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Absence of instanton-induced spin-Peierls order in the flux phase
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The flux phase of the fermionic SU(n) quantum antiferromagnet is charge-conjugation and

translationally invariant. It follows that instantons do not generate spin-Peierls order, in contrast

to their behavior in other antiferromagnets that break these symmetries.

The large-n limit of a nearest-neighbor fermionic
SU(n) quantum antiferromagnet on the square lattice has
a locally (and probably globally) stable spin-liquid saddle
point called the flux phase. ' This state has no broken
symmetries and exhibits gapless spin excitations at mo-
menta (O, tr) and (tr, 0) in accordance with a proposed
two-dimensional generalization of the Lieb-Schultz-
Mattis theorem. It is important to establish whether the
flux phase survives at finite n since if it does it would be a
nontrivial example of a two-dimensional spin liquid. In a
recent Letter3 I discussed how the appearance of Neel or-
der as n decreases from infinity down to sufficiently small
values can be understood as a transition in which the fer-
mions become massive and bind into massless mesons.

hese mesons are simply the gapless spin waves required
by Goldstone's theorem. However, the role of topological
excitations (instantons) remained unclear. In this Rapid
Communication I show that instantons do not induce
spin-Peierls order in the flux phase. This behavior con-
trasts with that of certain other quantum antiferromag-
nets which I review below.

Topological excitations can radically change the ground
states of some quantum antiferromagnets. In one spatial
dimension, the critical properties of spin chains are well

described by nonlinear o models with an additional
Berry's phase term. For half-integer spins, Berry's phase
of smooth space-time configurations of the staggered spin
equals ntr where n is the integer winding number of the
configuration. The destructive interference between dif-
ferent configurations accounts for the existence of gapless
spin excitations. In contrast, spin excitations in integer-
spin chains generically have a nonzero gap because
Berry's phase vanishes (modulo 2tr) for all staggered spin
configurations and the coupling constant of the pure non-
linear tr-model flows to large values at long length scales.
This picture is borne out by exact solutions of spin-chain
systems. '

On the two-dimensional square lattice, smooth space-
time configurations of the staggered spin always have zero
Berry's phase. Haldane showed that nontrivial Berry's
phases only arise if space-time singularities in the stag-
gered spin (instantons) are permitted. When the ground
state is Neel ordered, pairs of instantons with opposite
charge are strongly confined and do not contribute
significantly to the partition function. If, on the other
hand, the system is not Neel ordered (a possibility when
frustrating interactions are included in the Hamiltonian)
then instantons are deconfined and proliferate. The total

charge must be zero to satisfy periodic boundary condi-
tions, but Berry's phase in the half-integer spin case
(specified below) can be either 0, tr/2, tr, or 3tr/2 depend-
ing on the locations and charges of the individual instan-
tons. The existence of four possible phases suggests that
the ground state will be fourfold degenerate. However, it
was unclear from Haldane's approach exactly what the
ground state would be since the o model only makes sense
if the staggered spin has at least quasi-long-range order.
This assumption precludes the possibility of a detailed un-
derstanding of ground states with short-range spin-spin
correlations.

Read and Sachdev addressed this problem by studying
the compact U(1) gauge theory of a bosonic SU(n) anti-
ferromagnet. Unlike the o model, this formulation of the
problem' is exact and does not rely on the existence of
long-range spin order. Indeed, the SU(n) model can be
solved exactly in the large nlimit an-d on the square lattice
exhibits a phase with no Neel order and no low-energy
spin excitations. Instantons are deconfined in this massive
phase and appear as U(1) monopoles in the phases of the
Hubbard-Stratonovich fields that are introduced to fac-
torize the four-boson interaction term. The efTective ac-
tion for these gauge fields contains the Berry's phase term
(identical to the term Haldane found): Htt =(tr/2) Lq, g,
where q, is the (integer) instanton charge (summed over
all time) centered on site s of the dual lattice (the lattice
formed by the centers of the squares) and g, is 0, 1, 2, or 3
depending on whether s is, respectively, an even-even,
even-odd, odd-odd, or odd-even dual lattice site. Despite
appearances, ett is actually invariant under a K2 diagonal
translation of all instantons because Lq, =0. Another
piece of the effective action couples the electric field on
each link to the spin-Peierls order parameter (S„S„+,
—S, S, ,) where x is a lattice site and e is a unit vector
connecting neighboring sites.

The Berry's phase depends on the charges and positions
of the instantons because the bosonic SU(n) formulation
of the nearest-neighbor antiferromagnet breaks transla-
tional and charge-conjugation symmetries. In particular,
difTerent representations of the SU(n) bosons (related by
charge conjugation) are placed on the even and odd sites
of the square lattice. " Thus, the Hamiltonian itself
breaks translational and charge-conjugation symmetries
and the massive phase should not be considered a true
spin-liquid, even in the infinite n limit. At finite n, for
SU(n) representations that are the analogues of the half-
integer spin SU(2) representations, this J2 unit cell is
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spontaneously broken in the massive phase by the appear-
ance of a nonzero density of positive and negative instan-
tons that are oriented because of the Berry's phase term.
A static electric field appears along particular links, which
in turn induces spin-Peierls order in the form of a slight
(exponentially small in n) enhancement of singlet correla-
tions on one quarter of the links. These links form
columns throughout the lattice, consistent with Haldane's
hypothesis that the ground state should have a fourfold
degeneracy. (An identical crystallization pattern was re-
ported in a study of short-range resonating valence
bonds. ' In that model, an explicit background electric-
field breaks translational and charge-conjugation invari-
ance. Again the Berry's phase term appears, and instan-
tons induce dimer ordering. )

In contrast, the ferrnionic SU(n) Hamiltonian does not
break translational or charge-conjugation symmetries be-
cause the fermions on each lattice site are in the same (an-
tisymmetric self-conjugate) representation of SU(n). '

In the large-n limit, translational symmetry breaks spon-
taneously on a wide variety of lattices (including the
square lattice) in the absence of biquadratic coupling. '

But the inclusion of this term stabilizes the flux phase on
the unfrustrated square lattice without altering the physi-
cal SU(2) Hamiltonian apart from a trivial renormaliza-
tion of the usual bilinear spin-exchange constant. (See

I

Ref. 1 for an extended discussion of this system. ) The flux
phase preserves all the symmetries of the original Hamil-
tonian: there is no Neel nor spin-Peierls order, and
translational, time-reversal, reflection and charge-
conjugation symmetries are preserved. Therefore, the
Berry's phase of an instanton cannot depend on the sign of
its charge or its position.

To illustrate this invariance with a simple calculation,
consider the effect of charge-conjugation on the effective
action for instantons. Both the bilinear (J) and biqua-
dratic (J) interactions can be decomposed via Hubbard-
Stratonovich transformations by introducing complex link
fields g,„and real link fields 4,„. The phases of the g,„
fields transform as spatial gauge fields under local U(1)
transformations and the time component of the gauge
field appears in the guise of a Lagrange multiplier field
(p„) that enforces the local particle-number constraint
(n/2 fermions live on each site, where n is an even in-
teger). The effective action is now obtained by integrating
out the Grassman fields c„and c„:

exp( —S,tr[g, @,y]) =„[dc'][dc]
&&exp( —nS[2', @,p, c',c]) .

Here the imaginary time action (setting J=1) is given by

r

S[g,@,p, c )c] dr z 2 c„c,—— c, c„+tg,(cxcg 2 )
t) 1 t)

r 2 r

+ g [(I/J)@,),+ ~g,y~ +(1 —2i@,y)
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By choice of gauge, p, can be set to zero. Also, 4,„ is
equal to an iinaginary constant at the flux saddle point.
(The 4„~ fields are gauge invariant. ) Upon charge conju-
gating the fermions

c„*; x E even sublattice,
&x

,
—c„*; x 6 odd sublattice,

the effective action transforms as S,a[@,@] S,ir[g, @].
Thus, the effective action for an instanton equals that of
an anti-instanton, since the instanton charge is reversed
when the 2,„ fields are complex conjugated. (The g,„
fields can be chosen to be purely real at the flux-phase
saddle point by a gauge transformation. Instantons then
contribute an imaginary component to hazy which changes
sign under complex conjugation. ) Berry's phase is just the
imaginary part of the Euclidean effective action and is

clearly invariant under the charge-conjugation operation.
Instantons therefore do not induce a net electric field

I

along particular links and no spin-Peierls ordering will
occur.

The fact that the fermionic SU(n) and the bosonic
SU(n) quantum antiferromagnets behave differently may
seem paradoxical, since both versions describe the same
two-dimensional nearest-neighbor square lattice spin- —,

'

Heisenberg antiferromagnet at n 2. Actually, neither
spin-liquid nor spin-Peierls behavior occurs in the physical
SU(2) limit; instead, the ground state is Neel ordered.
Dynamical processes are likely responsible for this long-
range spin order. But the absence of topologically in-
duced spin-Peierls order in the fermionic SU(n) quantum
antiferromagnet means that the flux phase remains a vi-
able spin-liquid candidate for finite n & 2.
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