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Evidence of a spin-density wave in hcp zirconium
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Phonon spectra of both hcp Y and Zr have been calculated using shell-model pseudopotentials.
Whereas Y displays no significant anomaly in its spectrum, the phonon frequency of the [001] LO
branch of Zr exhibits a pronounced softening near the zone center. We have found that the anoma-

lous behavior of the LO phonons in Zr can be well understood with the conjecture that Zr has a lon-

gitudinally polarized spin-density wave with wave vector Q= {2tr/c)10, 0, 1). This conjecture is con-

sistent with several other experimental results for Zr, including its large magnetic anisotropy, its

lack of anisotropic magnetic scattering, and the topology of its Fermi surface.

I. INTRODUCTION

The group-IV superconducting metals, i.e., Ti, Zr, and
Hf, have attracted attention in recent years on account of
anomalous features in several physical properties. These
metals all have a hcp structure at low temperature, and
undergo a phase transition to a bcc phase well above
room temperature. Detailed experimental studies'
with neutron scattering have shown that in the hcp phase
the long-wavelength phonon frequencies of the [00$) LO
branch decrease with decreasing temperature and, even-
tually, at or below room temperature this branch exhibits
a dip at the zone center. The frequencies of all other
branches, on the other hand, were found to have a nor-
mal tetnperature dependence (increasing frequencies with
decreasing temperature). The unexpected dips, while ab-
sent in the group-III hcp metals Sc and Y, resemble what
was observed in Pb, where phonon dispersion curves
display a downward cusp at the I100I zone-boundary
points for both transverse and longitudinal modes, and
the sizes of the dips increase with decreasing tempera-
ture. The anomalous behavior in Pb has been explained
successfully by assuming the existence of a cubic family
of linear spin-density waves (SDW's). This hypothesis,
however, has yet to be tested by neutron scattering.

The magnetic properties of Ti, Zr, and Hf also show
puzzling features. Bulk magnetic susceptibility measure-
ments on these metals display considerable anisotropy,
i.e., the susceptibility depends on whether the magnetic
field is parallel or perpendicular to the (hexagonal) c axis.
In Zr, for example, g~l is 1.65 times larger than y~ at
T=70 K. Moreover, the anisotropy decreases with in-

creasing temperatures. The temperature dependence of
the anisotropy of the susceptibility of seven hcp metals

(Ti, Zr, Hf, Y, Re, Ru, and Os) has been studied by
several groups, ' and is illustrated in Fig. 1. Extrapola-
tion of b,y(T)=y11 —yt to higher temperatures indicates
that for these metals (excepting Re) the temperature at
which the anisotropy disappears is rather close to the
melting temperature. The sharp drop of Ag in Ti and Zr
near 1187 and 1167 K is believed to be associated with

the hcp to bcc phase transition. The anisotropy at 70 K
for seven metals is summarized in Table I.
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FIG. 1. Temperature dependence of the anisotropy of the
magnetic susceptibility of (a) yttrium, ruthenium, osmium, and

rhenium; (b) titanium, zirconium, and hafnium. Data are from

g) and g,„=(goal+ 2g, ) /3.
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TABLE I. Components of the magnetic susceptibility of seven metals at T= 70 K. y, v = (g~~+2y, )/3
and hy =g~~

—y, . All susceptibilities are in @emu/mole.

Metal

Y
Tl
ZI
Hf
Re
Ru
Os

171
159
149
96
61
32.2
3.95

199
131
90
59
69
41.7
12.3

Xav

190
140
109
71
66
38.5
9.52

—0.15
0.20
0.54
0.52

—0.12
—0.247
—0.877

Ref.

8,9
6, 10

6
6
8

10
11

The measured susceptibility, of course, is the sum of a
series of diamagnetic and paramagnetic components. It
has been suggested that the contribution of the itinerant-
electronic orbital paramagnetism is responsible for the
anisotropy. ' However, a recent calculation based on the
theory' of magnetic response of conduction electrons,
which includes both orbital paramagnetism and Paul spin
paramagnetism, shows the magnetic susceptibility of Zr
to be insensitive to field direction, and so is essentially iso-
tropic. ' The field-induced neutron magnetic scattering
in Zr at the reciprocal-lattice vectors I G j has been stud-
ied by Stassis et al. ' Measurements for two field direc-
tions revealed no evidence of the large anisotropy ob-
served in bulk susceptibility experiments.

It has been suggested that the softening of the [001]
LO-phonon frequencies near the zone center is related to
an incipient instability toward the formation of a charge-
density wave, and originates from the splitting of a dou-
bly degenerate electronic band near the Fermi level
caused by the lattice displacements associated with the
zone-center [001] LO mode. ' This explanation required,
however, the Fermi-Dirac factors of electronic states
near the Fermi level to readjust instantaneously during
vibration, even though the optical phonon involved is the
highest-frequency mode of the spectrum.

In view of the magnetic properties of the group-IV

metals mentioned above, we believe that an interpretation
based on the unique charge response of a SDW state
should be entertained. It has already been shown' that
SDW states can cause a large anisotropy in spin suscepti-
bility. For a linear SDW the axis of anisotropy is the
SDW polarization vector; and for a spiral SDW the an-
isotropy axis is perpendicular to the plane of polariza-
tion. The sign of the anisotropy can be either positive or
negative, depending on whether the SDW wave vector is
greater than or less than 2kF (the diameter of the Fermi
surface). ' Three of the metals listed in Table I have a
positive anisotropy and four have negative values.

The purpose of this paper is to point out that the
anomalous behavior of the [00(] LO phonons in hcp Zr
can be understood if a linearly polarized SDW having
wave vector Q=(2m. /c)(0, 0, 1) is present. In this event
the magnetic anisotropy and the phonon anomaly would
have a common SDW origin which, in any case, needs to
be present to account for the magnetic anisotropy. It is
of interest to note that the Zr Fermi surface derived from
an analysis of de Haas —van Alphen experiments, ' shows
that the proposed SDW Q vector almost spans the Fermi
surface, as plotted in Fig. 2, a condition which can lead
to the formation of a SDW ground state. '

We shall also calculate the phonon spectrum of hcp Y
(having atomic number Z=39), which is adjacent to Zr
(Z=40) in the Periodic Table. The result provides a
reasonably good fit to the available experimental data.
Other calculations' ' using pseudopotential models have
been rather unsatisfactory. Our success for the case of Y
indicates that the shell-model theory ' of lattice dy-
namics is applicable even to metals at the beginning of a
transition series. For this reason we would not expect a
significant discrepancy to arise in Zr unless new physics,
e.g. , a linear SDW, intervenes.

II. LATTICE DYNAMICS AND CHARGE
RESPONSE OF A LINEAR SDW

FIG. 2. (1,0,0) cross section of the fourth zone Fermi surface

of Zr, determined from the de Hass —van Alphen experiment

data of Ref. 13. The coordinates of the A points are (0,0,+0.5).

The theory we shall use for studying the lattice dynam-
ics of Y and Zr is the pseudopotential shell model
developed by Wang and Overhauser. ' This model has
been successful in reproducing phonon spectra of more
than a dozen simple metals, including fct In and hcp
Mg, with only two (in most cases) or three adjustable
parameters. The applicability of the theory to metals at
the beginning of a transition series is the issue we shall in-
vestigate here.
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for i', where [GI are the reciprocal-lattice vectors, M
is the ionic mass, and n is the density of primitive cells.
p(Q} in Eqs. (2) and (3) represents the Fourier transform
of the total pseudocharge density of an ion p(r), which in-
cludes two parts: the charge distribution of an ion core
p, (r), and the charge distribution of a last-filled electron-
ic shell p, (r). For both Y and Zr the last-filled shell is
4s 4p . According to Ref. 21 the shell charge density can
be represented by the one-parameter function,

P, (r ) = —2e(27r) ~ R, exp( r /2R, )—
—6e [(2m') l3]R, r exp( r l2R, ) . —

The pseudocharge density of an ion core can be taken to
be a Gaussian, i.e.,

The theory of Wang and Overhauser allows the last-
filled shell of an ion to vibrate relative to its core. This
feature turned out to be important for heavy metals such
as Au and Pb. For lighter metals shell vibrations did not
have a significant effect on the phonon spectrum, and we
expect this to be the case for Y and Zr. Accordingly we
shall ignore the deformation of each ion and let the shells
move in unison with their ion cores. In a metal having l
atoms per primitive cell the phonon frequencies corre-
sponding to a wave vector q can be found by solving the
following eigenvalue equation:

co'u (i ) = g D *p( i,j)up( j),
j,p

where u(i) is the displacement of the ith ion in a primi-
tive cell and a and P (=x,y, z) refer to the spatial com-
ponents in a Cartesian-coordinate system. The dynami-
cal matrix D &(i,j ) is given by

D ii(i, i)

e(q) = 1+ Q(q)
1 —G+ (q) Q(q)

(6)

For a free-electron-like metal without a SDW, Q(q) in
the above equation is just the Lindhard response function

2 2mbe 1+1 x
1

1+x
q Azkx2 2 4x n1 x

However, in view of the band-structure complexity en-
countered on entering a transition series, it may be propi-
tious to treat mb as an extra adjustable parameter. 6+ in
Eq. (6) is the spin-symmetric exchange and correlation lo-
cal field factor for which we use the traditional form (pro-
posed by Hubbard ), but with the correct limiting behav-
ior at x=0 and x = ~,

1.1x
G+ (x)=

1+1.7x

The charge response of a linear SDW state has been stud-
ied previously by incorporating the spin-split-phason
mechanism. The existence of a SDW in an electron gas
introduces an additional charge response Q (q) over
and above the usual Lindhard response. A detailed dis-
cussion of the spin-split-phason mechanism and the func-
tion Q (q) can be found in Ref. 5. The most important
feature of this new response is that it has small three-
dimensional, Gaussian-like peaks for q near Q and —Q,
where Q is the SDW wave vector. Accordingly, if we as-
sume that there is a SDW in Zr with Q=(2m. /c)(0, 0, 1),
Q (q) can be represented by

Q (q }= [exp( —II+ )+exp( —II )], (10)

with

abH =B, 8"" +B,R"

where W+ =q+ Q; x =
lql /2kF. 8,b and 8, are, respec-

tively, the inverse widths of the peaks in the basal plane
and along the c axis; and 8+ and 8'+ are the basal plane
and c-axis components of W'+. We find that the anoma-
lous behavior of the [001] LO phonons in Zr can be satis-
factorily explained by adding Q (q) to Eq. (7). The
coefficient A in Eq. (10) and the 8's in Eq. (11) are deter-
mined by fitting the calculated dip in the LO frequencies
near the zone center to the observed spectrum.

with x = lql /2kF. The effective band mass mi, can be de-
duced from the experimental values for the thermal mass
m, h and the electron-phonon coupling constant A, since

m, „=m„(1+A,) .

p, (r)=e(z+U)(2m) ~ R, exp( r /2R, ), —

where z=8 is the number of electrons in the shell and U is
the valence, the number of conduction electrons per
atom. R, and R, in Eqs. (4) and (5) are the crucial pa-
rameters used to fit the phonon spectrum.

The test-charge —test-charge dielectric function appear-
ing in Eqs. (2) and (3) can be written as

III. CALCULATED RESULTS

A. Yttrium

Figure 3 is a plot of the theoretical phonon spectrum of
Y along several symmetry directions together with the
data due to Sinha et al. Only the two parameters R,
and R, are used in fitting the eight available frequencies
at the 1, M, and A points. The band mass mb in Eq. (7)
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FIG. 3. Phonon spectrum of Y. Data are taken from Sinha
et al. (Ref. 26) for T=295 K. Solid lines are our calculated re-
sults with R, = 1.26/(2kF) and R, =2. 16/(2kF) ~ The
reciprocal-lattice vector sums in Eqs. (2) and (3) included all
terms for which ~G~ ~ 10(2'/c).

is fixed at 7.6m, by experimental values of m, h

[=10.64m, (Ref. 27)] and A, [=0.4 (Ref. 28)] according to
Eq. (8). The general agreement between theory and ex-
periment is reasonably good. The dispersion curves of Y
show no significant anomaly. We have also treated mb as
a third adjustable parameter, but the improvement in the
fit was hardly noticeable.

We note that the magnetic susceptibility of Y in Fig.
1(a) also exhibits a considerable anisotropy although the
relative magnitude is not as large as that in Zr. Recent
studies ' of neutron scattering, heat capacity, and sus-
ceptibility indicate that the dilute magnetic alloy
Y, „Gd, (where x &0.01) orders into a long-range heli-
cal antiferromagnet at low temperatures via Overhauser's
SDW mechanism. ' The magnetic order has a periodic
incommensurate spin structure with the Gd moments
directed in the basal plane and a propagation wave vector
~Q~ =0.28(2m. /c) parallel to the c axis. It is possible that
pure Y metal may have a small amplitude SDW, which
would cause the observed anisotropy in its magnetic sus-
ceptibility. '

B. Zirconium

The band mass mb of Zr is found to be 1.6m, from Eq.
(8), using m, h=2.24 (Ref. 27) and X=0.4. 2s We again
adjust the two parameters R, and R, to fit the seven fre-
quencies at (0,0,0) TO, (0,0,0.5) TA, (0,0,0.5) LA, (0.1,0,0)
TA~~, (0.5,0,0) TA~~, (0.5,0,0) TO~~, and (0.5,0,0) TOt. The
calculated phonon spectrum resulting from this fit is
displayed as dashed lines in Fig. 4. The data points in the
figure are taken from the inelastic neutron-scattering
measurements (at 295 K) due to Stassis et al. ' This cal-
culation (without a SDW) shows a qualitatively good
agreement with experiment in general except for the
[00(] LO phonons near the zone center I, where the ob-
served frequencies are considerably smaller than the cal-
culated ones. The discrepancy cannot be eliminated ei-
ther by treating the band mass as an adjustable parameter
or by including the exchange interaction between conduc-
tion electrons and the electrons of the last-filled shells. '

It is, nevertheless, possible to reproduce the [00('] LO
branch if we allow the last-filled shells to vibrate relative

FIG. 4. Phonon spectrum of Zr. Data are taken from Stassis
et al. (Ref. 1) for T=295 K. The dashed lines are our two-
parameter fit with R, =3.48/(2kF) and R, =3.37/(2kF). The
solid lines are the calculated results including the influence of
the extra charge response caused by the SDW, Eq. (10), with
3=0.093, B,b=2. 5/(2k„-), and B,=8.5/(2kF); R, and R, are
unchanged,

to their ion cores. However, the required readjustment of
R, and R, leads to bizarre behavior of the other phonon
branches. The fact that Y has a normal phonon spec-
trum whereas Ti (which is in the same group as Zr, but
lighter) exhibits a similar, but more pronounced dip at
the zone center implies that the anomalous behavior is
driven by an unusual conduction-electron response func-
tion, and not by the shell vibrations relative to each ion
core.

As we have reviewed in Sec. II, an electron gas with a
linear SDW has an additional charge response, Eq. (10),
which must be added to the usual Lindhard response
function Eq. (7). The solid lines in Fig. 4 are the calculat-
ed dispersion curves of Zr which include the inhuence of
a SDW with Q=(2m/c) (0,0, 1). All branches ([g'0] TO~,
[(00] TO, , and [00$] LO) that have been aff'ected by the
softening of the optical phonons near the zone center are
now well reproduced. The agreement between theory
and experiment along the [(00] TAj branch is also im-

proved. The additional charge response caused by the
SDW has little effect on the long-wavelength acoustic
phonons.

IV. CONCLUSIONS

We have proposed a successful theoretical model
which reproduces the observed phonon spectra of Y and
Zr. The two elements have the same ion-core electronic
configuration but differ by unity in the number of con-
duction electrons. This small difference is nevertheless
dramatically reflected in their phonon spectra. While Y
has essentially a normal behavior, Zr displays a pro-
nounced frequency softening for the zone center [00(] LO
mode. We have shown that the anomalous dispersion in
Zr can be well explained if Zr has a linear SDW with
wave vector Q=(2'/c) (0,0, 1). The temperature depen-
dence of the [00(] LO phonon frequencies, mentioned in
the Introduction, can be understood either as a decrease
in SDW amplitude with increasing temperature or as a
consequence of thermally induced phase modulation of
the SDW, which causes a reduction (and broadening) of
the additional charge response peaks given by Eq. (10).
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The SDW interpretation of the phonon anomaly in Zr
elaborated on in this paper is consistent with several oth-
er experimental facts, such as the magnetic anisotropy, '

the lack of anisotropic magnetic scattering, ' and the to-

pology of the Fermi surface. ' The study of the spin
response' of a SDW indicates that the large anisotropy
in magnetic susceptibility of Zr would require a SDW
with a polarization vector parallel to the hexagonal, c
axis. This means that the SDW we envision here must be
longitudinally polarized. Since a longitudinal, free-
electron SDW produces no magnetic induction B, it is in-
Uisible to magnetic neutron scattering. The only way to
detect a nearly-free-electron, longitudinal SDW is to ob-
serve magnetic satellites at Q+ G, where G is a
reciprocal-lattice vector (not parallel to Q). Such satel-
lites would be extremely weak because of the small ad-
mixture of k+G wave-function components into the
plane waves of wave vector k (by the crystalline poten-
tial).

The decrease in magnetic anisotropy with increasing

temperature can be attributed to the temperature depen-
dence of the SDW energy gap, which is similar' to that
of any second-order phase transition, e.g. , the energy gap
in a superconductor. It should be pointed out that in ad-
dition to Ti, Zr, and Hf, Re and Tc exhibit similar anom-
alous behavior in their phonon spectra. ' The available
data for the magnetic susceptibility of Re, shown in Fig.
l(a), also reveals a strong temperature-dependent anisot-
ropy. We are therefore tempted to suggested that Ti, Hf,
Re, and Tc might also have a longitudinally polarized
SDW with Q=(2~/c) (0,0, 1). The fact that this Q is
commensurate with the lattice implies that SDW effects
on nuclear magnetic resonance can be avoided if the
SDW phase is chosen so that nodes fall on all atomic
sites.
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