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First-order structural phase transitions in a lattice-gas model for VBa,cusOs+
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Recent experiments indicate that the structural phase transitions in the high-temperature
superconductor YBa2Cu306+ may be first order at low temperatures. The oxygen ordering in
the Cu-0 basal planes of this material may be described by a lattice-gas model introduced by
Wille et al. [Phys. Rev. Lett. 60, 1065 (1988)]. However, as recent numerical studies show,
this model does not exhibit first-order transitions. Here, we extend the model to include weak
attractive interactions (2% of the nearest-neighbor interactions) between next-nearest-neighbor
oxygen chains, and we study the extended model using transfer-matrix finite-size scaling. We
find that these weak interactions produce tricritical points and first-order transitions at low
temperatures, which are in good agreement with experiments for the structural order-order
phase transitions. Furthermore, we predict a tricritical point and first-order transitions at low
temperatures on the order-disorder branch of the phase diagram. We also present the phase
diagram.

Recent experiments indicate that the structur al
order-order phase transition in the high-temperature su-
perconductor YBa2CusOs+~ may be first order at tem-
peratures below 220 K. A lattice-gas model describing
the structural phase transitions in this system has been
introduced by Wille et a/. As discussed in earlier
papers s s this model reproduces the experimentally ob-
served phases. With the oxygen concentration in the
Cu-0 basal planes tl = z/2, the phases are a tetrag-
onal phase with fl 0 (denoted by tetra-0 in Ref. 9)
and two orthorombic phases with 8 4 and 8 2 (de-
noted by ortho-& and ortho-z, respectively). However,
at T = 0, the Wille et al. model exhibits an infinite
number of ground states with 0 & tl & ~ and 4 & 9 & z
that are degenerate with the ortho-4 and tetra-0 ground
states at the order-disorder transition and with the ortho-
—' and ortho--' ground states at the order-order transition4 )

respectively. Furthermore, there are no first-order tran-
sitions in this model.

Here we present a finite-size scaling transfer-matrix
study of an extension of the model by Wille et al. The
technical details of the calculations performed here were

presented in a recent paper by Aukrust et al. In a sys-
tem with antiferromagnetic order, weak attractive inter-
actions that connect sites only on the same sublattice
can increase the free-energy gap between the thermody-
namically stable phases on each side of the transition and
the lowest-lying fluctuations. It is well known that such
interactions can cause otherwise second-order phase tran-
sitions to become first order at low temperatures.
We therefore included weakly attractive interactions be-

tween next-nearest-neighbor oxygen chains in the Cu-0
basal planes in the Hamiltonian. The effect of these inter-
actions is to lower the energies of the tetra-0 and ortho--

1
4

states with respect to the states with 8 & 4, and to lower
the energies of the ortho--' and ortho-- states with re-4
spect to the states with 4 & tl & s, thereby lifting the
low-temperature degeneracy. The modified Hamiltonian
1s
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where the e; are the site occupation variables for the oxy-
gen atoms, with c; = 1 if the site i is occupied and c, = 0
if site i is empty. The oxygen chemical potential is p
and N is the total number of oxygen sites. The term
4cc Qlcc c,cs, in particular, denotes the sum over in-

teractions etween oxygen sites located on next-nearest-
neighbor oxygen chains. Analogous to 4c„, which cou-
ples oxygen sites via the shortest bond that can be drawn
through a copper atom, Ccc couples oxygen sites via
the second shortest through-copper bonds. The first four
sums on the right-hand side (rhs) of Eq. (1) define the
original model by Wille ef al. The interactions are
shown in Fig. 1.

In order to use the transfer-matrix formalism with lay-
ers of manageable size, we consider only interactions that
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connect nearest-neighbor transfer-matrix layers, as pre-
viously done by Kitatani and Oguchi in their study of the
antiferromagnetic Ising model on a triangular lattice.
In the transfer matrix we therefore retain only those 4cc
terms which correspond to the dotted lines in Fig. 1. This
consequently means that the transfer matrix does not
have the full rotational symmetry of the Hamiltonian in

Eq. (1). However, we expect that this will not seriously
alter the physical results. This is supported by the fact
that, for a model in which the interactions between next-
nearest-neighbor oxygen chains couple only sites which
lie on the same transfer-matrix layer, we have obtained
results very similar to the ones reported here. 's

As in Refs. 3—9, we chose the interactions C NN ( 0, and

4cu ———4v —0.5~CNNi. To induce first-order transi-
tions at lou temperatures only, the interaction C cc must
be weakly attractive. We chose 4&c = 0.02~4NN(.

Second-order phase transitions were located by the
Nightingale finite-size scaling criterion. 's' The finite-

size scaling behaviors of the following three different

quantities, described in detail elsewhere, were

used to locate tricritical points along the transition lines

given by the Nightingale criterion: (1) the persistence
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FIG. 1. The interactions for the lattice-gas model are
shown over the ground state corresponding to the ortho--'

phase. The interactions of the Mille et al. model are 4NN for
nearest-neighbor interactions (thick solid lines), 4v and 4c„
for next-nearest-neighbor interactions via a vacancy (dashed
lines) and a copper atom (thin solid lines), respectively. The
additional interaction added here is 4'gc, a next-nearest-
neighbor oxygen chain interaction (dot-dashed and dotted
lines). Also shown are two transfer-matrix layers and the
possible locations for oxygen chains. Interactions between
oxygen sites connected by dotted lines are not included in the
transfer-matrix calculations. (+) Cu atoms; (R) occupied 0
sites; and (o) empty 0 sites.

TABLE I. Estimates are shown for the tricritical temper-
atures, ksT~/I@NN I, from finite-size scaling using the persis-
tence length (iv, the maximum of the nonordering suscepti-
bility y~ ", and the eigenvalues of the density operator e, for
E = 4, 8, and 12. See the text for a complete discussion.

Scaled
quantity

max
XN

N

Tetra-0 to
ortho--'

4

0.106(5)
0.116(2)

Ortho--' to
ortho--

2

0.092(2)
0.103(5)
0.089(1)

length (~ (defined in Refs. 12 and 18); (2) the maxi-

mum of the nonordering susceptibility y~ " (as defined
in Ref. 18); and (3) the eigenvalues of the operator 8, cor-
responding to the oxygen concentration 0, in the space
spanned by the eigenvectors corresponding to the three
and four largest eigenvalues of the symmetric block of
the transfer matrix for the order-disorder and order-order
transition, respectively. ~

Estimates for the tricritical temperatures obtained
from the three methods are displayed in Table I. The es-
timates from the first two methods differ by roughly 10%.
This diA'erence is consistent with that observed in other
lattice-gas models. 8 As was pointed out by Rikvold, 8

the scaling of (~ yields the more accurate estimate. The
scaling for y&

" is more robust in cases where a compli-
cated eigenvalue spectrum makes the choice of (iv am-
biguous, but because of its coupling to the heat capacity
it tends to yield slightly too high a value for T&.

The quoted errors in Table I are due to numerical
uncertainties in estimating the tricritical temperatures.
They do not include finite-size eKects, which are diKcult
to estimate.

In order to estimate the tricritical temperatures and
the discontinuities in the oxygen concentration 0 from
the third method, one needs the tricritical indices P and
v, corresponding to the discontinuity in |l and the di-
vergence of the correlation length, respectively, as the
tricritical point is approached parallel to the transition
line. In the case of the transition between the ortho-4
and the ortho-& states, we estimated P/v, the tricritical
temperature, and the coexistence gap from a power-law
extrapolation utilizing the sum and the difference of the
largest and smallest eigenvalues of the operator 8, deter-
mined from the three strip sizes N = 4, 8, and 12. We
obtained the tricritical temperature displayed in Table I
and P/v = 0.17.

Since this transition belongs to the Ising universality
class, P and v are known. Using the exponent relations
given in Ref. 21 and the eigenvalue exponents in Ref. 22
one obtains P =

&
and v = &, yielding P/v = ~s. Our es-

timate is somewhat lower than this value, possibly due to
finite-size eKects. These are especially evident for N = 4,
where "wrap-around" effects occur since the interaction
between the next-nearest-neighbor oxygen chains is too
long ranged to fit on the lattice.

To circumvent this problem, an alternative method
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would be to utilize the tricritical temperature as esti-
mated by the scaling of (~ to determine P/v or to take
its literature value directly (both of which are consistent)
and use a two-p oint p ower- law extrapolation involving

only the 8 and the 12 lattice strips to estimate the coex-
istence gap. However, we found that these methods lead
to a coexistence gap whose slope is considerably different
from zero near the tricritical point.

The order-disorder transition belongs to the universal-

ity class of the XY model with cubic anisotropy, which

has a two-dimensional order parameter and variable crit-
ical indices. s Using the same three-point power-law ex-

trapolation described above for the order-order transi-
tion, however, does not lead to a coexistence gap that
converges to zero. We believe this to be a result of the
finite-size effects, especially for N = 4. To find P/v,
we therefore used the two-point power-law extrapolation,
utilizing T~ obtained from the scaling for (~ described
above. This led to P/v = 0.36 at a tricritical temperature
of lesTg/~4NN( = 0.1065. The coexistence gap was then
calculated from a two-point power-law extrapolation of
the difference and a three-point power-law extrapolation
of the sum of the largest and the smallest eigenvalue of

Figure 2 shows the 8-T p h ase diagram for low tem-
peratures. The coexistence gaps correspond to values of
P/v = 0.17 and P/v = 0.36 at the order-order and order-
disorder transition, respectively. The high-temperature
part of the phase diagram is not shown, since the in-

troduction of Ccc gives only an overall increase of the
critical temperature between 3' and No compared to
the Wille ef a/. model. The agreement between the 4/8
a,nd the 8/1'2 scaling results for the lines of critical points
is quite good, except at the order-order transition close
to the tricritical point. The experimental data points by
Specht et a/. were used to establish an estimated tem-
perature scale on the right-hand vertical axis of the phase
diagram by adjusting the value of ~4NN~.

The location of the tricritical point on the order-order
transition line agrees well with that found in the experi-
ments by You ef aL, ' who give T& in the range 220—240 I&.

However, this agreement is fortuitous in the sense that we

chose C CC only to give T& approximately one-half of the
maximum critical temperature for the ortho--' phase. We
also predict a tricritical point on the order-disorder tran-
sition line. However, our value for its tricritical tempera-
ture appears to be slightly too high since one might have
expected the experimental data point given by McIkinnon
et al. ~4 to lie above the tricritical point rather than below
it. This might be for several reasons: First, we did not
adjust our value of C gc in order to fit the location of the
tricritical points to the available experimental data on the
order-order transition line. Second, because of finite-size
effects, especially on the smallest lattice N = 4, the co-
existence gap and the tricritical temperatures could not
be obtained very accurately.

In summary, we have demonstrated that the lattice-
gas model suggested by Wille et a l. exhibits first-
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FIG. 2. The g-T phme diagram at low temperatures is shown. The solid lines were obtained from 8/1 scaling. The +
were calculated from 4/g scaling. The dotted curve corresponds to the original model by Wille et al- (C cc = 0) obt, ained from

g/]2 scaling (Ref. 9). Also shown are experimental points due to Specht et al (Ref. 23) (solid .circles) and McI&iuuon et el
(Ref. 24) (open circles with error bars). They were used to establish an estimated temperature scale on tlie right-hand vertical
axis by adjusting the value of ~4NN~.
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order transitions at low temperatures on both the
order-order and the order-disorder branches if one in-
troduces weakly at tractive interactions between next-
nearest-neighbor oxygen chains. This might be help-
ful in explaining the possible first-order behavior of the
structural order-order transition at low temperatures, ob-
served experimentally in the high-temperature super-
conductor YBa2CuqOs+ . Furthermore, if the mecha-
nism of introducing first-order behavior into the Wille
model presented here is correct then our prediction is
that there should also be a tricritical point at approxi-
mately the same temperature on the order-disorder tran-
sition line. We also determined the locations of the tri-
critical points and the approximate shapes of the coex-
istence gaps associated with the first-order transitions
at low temperatures. Moreover, using the location of
the tricritical point as determined by the scaling of the
persistence length, we were able to give an estimate for

the unknown ratio of P/v for the tricritical point on the
tetra-0 to ortho-4 transition line.
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