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Simple method for collective excitations in multicomponent mixtures of quantum fluids

M. Alatalo and L. J. Lantto
Department of Theoretical Physics, University of Oulu, SF-90570 Oulu, Finland

(Received 27 November 1989; revised manuscript received 16 July 1990)

We present a simple analytical method to compute the approximate spectrum of elementary col-
lective excitations for hypothetical arbitrarily many-component "electron-hole" fluids. Numerical
results are given for two- and ten-component systems in three dimensions and for a six-component
system in two dimensions.

Thirty five years ago Feynman showed' that a good ap-
proximation to low-lying excited states gE of liquid He
is given by

4E= & e '4o
j=l

where 1(o is the ground-state wave function. This leads to
excitation energy

where g tt (ct,P=1, . . . , n) are the pair correlation func-
tions, U

&
are pairwise potentials, p &

are reduced masses,
and to &(r) the elements of the matrix whose Fourier
transform is
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which is valid in the limit k ~0. S(k) is the liquid struc-
ture function which goes to infinity for large values of k
when this formula gives the single-particle excitation en-

ergy. m is the mass of liquid particles. This description
is easily generalized to arbitrarily many-component mix-
tures of quantum fluids. Then the many branches of the
excitation spectrum are obtained as eigenstates of the ma-
trix

4 k
[M ' S '(k)M ' ]

2

where S(k) now means the tnatrix made of pairwise
structure functions S tt(k), ct,g= 1, . . . , n, n is the num-

ber of the components, and M =diag(m, ) is the diagonal
mass matrix. In the present work we apply this method
to multicomponent mixtures of charged quantum fluids,
both three- and two-dimensional systems.

Approximate ground-state structure functions are ob-
tained by employing the variational method. As a start-
ing point we use the Euler-Lagrange equations written in

the form

+[v &(r)+to tt(r)][g tt(r)]' =0, (4)

Here SF is a diagonal matrix made of noninteracting
structure functions. We can rewrite the Euler-Lagrange
equation (4) in momentum space as

[S(k)MS(k)] '=[SF(k)+MSF(k)] '+
2

v(k)

[M 'R(k)+R(k)M '], (6)

and we use a dimensionless Fourier transform

a(k)=(p~&)' f e'"'a(r)dr,

where p, (p&) is the number density of component a (P).
Equation (6) may be a useful starting point in deriving
iterative methods for solving the complete set of the
Euler-Lagrange equations.

Multiplying Eq. (6) from both sides with (k /2)M
we obtain

where v(k) is the matrix of the pair potentials. R (k) is a
matrix whose components in r space are defined as

2
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number of components to be ten: say, one "electron" and
nine "hole" components with opposite charge. In the
first, heavy-hole system, represented by solid lines, the
masses of the hole components are chosen to be heavier
than the electron mass: m lm, = 1,3, . . . , 10 for
+=2,3, . . . , 10.

In the second, light-hole system, the mass ratios are,
respectively, m /m, =1

2 lo In both cases the
overall neutrality is guaranteed by choosing the density
of each hole component to be p =p, l9, a =2, . . . , 10.
In these multicomponent systems there is only one plas-
ma mode, whose frequency at k =0 is

Pa
cop

41re
a=1 a

and the rest of the modes are phonons, i.e., their energy is
linear in k as k~0.

In the two systems, described in Fig. 2, one hole-
component mass equals that of the electron. Hence two
branches in both systems merge as k ~~. In the heavy-
hole system the plasmon mode and the highest phonon
mode merge. In the light-hole system, because the
dispersion curves cannot cross each other, the steeply ris-
ing phonon modes push the plasmon mode up, and two
lowest phonon modes approach each other asymptotical-
ly.

In two dimensions U(k) =(2/r, )(2 sprlk) and'
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Taking this into account we find the excitation curves of
Fig. 3 for a two-dimensional system. Qualitatively, the
main difference between the two- and three-dimensional
systems is that in 2D, the plasmon energy does not go to
constant as k ~0, but approaches zero as &k.

In this work we have considered the collective modes
of multicomponent "electron-hole" systems. In fermion-
ic systems these modes, except plasmons, are inside the
single-particle continuum and therefore are not realizable

as stable excitations. In bosonic systems the situation
would be different. However, analogous methods may
find interesting applications in handling some problems
in superlattice and quantum wire systems, which may be
directly mapped to multicomponent systems.
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