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A generalized model for hard superconductors has been developed to unify all previous forms of
the critical-state model. The magnetization versus applied-field curves generated from this model
are shown to be physically consistent with the original Bean model. Other expressions of the crit-
ical current density can all be derived from this generalized critical-state model.

Hard superconductors have been observed to exhibit
magnetic hysteresis. Various models have been developed
to interpret this magnetic behavior, which is essential in
understanding the nature of the mixed state of hard super-
conductors. For example, Bean proposed a so-called
critical-state model in which the hysteresis is connected
with a macroscopic parameter J,, the critical current den-
sity."2 The Bean model assumes that the critical current
density J, is a constant at a given temperature,

J(H,T)=J.(T) , (1

where H; is the local magnetic field and T is the tempera-
ture. Bean also pointed out in the model that J. was
directly determined by the microstructure of the super-
conductors.

Anderson® and Kim, Hempstead, and Strnad* later
modified the Bean model; they suggested that J. should
vary with the local magnetic field and should have the
form

J.(H;,T)=J.(T)/(1+H;/H,) , (2)

where Hj is a macroscopic materials parameter with the
dimension of field. The model was found to agree well
with the experimental results for some conventional super-
conductors when the sample was assumed to be a solid
cylinder.

Equation (2) indicates that the field dependence of J, is
associated with the term H;/H, which may vary consider-
ably among different systems. Watson showed that, for
some systems, the condition Ho>> H; is satisfied and that
Eq. (2) leads to a simple linear field dependence of J,,>
J.(H;) =A —CH;, where A4 and C are constants that con-
tain the macroscopic materials parameters.

In considering more specific pinning mechanisms, a
power-law field dependence of J. was developed by Irie
and Yamafuji:®

J.(H;,T)=K(T)/H!, (3)

where K is a materials parameter and n directly reflects
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pinning strength.

Based on the magnetization data from cold-worked
Nb-Zr wires, Fietz et al. found that their experimental re-
sults were excellently fitted with an empirical formula,’

J(H;,T)=J.(T)exp(—H;/Hy) . 4)

They pointed out that Eq. (4) was obtained by several tri-
al functions and that the critical current density calculat-
ed by using this equation agreed well with the experimen-
tal transport J. data in Nb-25% Zr wire. They also point-
ed out that the Kim model was unable to fit the experi-
mental data above 15 kOe, while Eq. (4) was valid up to
40 kOe.

In recent research of high-T. superconductors, Eqgs.
(1)-(4) have been extensively used to study the critical
current behavior and the motion of magnetic-flux
lines,® ~'? and the validity of these models has been shown
to vary from system to system. It has been shown that
different hysteresis and J. versus applied-field curves may
be obtained by applying various forms of the critical-state
models. A universal critical-state model for the critical
current density is therefore to be established which is
applicable in all situations.

In this paper we develop such an expression for the
magnetization of hard superconductors. The expression is
a generalization of Eqgs. (1)-(4) and has the following
form:

J.(H;,T)=J . (T)/[1+H:/H(T)]?, (5)

where B is a dimensionless constant. We first indicate that
Eq. (5) is the general form of Egs. (1)-(3). It is clear
that =0 and 1 give the Bean [Eq. (1)] and Kim [Eq.
(2)] models, respectively. Equation (3) is obtained when
the condition H;/Ho> 1 is satisfied in Eq. (5) and we set
K=J.(T)Hf and n=p.

We now show that Eq. (4) can be generalized to Eq. (5)
as Hi/Ho< 1 and B> 1, with Ho/B =%, where %, is a
finite value with dimension of field. Taking the limit of
J.(H;) with the preceding conditions, and letting H;/H
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=x, we have
limoJc (H;,T)=J.(T)/ limo(l +x)#8

=J(T)/ lim (14 ) V7
o

=J.(T)exp(— H;/7,) . 6)

Note that in the deriving Eq. (6), we have used the rela-
tion

lim (1+x)*=¢.

x—0
It can be seen that Eq. (6) has the same form as Eq. (4)
and that their physical meanings are identical.

Equation (5) has three adjustable parameters: J.(T),
Hy, and B. As defined earlier, J. is the macroscopic criti-
cal current density which is directly connected with the
microstructure of the materials. Although the physical
meaning of Hy is not yet clear, it is probably an intrinsic
material parameter which may be associated with the crit-
ical fields (H,, H,, and H,;) of the superconductors. It is
transparent that Eq. (3) (the power-law dependence) and
Eq. (4) (the exponential dependence) are the special cases
of Eq. (5) with the extreme conditions of Ho/H; <1 and
Ho/H;> 1, respectively. The physical implication of these
conditions is that Eq. (3) is applicable for materials with
small H values while Eq. (4) is more suitable for high-H
superconductors. As has been pointed out by Kim et al.,*
the Hy value is approximately the thermodynamic critical
field H, for Nb3Sn and Nb-Zr superconductors.

We have indicated above that n (=) in Eq. (3) is re-
lated to the specific pinning mechanisms in the system.
With the condition H;/H¢> 1, the case =1 in Eq. (5) is
equivalent to n=1 in Eq. (3). It has been shown in deriv-
ing Eq. (6) that Eq. (4) is the special case of Eq. (5) when
B>1 and Ho/H;>1. As we have mentioned earlier,
Feitz et al. found that only in the low-field region (3-15
kOe) did the Kim model [Eq. (2), or =1 in Eq. (5)] re-
sult in a reasonable fitting with the experimental magneti-
zation data in Nb-25% Zr wire. A much more accurate
fitting was obtained in a wide field region (4-40 kOe)
when Eq. (4) [or B> 1 in Eq. (5)] was employed.” Fur-
ther, recent studies in high-7,. superconductors indicate
that Eq. (4) is more appropriate for a strongly pinned
YBa,Cu;0, system compared with other models.'® These
previous experimental results and our generalized model
suggest that, in contrast to Ho which may be intrinsic to
the superconductor, 8 is a microstructure-sensitive materi-
als parameter, through which the physical meanings of
and relationships between the previous models of critical
current density can be understood and clarified. Thus, all
hard superconductors including high-7, ceramics may be
categorized by the parameters H and B with this general-
ized critical-state model in terms of intrinsic and extrinsic

materials properties such a critical magnetic fields and|
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microstructures.

It appears that Egs. (2)-(4) are mathematically in-
dependent of each other. However, they can all be derived
to have the form of the Bean model [Eq. (1)}, if we as-
sume H;/Ho<1, n=0, and H;/Ho< 1, in Egs. (2), (3),
and (4), respectively. By taking a higher order of approx-
imation in H;/H( with the condition of H;/Hy< 1, we find
that both Egs. (2) and (4) result in the same linear field
dependence of critical current density J.(H;)=J.(T)(1
—H;/H,).° Moreover, we note that Eqs. (3) and (4) are
also identical when n =1 and H;/H¢>> 1 is satisfied in Egs.
(3) and (4), respectively. Thus, we see close physical rela-
tionships between these models, and they are well con-
nected by our generalized expression Eq. (5), which has a
universal mathematical form.

It should be pointed out that although Eq. (1) gives a
field-independent critical current density, Bean also con-
sidered an arbitrary dependence of J. on field.2 The
differential equation for the magnetization of a slab with
thickness of 2d is given by the form

dB/dH=H/#*(H), H<#*(H) , @)

where B is the induction (B=4zM+H) and #*(H)
=4xJ.(H)d/c (c is the speed of light). With the
definition of % * (H), Eq. (7) can be written as

dB/dH =cH/4rJ.(H)d, HKH*(H) . 8)

The significance of Eq. (8) is that the relationship be-
tween J. and H can be experimentally determined by the
magnetization curve. Therefore, field dependence of criti-
cal current density is established without any assumption
for various superconducting systems.

We now use Eq. (5) to develop an expression for mag-
netization, based on which the complete magnetic hys-
teresis can be calculated for various superconductor sys-
tems. We consider an infinite slab of thickness 2d with an
external magnetic field parallel to the surface. There is a
supercurrent density J, (H;) associated with the local field
H; established in the slab, whose direction is perpendicu-
lar to the current. The lower critical field H,; is ignored,
and the applied field H < H.,. According to Ampere’s
law, we have

-—dH,/dx "47[JC(H,')/C s (9)

where x is the distance between the slab surface to any
point inside the slab. With the appropriate boundary con-
ditions, we can derive the expressions for the local field H;
in various field regions. By definition, the magnetization
M is given by

1 d
4zM 71; H;(x)dx—H , (10)

and we obtain

Ho | _ (+H/Ho)**'—1  (1+H/Ho)**—1 .
T AT T =H", aan
4rM H+ 7 B+1 5+2 ,forH=<H
(B+2)/(p+1)
Ho H\™ H )™ .
M=—H+ +—| -+ -1+ -G+ =
4x H (ﬂ+2)h0{“1 Ho] (B+2)ho I+ (B+1ho , for H= H*, (12)
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where H* is the field at which the flux first completely penetrates the slab, and

H*=Ho{—1+ 01+ +B)hol /' *+8} |

(13)

where ho=4rJ.d(T)/cH,, which is a dimensionless coefficient. It should be noted that Eqs. (11) and (12) are for the in-
itial magnetization curve as the applied field increases. For the decreasing field, we have

U+H/H)P*'"+(1 +H,,/Ho)PH!

H,
4xM=—Ho—H+
g Ho—H (ﬂ+2)ho{2 2

B+2)/(g+1)
] —(1+H/Hy)P*?

H B+1 B+2)/(g+1)
- 1+7 —(ﬂ+l)ho] } forH,=H=H,—2H*, (14)
0
B+2 B+1 B+2)/(+1)
Hg H H
=—-—— 1+— +(B+2)hy| — 1+— +(B+1)h , (15)
nM (B+2)ho { Ho “ °} Ho p "} }

where H,, is the maximum applied field.

It should be pointed out that Eq. (11) can also be ob-
tained by using the original Bean differential equation
[Eq. (8)] for the magnetization curve. Substituting our
generalized critical-state model [Eq. (5)] into Eq. (8), we
have

dB/dH =cH(1+H/H()?/4ndJ.(T). (16)
Solving this differential equation with the same approach
introduced earlier, we can obtain Eq. (11), which is one of
the principal results of this study.

In Fig. 1 we plot the initial magnetization versus field
(M vs H) curves for different B values and fixed Ho (=1
T). We set J.,=10° A/cm? and d =0.5 mm. It should be
noted that the magnetization curves are plotted only for
the increasing field part (H <H* and H> H*). As
shown in Fig. 1, the magnitude of the magnetization in-
creases dramatically with decreasing 8. At 8 T, the mag-
netization for f=0.5 is 12 times higher than that for
B=1.5. This indicates that the value of B reflects the
flux-pinning strength of the superconductors, because the
pinning energy is proportional to the area under the M vs

2.0»f"r"'*'|"‘]"'_1
1.5}

1.0}

—4n M (T)

0.5

0.0 b

H (T)

FIG. 1. Calculated magnetization vs field based on Egs. (11)
and (12) for various B indicated and fixed Ho (=1 T).

for0<H=<H,,—2H*,

I

T curve. The peaks of the magnetization curves corre-
spond to the full penetration field H*. It is consistent
with the general pinning mechanisms that stronger pin-
ning (smaller B values) requires higher field (H*) for the
flux lines to fully penetrate the superconductor at a given
temperature.

Figure 2 shows the M vs H curves for different Hg and
fixed B (=1.5). As can be seen in Fig. 2, the M vs H
curve is also considerably changed with H,. This varia-
tion of the magnetization curve can be explained by Eq.
(13). As shown in this equation, for a given B, H* is
weakly dependent on the term [1+ (1+8)ho]"/'*# and is
determined mostly by the prefactor Ho. Therefore, the
peak of the M vs H curve shifts to higher field (H*) as Hg
increases. It can be seen in Fig. 2 that the peak field
(close to H*) of the M vs H curve is located at 1, 1.5, and
4 T for Hy values of 0.5, 1, and 5 T, respectively, which is
consistent with Eq. (13).

Thus, Egs. (11)-(14) can give magnetization curves
with various B and H values. For a hard superconductor,
if Hy is given, Egs. (11)-(14) can be used to fit the exper-
imental M vs H data at a given temperature. The fitted
curves will result in a finite B value that is directly related

H (T)

FIG. 2. Calculated magnetization vs field based on Egs. (11)
and (12) for various Ho indicated and fixed 8 (=1.5).
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to the microstructure and the pinning strength of the ma-
terial.

In conclusion, we have developed a generalized
critical-state model for hard superconductors. This model
unifies the major forms of the critical-state model
developed previously. We have mathematically shown
that all other forms of the critical-state model can be de-
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rived from this generalized form [Eq. (5)]. We have also
shown that the fitting parameters such as g and Hy are
physically consistent with the Bean critical-state model.
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