X(EF} is dominated

by the Zr 4d component (68% in a-Cu5oZrso and 62% in

a-Cu6oZr4o), there are substantial admixtures from the
free-electron-like s and p orbitals of both Cu and Zr. This
makes the formulation of a theory of transport based
purely on free-electron scattering extremely difficult. A

The simultaneous presentation of the results of elec-
tronic structures of three very different MG calculated by
the same theoretical method is very revealing. We be-
lieve that these are the state-of-the-art results on the
electronic-structure calculation for MG. It is shown that
the electronic structures of MG are much more complex
than previously envisioned. They not only depend on the
details of the local short-range order but also the
intermediate-range order and on the orbital components
of the constituent atoms. A plausible theory for MG
must be able to include these fine points. A direct-space
large unit-cell approach using the OLCAO method can
meet these stringent conditions and provide accurate in-
formation on the electronic structures with microscopic
details. On the other hand, a theory that uses the radial
distribution function as the only input to characterize the
disordered nature of a MG will be grossly inadequate.
Our calculated result on a-Ni has clearly delineated the
important concept that the electronic structure of MG is
a superposition of that of individual atoms in the glass,
each of which are different depending on their local envi-
ronment. The measurable properties of MG are most
likely to be controlled by those atoms with its electronic
states in the vicinity of the Fermi level. Whether these
states are localized or extended can only be answered by
the realistic large-scale calculation as demonstrated in
this paper. Thus, if we were able to introduce a small
amount of impurity atoms in a MG such that its local
DOS happen to be at EF, the change in the physical
properties of the doped glass will be quite dramatic.

It is now appropriate to discuss the possible further im-
provement that can be made in the study of electronic
structures of MG by the OLCAO method. First, it is al-
ways desirable to use even larger models, say with
250—500 atoms per unit cell. This is particularly impor-
tant for systems with a long electronic mean free path
and those with multiatomic species. Such calculations
are feasible with the currently available computing facili-
ties. Second, the electronic potentials used in the present
calculations can be further improved by performing a

TABLE III. Calculated results of the electronic structure of a-Cu Zr, , (x =0.50,0.60) (200-atom
model).

Qc.

Effective charges
(electrons)

Qz.

Charge transfer
(electrons)

AQz,

0.50
0.60

11.671
11.597

3.329
3.104

0.671
0.597

—0.671
—0.896

Cu 4s Cu 4p

Ã (FF) (states/eV atom)
Cu 3d Zr 5s Zr 5p Zr 4d Total

0.50
0.60

0.022
0.029

0.143
0.169

0.038
0.044

0.025
0.019

0.063
0.046

0.680
0.620

0.893
0.800
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rigorous first-principles self-consistent calculation on
smaller models, say with 50—60 atoms per cell, and use
the resulting potentials for a bigger model calculation.
With further development in the computing technology,
this approach can be implemented without any foresee-
able diSculty. The way the structure model has been
constructed can also be improved. This, however, de-
pends on the availability of more precise, effective intera-
tomic pair potentials. The accurate extraction of pair po-
tentials (with many-body corrections} in metallic systems
is still a heavily pursued area of theoretical condensed-
matter physics.

The electronic structure is the most basic information
needed to understand many different types of experiments
in MG. However, to make more direct contact with ex-
periments, it is necessary to calculate directly the physi-
cal observable from the energy eigenvalues and electron
wave functions obtained in the present study. In the fol-

lowing paper, we present the results of transport and op-
tical properties of the same three MG's studied. We also
anticipate to extend our study to MG containing magnet-
ic atoms such as a-Fe& B in which spin-polarized
electronic-structure calculations must be performed. It
then becomes possible to study the effect of disorder on
the magnetic properties such as localized magnetic mo-
ments on each magnetic atom. It is also of much interest
to investigate the temperature-dependent properties of
MG, starting with electronic-structure calculations on
temperature-dependent structural models constructed at
different temperatures. These and other results will be
the subject of future publications.

ACKNOWLEDGMENTS

This work is supported by the U.S. Department of En-
ergy Grant No. DE-FG02-84ER45170.

'Present address: Department of Physics and Ames
Laboratory —U.S. Department of Energy, Iowa State Univer-

sity, Ames, IA 50011-3020.
S. S. Jaswal and W. Y. Ching, Phys. Rev. B 26, 1064 (1982).

~T. Fujiwara, J. Phys. F 12, 661 (1982).
W. Y. Ching, L. W. Song, and S. S. Jaswal, Phys. Rev. B 30,

544 (1984);J. Non-Cryst. Solid 61-62, 1207 (1984).
4S. N. Khanna, A. K. Ibrahim, S. W. Mclcuight, and A. Bansil,

Solid State Commun. 55, 223 (1985).
5W. Y. Ching, Phys. Rev. B 34, 2080 (1986).
M. R. Press, S. N. Khanna, and P. Jena, Phys. Rev. B 36, 5446

(1986).
7S. S. Jaswal, Phys. Rev. B 34, 8937 (1986).
J. Hafner, S. S. Jaswal, M. Tegze, A. Pflugi, J. Krieg, P.

Oelhafen, and H. J. Giintherodt, J. Phys. F 18 (1988).
W. H. Butler and G. M. Stocks, Phys. Rev. B 31, 3260 (1985).
J. C. Swihart, W. H. Butler, G. M. Stocks, D. M. Nicholson,
and R. C. Ward, Phys. Rev. Lett. 57, 1181 (1986).

'W. Y. Ching, C. C. Lin, and L. Guttman, Phys. Rev. B 16,
5488 (1977).

W. Y. Ching, Phys. Rev. Lett. 46, 607 (1981);Phys. Rev. B 26,
6632 (1982).
R. A. Murray and W. Y. Ching, J. Non-Cryst. Solid 94, 144
(1987); Phys. Rev. B 39, 1320 {1989).

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.

Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
' G.-L. Zhao and W. Y. Ching, Phys. Rev. Lett. 62, 2511 (1989).

W. Y. Ching and C. C. Lin, Phys. Rev. B 12, 5536 (1975); 16,
2989 (1977).

' B. N. Harmon, W. Weber, and D. R. Hamann, Phys. Rev. B
25, 1109 (1982).

' W. Y. Ching and B. N. Harmon, Phys. Rev. B 34, 5305 (1986).
' G.-L. Zhao, Yi He, and W. Y. Ching, following paper, Phys.

Rev. B 42, 10887 (1990).
A. Amamon, D. Aliaga-Guema, P. Panissod, G. Krill, and R.
Kuentzler, J. Phys. {Paris) Colloq. 41, C8-396 (1980).
W. Y. Ching, Solid State Commun. 57, 385 (1986).
For detailed information see, for example, U. Mizutani, Prog.
Mater. Sci. 28, 2 (1983); M. A. Howson and B. L. Gallagher,
Phys. Rep. 170, 265 (1988).
Z. Altounian and J. O. Strom-Olsen, Phys. Rev. B 27, 4149
(1983).

24K. Samwer and H. v. Lohneysen, Phys. Rev. B 26, 107 (1982).
P. Oelhafen, E. Hauser, H.-J. Giintherodt, and K. H. Ben-
nemann, Phys. Rev. Lett. 43, 1134 (1979); P. Oelhafen, E.
Hauser, and H.-J. Giintherodt, Solid State Commun. 35, 765
(1980).
P. Oelhafen, in Glassy Metals II, edited by H. J. Giintherodt
and H. Beck {Springer, New York, 1983), p. 283.


