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Simple method for collective excitations in multicomponent mixtures of quantum fluids
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We present a simple analytical method to compute the approximate spectrum of elementary col-
lective excitations for hypothetical arbitrarily many-component “electron-hole” fluids. Numerical
results are given for two- and ten-component systems in three dimensions and for a six-component

system in two dimensions.

Thirty five years ago Feynman showed' that a good ap-
proximation to low-lying excited states ¥/ of liquid *He
is given by
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where 1, is the ground-state wave function. This leads to
excitation energy
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which is valid in the limit kK —0. S (k) is the liquid struc-
ture function which goes to infinity for large values of k
when this formula gives the single-particle excitation en-
ergy. m is the mass of liquid particles. This description
is easily generalized to arbitrarily many-component mix-
tures of quantum fluids. Then the many branches of the
excitation spectrum are obtained as eigenstates of the ma-
trix
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where S (k) now means the matrix made of pairwise
structure functions Saﬁ(k), a,f=1,...,n, nis the num-
ber of the components, and M =diag(m ) is the diagonal
mass matrix. In the present work we apply this method
to multicomponent mixtures of charged quantum fluids,
both three- and two-dimensional systems.

Approximate ground-state structure functions are ob-
tained by employing the variational method. As a start-
ing point we use the Euler-Lagrange equations written in
the form?
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where g5 (a,f=1,...,n) are the pair correlation func-
tions, v, are pairwise potentials, p,z are reduced masses,
and w,4(r) the elements of the matrix whose Fourier
transform is
—# Zk 2
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Here S is a diagonal matrix made of noninteracting
structure functions. We can rewrite the Euler-Lagrange
equation (4) in momentum space as
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where v(k) is the matrix of the pair potentials. R (k) is a
matrix whose components in r space are defined as
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and we use a dimensionless Fourier transform
a(k)z(papﬁ)mfe“”a(r)dr , 8)

where p, (pp) is the number density of component a (B).
Equation (6) may be a useful starting point in deriving
iterative methods for solving the complete set of the

% Vz[gaﬁ(r)l/zl Euler-Lagrange equations.
d Multiplying Eq. (6) from both sides with (k2/2)M ~'/2
+[vaB(r)+waB(r)][gaB(r)]]/2=0 , (4 weobtain
J
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From this form we see directly that the collective excita-
tions are the square roots of the eigenvalues of the right-
hand side of Eq. (9). In Coulomb systems, which are not
too strongly correlated, we obtain a good approximation
already by dropping the R (k) term in the right-hand side
of Eq. (9). This is useful because then we can handle n
components almost as easily as only one.

As an example we consider hypothetical two- and ten-
component “electron-hole” systems in two and three di-
mensions. We first compare the excitation curves and
structure functions calculated from Eq. (9) and from the
approximate equation

[S(K)MS(k)] " '=[SpMSg(k)] "'+

4
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which we get by dropping the terms depending on g 5 in
Eq. (9). In three dimensions®

3k /kp)— Lk /kp)}, k <2kp
SF= 1, k>2kp . (1

Figure 1 presents the collective excitation energies for
a two-component fluid where the mass ratio of the com-
ponents m,/m;=3. The length scale is defined here in
terms of the first component mass M, i.e., ap =% 2/m ,ez,
and the energy unit is 1 Ry‘—‘%ez/ao. The dimensionless
density parameter is also defined in terms of the first-
component density r,=(3/4mp,)!”*/a,. The dashed and
solid curves represent the full and approximate equations
(9) and (10), respectively. The dashed-dotted curve
represents the result of Vignale and Singwi* who applied
a method utilizing a generalized random-phase approxi-
mation. The fully iterated equations which include the
effect of short-range correlations give, not surprisingly,
slightly lower energy than the approximate equation (10)
and the result of Ref. 4.

In Fig. 2 we show excitation spectra for two different
ten-component fluids. Just for curiosity we chose the
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FIG. 1. Collective excitation for a two-component fluid with
m,/m =3 at r,=1.5. The solid curve presents the approxima-
tion of Eq. (10), the dashed curve presents the eigenvalues of Eq.
(9), and the dash-dotted curve shows the result of Ref. 4.
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FIG. 2. Excitation spectra for two ten-component fluids.
The solid line represents a system which consists of one electron
component and nine hole components whose mass ratios are
my,/m;=+13,...,10, a=2,3,...,10. The dashed lines
represent a system where the masses of the nine hole com-
ponents are 1,%, ..., and llo times the electron mass.
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FIG. 3. Excitation spectra for two six-component two-
dimensional fluids at r,=1. Two of the components have the
same mass, the others having mass ratios m,/m, =4, 6, 8, and

10 (solid lines) and {, &, %, and % (dashed lines).
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number of components to be ten: say, one “electron’ and
nine ‘“hole” components with opposite charge. In the
first, heavy-hole system, represented by solid lines, the
masses of the hole components are chosen to be heavier
than the electron mass: m,/m;=1,3,...,10 for
a=2,3,...,10.

In the second, light-hole system, the mass ratios are,
respectively, m,/m,;=1,%,..., L. In both cases the
overall neutrality is guaranteed by choosing the density
of each hole component to be p,=p,/9, a=2,...,10.
In these multicomponent systems there is only one plas-
ma mode, whose frequency at k =0 is
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Taking this into account we find the excitation curves of
Fig. 3 for a two-dimensional system. Qualitatively, the
main difference between the two- and three-dimensional
systems is that in 2D, the plasmon energy does not go to
constant as k —0, but approaches zero as V'k.

In this work we have considered the collective modes
of multicomponent “electron-hole” systems. In fermion-
ic systems these modes, except plasmons, are inside the
single-particle continuum and therefore are not realizable
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and the rest of the modes are phonons, i.e., their energy is
linear in k as k —0.

In the two systems, described in Fig. 2, one hole-
component mass equals that of the electron. Hence two
branches in both systems merge as kK — oo. In the heavy-
hole system the plasmon mode and the highest phonon
mode merge. In the light-hole system, because the
dispersion curves cannot cross each other, the steeply ris-
ing phonon modes push the plasmon mode up, and two
lowest phonon modes approach each other asymptotical-
ly.

In two dimensions v (k)=(2/r,)(2mp /k) and’

k <2k

(13)

f

as stable excitations. In bosonic systems the situation
would be different. However, analogous methods may
find interesting applications in handling some problems
in superlattice and quantum wire systems, which may be
directly mapped to multicomponent systems.
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