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In small metallic particles, the finiteness of the system leads both to a discrete spectrum of the
electronic energy levels and to a surface effect due to the boundary conditions. Both effects contrib-
ute to the electronic properties of the particles. We analyze the effect of geometry on the energy-
level distribution of fcc-type particles, and we discuss the respective roles of the surface irregulari-
ties and the underlying crystalline structure. The level-spacing distribution around the Fermi ener-

gy is well approximated by a Wigner-Dyson distribution as long as EF lies in a region of the conduc-
tion band where surface-state contributions are dominant. On the band edges, where bulk contribu-
tions dominate, remarkable structures may appear in the level statistics that can no longer be ap-
proximated by a well-known distribution. We discuss the implications of our results in the general
context of finite disordered systems.

I. INTRODUCTION

The concept of level statistics has been widely used to
describe the energy-level distribution in small metallic
particles, in close analogy with ordinary statistical
mechanics. It is assumed that in a real particle, the in-
teractions of an electron are so complicated that the sin-
gle terms of a Hamiltonian of the system cannot be
enumerated and it has been suggested that random ma-
trix theory should be applicable (for a review see Ref. 1).
The mean level spacing 5 between adjacent one electron
levels is given roughly by EF IN; where N is the number
of conduction electrons in the particle and EF the Fermi
energy of the bulk measured from the bottom of the con-
duction band. In these theories, one considers an ensem-
ble of particles with the same N, but the set of one-
electron energy eigenvalues I E„)is supposed to vary
from one particle to another (mainly due to differences in
surface irregularities of particles pertaining to the same
ensemble), and the set of levels is considered as a statisti-
cal object defined by the statistical ensemble. The level-
spacing distribution is supposed to be well approximated
by the Wigner surmise

P(b ) =CA"exp[ —a(b /5) ],
where n =1,2. . . depends on particular symmetries of
the Hamiltonian and C and a are constants.

The concept of energy-level statistics based on an en-
semble of systems has been applied to the description of
thermodynamic properties of small particles in the
domain kT (6 where quantum-size effects (QSE) are ex-
pected. In this regime only very few levels, 2 or 3, above
the ground state of a particle are occupied. The canoni-
cal partition function then depends critically on the posi-
tion of a few individual levels around EF and so do the
physical properties deduced from it. The random matrix
theories have been widely used in the interpretation of re-
sults from magnetic experiments, particularly the spin
susceptibility obtained from conduction-electron spin res-

onance. It is expected that spin susceptibility should de-
pend strongly on the parity of the number of "conduc-
tion" electrons in the particle. Unfortunately, the validi-
ty of statistical models has not been demonstrated
definitively. Experimentally, several attempts to measure
the zero-spin susceptibility of even particles (containing
an even number of electrons) at low temperatures have
lead to many contradictory results. As evidence for this
controversy compare, for instance, measurements of
Refs. 4 and 5. Similarly, the validity of random matrix
theories has been taken for granted in most speculative
works about ac conductivity of small metallic particles.
However, no clear, coherent, reproducible experimental
results confirm the prediction of these theories. It is true
that sample preparation is delicate and the ensemble
average is still obscured by a size distribution, which has
to be taken into account. In this respect, more recent
techniques where mass-selected clusters can be obtained
in a rare-gas matrix seem very promising to overcome
this difficulty.

Our purpose in this work is to test the applicability of
random matrix theories to model the level distribution of
a collection of small particles. Since a substantial number
of different geometries have to be considered for each en-
semble (particles with the same N), we focused on level
statistics (calculated from real structures) that are acces-
sible with reasonable computational time. In our calcula-
tion we use a tight-binding model with atomic orbitals lo-
cated on discrete fcc lattice sites. The advantage of using
a tight-binding model is that the Hamiltonian matrix
contains by construction all the geometrical information
of the system. Despite its simplicity and its empirical ori-
gin, this model (in connection with graph theory) has
been applied successfully to predict the binding energies
and ionization potential of alkali-metal clusters of up to
ten atoms, in good agreement with ab initio calculations.
Since the resulting Hamiltonian has time-reversal symme-
try and its matrix elements are real, it should be con-
sistent with the statistical orthogonal ensemble (n= 1) in

Eq. (1).
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In the past, some attempts have been made to calculate
the level statistics by means of simple models: free elec-
trons confined in a plate and in a sphere. ' However, it
is well known that these models show highly degenerated
levels which lead to Poisson statistics of the level distri-
bution. For the case of the sphere, each level E„& is
2(2l+1) times degenerated. Degeneracy is always con-
nected with symmetry, and since real particles always
possess some roughness, the validity of the spherical
models is limited to the domain A„/ & kT & (hE)„/,where

A„& is the spread in energy of the originally nondegen-
erated energy levels and (b,E)„/ is the average difference

between adjacent E„&." Surface irregularities, which

play an important role in statistical theories, have been
introduced in a perturbative way for the spherical mod-
el. ' But again, the validity of the model is limited to
small deform. itions around equilibrium.

In practice, when we create roughness we must consid-
er discrete lattice sites (with steps and kinks). A real
structure with irregularities seems to behave more like a
crystal than a liquid drop dominated by surface tension
(although surface reconstruction can be considered).
This in turn implies that there is an underlying crystalline
structure which again possesses some degree of symme-
try.

Only recently have the discrete lattice sites been taken
into account in statistical calculations by means of a
two-dimensional triangular grid, ' where a surface irre-
gularity parameter proportional to the perimeter of the
two-dimensional figure has been defined. Many levels in-
side a broad window in the middle of the band have been
considered. The main result is a bell-shaped level distri-
bution which is progressively better approximated by a
Wigner distribution as the roughness of the particles in-
creases.

The purpose of the present work is to extend the calcu-
lation to a more realistic three-dimensional fcc structure.
In our cluster geometry generation, we take into account
the most recent discoveries by transmission electron mi-
croscopy (TEM). We consider a more selective range of
energy levels around the reference energy E~ than did the
authors of Ref. 12. This allows a more careful insight to
the respective role of "bulk" and "surface" atoms. We
also propose a way to separate the influence of the under-
lying electronic structure and the surface roughness.

al per atom,

In addition, we neglect overlap integrals of functions cen-
tered on different sites so that

(4)

are the two-center hopping integrals, and

ag= k V k
j&k

are the crystal-field integrals. The P's represent the cou-
pling between atoms. In a perturbational sense, they pro-
duce the splitting of the energy levels and determine the
bandwidth. On the other hand, the a's express the per-
turbation of the atomic potential by the crystal field and
they determine the shift of the band. For simplicity and
without loss of generality, we put

ED+at, —0 .

In compact structures such as fcc, it is usual to take
nonzero P's only between nearest-neighbor (NN) atoms,

—1 ifi and j are NN

0 otherwise . (9)

For a given structure (fcc) this defines the matrix of the
P's, which contains nothing but the information of the
geometry of the particle. It is equivalent to an incidence
matrix used in electrical network analysis. The energy
scaling for the P's defined in Eq. (9) is convenient since
the coordination number or number of NN for site i is
given by

By introducing the implicit statement that Ii ) must be an
atomic eigenstate with eigenvalue EQ, and by neglecting
the integrals of the type (kI V Ii ) that involve three func-
tions centered on different sites, since those functions are
very localized, we can write the Schrodinger equation as

(EQ E +~/ )g/ + y p/ /z:0
iWk

where

II. MODEL (10)

H =T+ g V(r —R, ), (2)

Without invoking any crystalline structure, it is
sufficient for the moment to define a particle as being
made of atoms localized on different sites that share at
least one coordination (or bond) with each other. Then,
for each particle of an ensemble, we consider a one-
electron tight-binding Hamiltonian

The total coordination number of the whole particle is

N
Z= gz, ,

where z; ~ 12 for a fcc lattice.
By solving Eq. (5), we obtain the sets of eigenvalues

[E„}and eigenstates [a, (E„)] of the Hamiltonian and
the density of states (DOS) is given by

where V, is the atomic potential centered at site i of the
lattice. We solve the Schrodinger equation by writing
each eigenvector g„asa linear combination of atomic or-
bitals Ii ) centered on site R;, assuming one atomic orbit-

n (E)=(1/X) g 6(E E„). —

The local density of states (LDOS) on site i is given by

(12)
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p, = J E~n (E)dE =—Tr(H~) .
oc

(15)

The first moments p„p2,and p, are then related, respec-

n;(E)= g ~a, (E„)~6(E E—„).
n =1

For properties like electronic specific heat and magnetic
susceptibility, we are only interested in the level distribu-
tion within a few kT from the highest occupied level at
T=O, the Fermi level EF, defined by

f n (E)dE =Q,
where Q is the band filling, equal to —,

' in the case of one s
electron per atom.

It is sometimes useful to define the pth moment of the
DOS

tively, to the shift of the band, the bandwidth, and the
asymmetry of the band. In our tight-binding framework

p~=P (Z/X) . (16)

The procedure we employ consists of solving Eq. (5) for
each particle m of the ensemble. For each set IE„I
only a few levels around the reference energy (i.e., EF)
are considered as contributing to the level statistics.

III. GEOMETRY GENERATION AND CALCULATION

In this section we discuss the technique used to gen-
erate an ensemble of particles having the same number of
atoms N but with different shapes. Once each particle
geometry has been determined, its Hamiltonian matrix
can be diagonalized and the level-spacing statistics can be
recorded. This procedure is repeated many times to ob-

FIG. 1. Geometrical structures for {a) a filled-shell cubooctahedron of 561 atoms; {b) and {c)Particles of 454 atoms obtained by
geometrical generation with p = 1.04 and 1.83, respectively.
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exp( —Es /k'r), (17)

where E~ is the binding energy of the atom under con-
sideration on site i. This procedure is repeated until we
get the right number of atoms N in the particle. E~ is

TABLE I. List of the number of atoms of a given type in a
regular cubooctahedron; m is the shell number, m ~2; m=2
corresponds to the first 13 atoms cubooctahedron.

Total
Surface
Corner
Edge
(111) face
(100) face

—'m ' —5m '+ —"m —1

10m' —20m + 12
12
24{m —2)
4(m —2)(m —3)
6(m —2)2

Total coordination number ZO =40m' —96m +80m —24

tain the relevant statistics for the ensemble.
Recent TEM experiments on metal particles deposited

on various insulating films show that the gross geometries
of such particles are well defined. Although the equilibri-
um geometries are affected by the nature of the support
and the preparation technique, the general trend is that
particles that normally crystallize in the fcc structure
show a fivefold symmetry (icosahedrons) for small sizes,
while for bigger sizes the most frequently observed struc-
ture is an fcc cubooctahedron. These results are
confirmed by recent electron-diffraction experiments on
unsupported Ag particles in a molecular beam: for parti-
cles of about 2 nm in diameter, icosahedral and fcc-
cubooctahedral structures coexist in the beam, while for
bigger sizes only the well-defined fcc structure is ob-
served. ' The icosahedral structures can be obtained
from the cubooctahedral ones by a slight distortion that
minimizes the surface energy for small clusters, as shown

by Ino. ' Some metals, like Pt, keep their fcc structures
down to very small sizes (1.5 nm). ' ' Others, like Au,
show an icosahedral structure up to a few nm, ' although
small Au cubooctahedral particles have also been ob-
served. '8'9

In our calculations, we consider particles big enough
that we treat only the cubooctahedral case. Therefore we
assume that only sites on an fcc lattice are permitted.
The cubooctahedron [see Fig. 1(a)], like its icosahedral
counterpart, can be constructed layer by layer around a
central atom (see Table I). The first cubooctahedron has
13 atoms ( m =2), the second 55 (m =3), the third 147
(m=4), etc.

However, it is highly improbable that a collection of
particles would be made up only of filled-shell cubooc-
tahedra. In TEM data, particles with unfilled shells are
clearly shown; some of them possess missing edge
atoms. ' ' In order to account for incomplete shells and
surface roughness, we simulate the real geometry in the
following way. We start with a filled-shell cubooctahed-
ron, heat it up, and allow the atoms to desorb according
to the probability proportional to

given by

Es= —f En(E)dE . (18)

For a nearly half-filled band, it is easy to show that

consistent with our tight-binding model. a(Q) is a pa-
rameter which depends only on the band filling Q.

Since the matrix of the P's contains all the information
about the geometry, it is useful to update this matrix at
each desorption step and register the number of broken
bonds [i.e., the coordination number of the atom which
has been removed according to Eq. (10)]. When remov-

ing one atom on site i, the new Hamiltonian matrix is ob-
tained from the old one by removing line i and column i
in the matrix of the P's. To obtain the actual coordina-
tion number Z of the particle, we must subtract the total
amount of broken bonds from the total coordination
number Zo of the complete cubooctahedron (Table I).

It is convenient to define a roughness parameter p
which facilitates the comparison between particles of
different sizes but similar surface irregularities

' 2/3
1 10 1p= zi3 (Nzb —Z) .

N 2/3 (20)

IV. RESULTS AND DISCUSSION

Calculations have been done for four different ensem-
bles. Each ensemble is characterized by the number N of
atoms contained in its particles and its average value of p
(the roughness). For each size, N=88 and N=454, two
values of the parameter p have been considered. The cal-
culation involves 4000 particles for the N=88 ensembles
and 600 particles for the N=454 ensembles. Typical
coordination number distributions for particles obtained
by geometry generation with N=454 are shown in Fig. 2.
For each particle, the precursor geometry was a cubooc-
tahedron of 561 atoms. Particles representative of these
ensembles are shown in Figs. 1(b) and 1(c). Interestingly
enough, Fig. 1(b) reproduces well the TEM result that
particles of this size possess missing corner and edge
atoms (less coordinated). ' ' For comparison, Fig. 1(c)
shows a particle with a much higher surface roughness.
Those particles have holes and protruding atoms. They
do not match TEM observations but show an interesting
limiting case.

Unless specified, we consider half-filled bands and we
focus on level statistics of a few levels around the Fermi

For a given N, it is proportional to the surface exposed,
or to the total number of noncoordinated surface bonds
(Nzb —Z), where zb =12 is the coordination number of a
fcc bulk atom and Z is the total coordination number of
the particles given by Eq. (11). The N ~ term refers to
an ideal surface. The numerical factor is chosen so that
p=1 for an infinitely big cubooctahedron, limited only by
(111)and (100) planes with atomic coordination of 9 and
8, respectively. The number of atoms of a given type in a
perfect cubooctahedron are given in Table I.
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FIG. 2. Coordination number distributions for particles of
454 atoms. Two ensembles of 600 particles leading to two
different average roughnesses p=1.04 (solid line) and p=1.83
(dashed line) have been considered. Typical particles of these
ensembles are shown in Figs. 1(b) and 1(c).
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FIG. 3. Level-spacing distributions for particles of 88 atoms.
Two ensembles of 4000 particles have been considered. For
each particle, the calculation involves the eight first levels
around EF =0. We also give the respective values 6-/a of the fit

with a Wigner distribution of Eq. (1). 0, p = 1.00,
6'/o. =7X10 '; S, p=1.83, 6-'/a=5X10 '. The energy scale
is in P units.

energy: 8 for N=88 and 40 for N=454. Figures 3 and 4
show the corresponding level-spacing statistics for two
different values of p. The best fit is obtained with a
Wigner distribution by putting n= 1 in Eq. (1). A re-
markable fact is that the maximum of the distribution
shifts towards smaller 5's as the roughness increases.
The effect seems to be more important for smaller parti-
cles. As we explain later, it is related to the fact that the
relevant parameter for the average level spacing is not p
but Z' /N . The average level spacing 5 is given in
the figure captions and is not constant for a given N.
Such an effect has not been mentioned by the authors of
Ref. 12 for the two-dimensional case.

Despite the effects mentioned above, near the middle of
the band there is no drastic difference in the features of
the statistics for different ensembles. This can best be
seen by changing the argument in Eq. (1) to x = b, /5. In
this representation, and within the precision of our calcu-

FIG. 4. Level-spacing distributions for particles of 454
atoms. Two ensembles of 600 particles have been considered.
For each particle, the calculation involves the 40 first levels
around E,. =0. , p=1.04, 6'/cr =2.75 X 10; ~, p=1.83,
6'-/a=2. 45X10 '. The energy scale is in f3 units.

lations, all the statistics of Figs. 3 and 4 look the same
and can be fitted by P(x)=(ir/2)x exp( nx /4—). It is
not possible to distinguish this distribution from the more
general Brody distribution [Eq. (5.30) of Ref. I] where the
parameter co must be equal to 1 to fit our data properly.

On the other hand, level distributions in Fig. 5
(N=454; p=1.04), calculated at the bottom and top of
the band, show completely different features and reAect
some more fundamental structures. The top of the band,
Fig. 5(b) shows a nonzero contribution for b, =0 and is
much closer to a Poisson distribution. We find that the
average level spacing 6 varies over the band. For the en-
semble (N=454, p=1.04) and assuming a=sr/4 in Eq.
(1), as appropriate for the orthogonal ensemble, we find
6 = 1.47 X 10 in the middle of the band, but
5=0.9X10 for the Poisson distribution at the top of
the band. It is not possible to fit the statistics of Fig. 5(a)
with any known distributions. This is due to the long tail
and to the distinct peak at a level spacing of about 0.9.
This peak may be due to localized states since it appears
statistically for different boundaries.

In order to understand the features observed in Figs.
3—5, we must address the question of how the geometrical
characteristics of the particles like the roughness p
infIuence the electronic structure and level distribution at
various points in the band. For this purpose, we assume
that particles contain sites that contribute to the "bulk"
part (z; =12) of the DOS as well as sites that contribute
to the "surface" part (z, & 12). We define the LDOS ac-
cording to Eq. (13). Figures 6(a) and 6(b) show the aver-
age surface DOS and the average bulk DOS for particles
with .V=454 atoms and two different roughnesses. Fig-
ures 6(a) and 6(b) are histograms (averaged over several
configurations close to p) and do not display the fine
structure of the levels which are used in the statistics.

Figure 6 contains part of the answer to our question.
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FIG. 5. Level-spacing distributions for particles of 454 atoms
with p = 1.04 calculated at (a) the bottom of the band and (b) the
top of the band. The solid line shows the best fit to a Poisson
distribution: P(h)=C exp( —5/5) with 5=9X10 '. The en-
semble is made of 600 particles and for each particle the first 40
levels from the bottom and the top of the band, respectively, are
considered.
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Energy

FIG. 6. Total DOS (bold line) as well as bulk (dashed line)

and surface (thin line) contribution to the total DOS for the
N=454 ensemble. (a) p=1.04, (b) p=1.83. Each DOS is an

average over ten configuration close to the given values of p.

For the smooth particles of Fig. 6(a) (the only ones that
are observed physically) the surface contribution to the
total DOS is dominant in the middle of the band. This
behavior is completely reversed at the band edges, where
only bulk sites contribute to the total DOS. Consequent-
ly, the unusual level-spacing distribution at the band
edges (Fig. 5), in particular the spectral rigidity observed
at the band bottom, seems to be due mainly to bulk
states. As the roughness increases [Fig. 6(b)], the LDOS
of bulk atoms follows more closely the trend of the sur-
face LDOS. The features that we obtain for the band
bottom look very different from the peaked statistics
without any structure that is obtained in the two-
dimensional case by Tanaka and Sugano. ' Rather than
an effect of dimensionality, we believe that the very sharp
statistics of their Fig. 8 could be due to their considera-
tion of only one level spacing at the very band bottom in
conjunction with their somewhat unusual definition of x,
the argument of the distribution. It is questionable to
which extent Fig. 8 of Ref. 12 can be considered as a
level-spacing statistics since only one level above EF is
taken into account.

Also evident from our Figs. 6(a) and 6(b) is that creat-
ing roughness causes the bandwidth to become narrower.
The explanation of this behavior is straightforward if we
notice that poorly coordinated atoms retain their atomic
character and therefore contribute essentially to states
around E=O. This has an important effect on the level
statistics. We can discuss this in a more quantitative
way. The bandwidth is proportional to pz and thus to
Z' [Eq. (16)]. As a consequence, the energy levels be-
come more dense in the middle of the band as Z de-
creases (increasing roughness). Since surface roughness
ensures a complete lifting of the degeneracies in the rnid-

dle of the band, the actual level spacing varies as
Z' /X, on the average. This explains the behavior
observed in Figs. 3 and 4 where the maximum of the dis-
tribution shifts towards lower values of the level spacing
as the roughness increases.

The main result of this study shows that, especially in
the domain of moderated surface irregularities as they are
encountered in TEM, the applicability of the random ma-
trix theories depends very much on the band filling or on
the position of EF in the conduction band. The Wigner
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distribution is applicable for a half-filled band (typical of
Na) while the Poisson distribution is more appropriate
for a nearly filled band (typical of Mg).

It must be stressed that our description of surface irre-
gularities only leads to a restricted notion of disorder.
Since the metallic particles under consideration here are
supposed to be crystalline we did not explicitly introduce
diagonal disorder in our Hamiltonian. The implications
of a finite disordered system have been analyzed numeri-
cally within the tight-binding framework by Sivan and
Imry. ' In the strong disorder limit, they found a
Wigner-type distribution with a relevant parameter 5 in
Eq. (1) proportional to the hopping integral P rather than
to the standard deviation of the diagonal term in the An-
derson Hamiltonian. Their result is in fair agreement
with analytical results by Efetov. In terms of
Anderson's description, our model corresponds to the
limit of weak disorder which implies hD /l.
))Ig(Z/X)', where D is the diffusion constant and I.
the characteristic length of the particles.

In this work we have focused on level calculations per
se, but physical properties like the spin susceptibility can
also be obtained from the energy-level distribution in a
straightforward manner. " In concluding, we wish to re-

mark that difficulties of extracting informations from ex-
perimental data to compare to theoretical level distribu-
tion is considerable. Susceptibility measurements give an
indirect access to the level distribution around EF. In
fact, it provides a measure of the average level spacing in-
side a window approximately defined by the width of the
distribution Bf(E, T)/BE (a few kT); where f is the Fer-
mi function. If for some reason the electronic Zeeman
energy in the external magnetic field is bigger than 6 or if
the levels are smeared out, i.e., by the interaction with
thermal phonons, the susceptibility measurement will not
reflect the calculated level spacing. As far as QSE are
concerned, it has been emphasized recently that due to
the clear signature of the Korringa relaxation mecha-
nism, the evidence for QSE could be tested by NMR at
any temperature without reference to any type of ensem-
ble.
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