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We calculate the total and low-frequency spectral weights of the optical conductivity of the
two-dimensional Hubbard model for various values of the interaction strength and carrier concen-
tration. In some limits we obtain exact results and bounds. For general parameter values we ob-
tain estimates using the variational Monte Carlo technique. We show our results disagree with

those obtained by exact diagonalization of small systems, and argue that the latter are less accu-
rate because of Gnite-size e6'ects.

The optical conductivity of strongly correlated electron
systems is of current experimental interest because mea-
surements on high-T, superconductors' and on quasi-
one-dimensional organic conductors show large devia-

tions from the predictions of band theory. The optical
conductivity is also of fundamental theoretical interest be-

cause the spectral weight at low frequencies is the natural
order parameter for the Mott transition. The optical
conductivity of model systems has been studied by approx-
imate mean-field calculations, by analysis of inte-

grable one-dimensional (1D) models, '
by exact diago-

nalization of small systems, " ' and by quantum Monte
Carlo techniques. ' The uncertain quantitative applica-
bility of the analytic mean-field calculations, the size limi-
tations of the exact diagonalization and Monte Carlo re-
sults and the possibility that the integrable 1D models do
not exhibit generic behavior lead us to consider other
methods for obtaining information about the optical con-
ductivity.

Here we study the optical conductivity of the Hubbard
model by exploiting sum rules, ' which relate the spec-
tral weight in various frequency regimes of the conductivi-

ty to ground-state properties. We obtain some exact re-
sults and variational bounds, most of which apply in any
dimension. For a range of parameters we obtain estimates
of the total spectral weight of the d 2 Hubbard model
from variational wave functions. Information concerning
the division of spectral weight between high and low fre-
quencies is more difficult to obtain, but we derive some re-

sults from the mapping, believed valid at large U, of the
Hubbard model onto the t-J model. ' '

We study the Hubbard model at zero temperature us-

ing simple modifications of arguments introduced by
Kahn. Kohn considered electrons interacting via the
Coulomb force and moving in a periodic potential. We
consider fermions hopping with matrix element t between
nearest-neighbor sites of a d-dimensional hypercubic lat-
tice with unit lattice constant and subject to a repulsive in-

teraction U when two fermions occupy the same site. %e
assume periodic boundary conditions in the x direction
and that the system is subject to a flux @(t), which we

represent by a vector potential A(t) [@(t)/N„lx, where
is the number of sites in the x direction. The Hamil-

tonian may be written

H —g t(e'" ' 'ct~ '+, +H.c.)+UD.
n, r, a

Here n, a vector of integers, labels a lattice site, v is a vec-
tor connecting site n to a nearest neighbor, and H.c.
means Hermitian conjugate. The density operator at site
n for fermions of spin cr, p„c,~, . The doubly-
occupied-sites operator D g„p„tp, ~. When no explicit
time argument is given, A and 4 are assumed to be static.
The carrier concentration p g (p, ), and the doping
8 1

—p.
The complex optical conductivity o(co) gives the linear

response of the system to a uniform time-dependent elec-
tric field generated by a time-dependent flux via Eq. (1).
Standard linear-response arguments applied to Eq. (1)
yield a Kubo formula for cr(co):

(T„)
cr(co)

f(n [ip„)0)f'
tco n~p co —(E„Ep)+i0— (2)

Here

T„- t gc„—'~,~;,+ (H.c.),
Q, d

A

the paramagnetic current operator J~„BH/i'rAfi~ p is

given by

i, -—it+(ct~, +„- —H.c.),
n, d

and the eigenfunction and energy of the nth eigenstate are
~n) and E„. In deriving Eq. (2) we have first let @(t) 0
and then taken N„eo, and we have assumed zero tem-
perature.

We write the real part of cr(co) as cr(co). For a system
with at least a discrete translation invariance (such as the
Hubbard model) at T 0 one expects on general grounds
cr(co) (co~ /4)8(co)+cr„s(co), where lim pcoo„,s(co)

0. The system is metallic if co~ )0 and is insulating if
co~ 0. In the latter case, lim per„s(co) 0. These
definitions must be modified for disordered systems or
nonzero temperatures. co~ is thus an order parameter
for the Mott metal-insulator transition which may occur
in a nondisordered system as interaction strength U and
carrier concentration are varied.
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24) yieldsAnother useful way to characterize the optical conduc-
tivity is the total oscillator strength or spectral weight
cpz/8—= fp™o(tp)dto. The spectral weight is conventionally
written as a plasma frequency because in a free-electron
gas the quantity m~ inferred from the oscillator strength is
identical to the frequency of the long-wavelength plasmon
oscillation. In a strongly correlated system the two quan-
tities may be different; ' in this paper we consider only
spectra weights, not the frequency of any plasmon mode,
but we retain the convention of writing oscillator strength
as to~~/8.

Both to~ and tp~ are nontrivial functions of U and the
doping b, and are also experimentally measurable. They
are related to ground-state properties by two identities
due to Kohn. To derive an identity for to~ we note from
Eq. (2) that lim„8(tp) —(T,)/ito and we use the
Kramers-Kronig relation linking the real and imaginary
parts of o. The result is

~p 5.8t
lim

P

Another simple limit is U=~, 6' 0. At 6=0 and
U=~ the material is an insulator, with ~,* =~, =0. rf
one hole is added, the ground state is a fully polarized fer-
romagnet. This ground state optimizes the kinetic-
energy operator; thus, to~ to~ 8ttt/dN (N is the num-
ber of sites). The ground state is not known for nonzero 8;
however, (i) additional holes may only impede each others
motion, so that the kinetic energy of 8 holes is less than or
equal in magnitude to 6 times the kinetic energy of one
hole and (ii) the energy calculated by assuming that the
ground state remains a fully polarized ferromagnet in an
upper bound on the true ground-state energy. Thus, at
U as' 0

8xtB g 8tttb'
[ ) (8)tI OO I g

2

dcpo(tp) —= = ——(T,) .
4 p 8 2 where d is the dimension and cd is a dimensionality-

dependent constant. For example, when d=2, cd=2m.
Therefore top (and so co~ ) vanishes at least as fast as 8 at
U=ao

For other values of U and 8, in d & j. , little is known
about tp~ and to~ . Numerical studies of small (10 site
or—for small U—16 site lattices) have been per-
formed. " However, the small system sizes and the
lack of theoretical analysis of finite-size corrections make
interpretation of the results uncertain. To obtain further
information we have used two approximate methods,
which we discuss in turn. In each method, we must evalu-
ate expectation values of operators using a given wave
function; we do this by the variational Monte Carlo
(VMC) method.

In one approach we use the Hubbard Hamiltonian, Eq.
(1), and the Gutzwiller wave function Iy~). This is ob-
tained by taking I@M), the M-particle wave function
which minimizes the kinetic-energy term in Eq. (1), and
explicitly projecting out some fraction of doubly occupied
sites:

Equation (3) is the f-sum rule for the Hubbard model
with periodic boundary conditions. We believe that Eqs.
(1)-(3) provide the most natural resolution of previously
discussed ambiguities"' ' ' in the applicability of the
f-sum rule to finite systems with periodic boundary condi-
tions. We have explicitly verified (3) by exact diagonali-
zation of three and four site rings.

To derive an identity for co~ we use Eq. (3) to obtain
an expression for lim p8(cp) and again exploit the
Kramers-Kronig relation. To obtain a second identity for
tp~ we use standard perturbation theory to obtain the
second derivative of the ground-state energy with respect
to a change in 4. The result is

I«Ii„IO)I'-~N„', -—~&T.) —2~ g '" . (4)d@' .~o E.—Eo

IÃg) =g IYM).

0 + g ~ 1 is a variational parameter, chosen by minimiz-
ing the expectation value of H in the class of states

I y~).
One obtains for the ground-state energy E a variational
estimate E„,„of the form . E ~ E„„=T(g)+UD(g), —with

g chosen so that dE„,„/dg =dT(g)/dg+UdD(g)/dg=0.
Here T(g) and D(g) are the expectation values of the
kinetic-energy operator and of D in the state Iy~). Be-
cause T(g) (0 and UD(g) &0, the T(g) so obtained
gives, in general, an estimate for, rather than a bound on,
the total oscillator strength co~. However, at U=~,
g=D(g) =0, so top & (4z/d)T(g=o). The bound given
in Eq. (8) is, however, better. One might naively attempt
to estimate t0~ from Eq. (4) by using the variational
wave function to compute E(@);however, we have shown
elsewhere that for the Gutzwiller wave function,

42 2
P P'
We have also computed co~ and co~ by using a canoni-

cal transformation due originally to Kohn to define a new

0 ~ to~ [U) ~ to~ [U] ~ tot, o.

Further exact results may be obtained in several limits.
The ground-state energy is known to order U, and the
Hellman-Feynman theorem (T) =Ep

—UBEo/BU. For
the 2D square lattice and 8 & 0.2 one obtains

COp; =I —7.5X IO '(Ujt)'+O(U/t)'. (6)
COpo

A calculation of to~ to O(U ) is in progress; results will

be presented elsewhere.
For a half-filled band (b =0) and U ~, the Hubbard

model maps onto the Heisenberg model. This is an insula-
tor, so co~ =0. From the Hellman-Feynman theorem,
(T) t(dEpldt), where Ep is the ground-state energy
For the 2D square lattice, the known result for Ep (Ref.

The plasma frequency co~0 of the noninteracting model
[Eq. (1) with U 0] is easily found to be cp~p= 4ttEp/d—
(U 0). Because [J~„,H) =0 if U=0, and because in the
thermodynamic limit the ground state has no current,
tp~p =cp~p —0(1/N„). As U is increased at fixed 8, I(T„)I

must decrease, and for UWO, [J~„,H]WO, so that the sum
in Eq. (3) becomes nonzero. Thus '
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H= —g te'"'Pdc ~ Pq+ 2] 2N

n, i,a

4t'+ gS, S„+,+
U

(10)

The projection operators Pd annihilate states for which

D~y)WO, and S„=g,pcooo'opcap.
Because the mapping from H to H is a canonical trans-

formation, the ground-state energies Ep of the two models
are the same. Thus using Eqs. (3) and (10) and the rela-
tion (T) =t dEp/dt, we obtain for dimension d =2, to lead-

ing order in t/U and b,
1P

4t'
top2 =4m (T„)+— (S„S„+„-)

Hamiltonian H-e' He '~ with [H,D] =0. An expres-
sion for H, valid to leading order in t/U and b, has been
given for N 0. ' ' This leading order expression for H is
often referred to as the t-J model. The generalization to
the case of a nonzero static flux is straightforward: we
rewrite Eq. (1) in terms of operators c, =e ' 'ct, ap-

ply the procedure of Refs. 18 and 19 obtaining a result
written in terms of the c, and then undo the transforma-
tion. The result is
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FIG. 1. Doping (b) dependence of total oscillator strength top

normalized to noninteracting, zero doping value +~0. Solid lines:
results of VMC calculations. Other symbols: results of cluster
calculations and mapping to Heisenberg model [Eq. (5)], as in-

dicated.

Here

Tx = ~ W~d&nW +" Pd
n, a

and the expectation value is to be taken in the ground
state of Eq. (10).

Similarly, beginning from Eq. (10) and following the
steps that led to Eqs. (4) and (5) yields

Cop ( 4tr(T ) ( Cop . (12)

The right-hand side inequality follows from Eq. (11) and
the result ($„.S,+;) (0. Note that the left-hand side in-

equality in Eq. (12) is valid only if (i) higher-order terms
in t/U and b can be neglected, and (ii) if the exact
ground-state wave function is used.

In previous work it has been argued that the ground
state of H [Eq. (10)] is well approximated by the particu-
lar Gutzwiller wave function ~ys-p). We have used this
wave function to evaluate the expectation values in Eqs.
(11)and (12).

In Fig. 1 we have presented results obtained for
top(U, b) from VMC calculations described above, from
Eq. (6), and from exact diagonalization of small sys-
tems. '" For U=4 (not shown) VMC, exact diagonali-
zation, quantum Monte Carlo, and perturbation theory to
O(U ) agree that top =0.9ropp approximately indepen-
dent of doping for 8'&0.2. For larger U, the agreement
between the various methods is not impressive. In general
the VMC results show lower magnitude and more doping
dependence of the total oscillator strength than do the di-
agonalizations. Comparison with the result of Eq. (6)
leads us to suspect that the calculation based on Eqs. (11)
and (12) and ~ys-p) is more reliable than the calculation
based on Eq. (I) and ~yg) calculation at large U and small

6, in agreement with previous results. ' The disagreement
between the diflerent diagonalizations and the disagree-
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FIG. 2. Doping (8) dependence of low frequency (cop ') and
total (cop2) oscillator strength, both normalized to noninteracting
value capo. Dashed line: VMC estimate for t-J model upper
bound on cop

' from Eq. (11). This estimate is about 15% larger
than the bound obtained from the Nagaoka state [Eq. (6)]
which is cop /popo 1.23h'. Solid line: VMC estimate for top for
t-J model, U 30. Other symbols: results of cluster calculations
and mapping to Heinsenberg model [Eq. (5)l, as indicated.

ment of both with the prediction of Eq. (6) (at U 20)
suggests that the diagonalizations have not been done for
large enough systems. However, on a qualitative level, all
calculations agree that to have a substantial (&50%)
reduction of total oscillator strength from the band theory
value requires a large U (U+ 10) and that a noticeable
doping dependence of top requires a very large U, say
U& 20. Although the applicability of the one-band Hub-
bard model to high-T, superconductors is not clear, it is
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interesting that both a low value and a strong doping
dependence of optical spectral weight may have been ob-
served in reflectivity experiments on high-T, superconduc-
tors.

The VMC estimate for —(T„)is plotted against doping
in Fig. 2, and is compared with the estimate from Eq. (11)
for the total oscillator strength for U 20 and 30 and with
results from exact diagonalization. The doping depen-
dence of the total oscillator strength [obtained from Eq.
(11)] is very similar to that of the bound on the low-

frequency oscillator strength [from Eq. (12)1 suggesting
that the principal effect of doping is to add oscillator
strength, presumably primarily at low frequencies. A
different result, the transfer of a large amount of spectral
weight from high to low frequencies with doping, was
found in a calculation' of o(co) for a 10-site cluster and
U 10 or 30. The VMC estimate for —(T„) is about 15%

larger than the value of ro~ obtained in the Nagaoka
state.

In this paper we have used exact arguments and varia-
tional wave functions to obtain information about the
magnitude and doping dependence of the total and low-

frequency spectral weight in the optical conductivity of
the Hubbard model, especially for strong correlation and
low dopings. Some of our results may be useful as bench-
marks for future numerical calculations. We suggest that
presently available diagonalization studies overestimate
the spectral weight and underestimate its doping depen-
dence, perhaps because the presently accessible system
sizes are too small.
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