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We study the crossover between two- and three-dimensional behaviors of the Villain form of the
XY spin model on a three-dimensional lattice with anisotropic couplings J&=J2=J, J3=aJ
{0 a ~ 1). The a dependence of various quantities is examined by means of duality transforma-
tions, Migdal renormalization group, and Monte Carlo simulations. For the specific heat, a cross-
over into the Kosterlitz-Thouless behavior takes place around a=0.2, which corresponds to
a„,=0.015 in the cosine form of the XYmodel. Some implications for models of high-T, supercon-
ductivity are discussed.

I. INTRODUCTION

Various kinds of experiments on high-T, superconduc-
tors have exhibited that the relevant structure of these
materials are layers of two-dimensional Cu-0 planes.
Holes (or electrons) at each site have short-range hopping
interactions within the plane. In addition, there are weak
but finite couplings between the layers. There are claims'
reporting that the superconducting phase transition is of
Kosterlitz-Thouless (KT) type, a characteristic phase
transition available in pure two dimensions. They are
based on the observations of the KT behaviors in electric
transport properties mainly in the temperature interval
(-0.2 —3.0 K) between TK~ (KT critical temperature)
and ToL (Ginzburg-Landau mean-field critical tempera-
ture). ' Some authors consider the possibility that fiux
vortices in the conventional theory might engage in the
KT behaviors, while others speculate that yet unknown
novel objects might be invoked in explanations. ' It
should be pointed out that all these experiments do not
rule out genuine three-dimensional (3D) critical behaviors
that might still appear in the very vicinity of the transi-
tion temperature T, .

Still, most theoretical approaches to high-T, phenome-
na work with models defined on the two-dimensional
(2D) lattice explicitly. To consider these as realistic mod-
els it would be necessary to evaluate the effects of the
weak interplane couplings mentioned above, since, as is
well known, the dimensionality of the system is crucial
for determining the universality class of its normal super
phase transition. Such an evaluation would be useful to
check the consistency not only of models themselves but
also of assumptions employed in theoretical and experi-
mental analyses.

In this paper we study the effect of such anisotropic
coupling (—:a) in the context of the classical XY spin
model by using various methods available. We choose
the XY model, since it is the canonical representation
with local interactions exhibiting the KT transition in
two dimensions. Apart from its close relation to the
high-T, phenomena, such a study is also of interest from
the view point of the statistical mechanics of topological

bg
(=exp

Ter
b(-—1.7,

For low temperatures, T (TKr, both g and y stay
infinite. The specific heat C, on the other hand, develops
only a very smooth, finite peak located about 20% higher
in temperature than TK~.

In 3D the system exhibits a second-order transition at
P=0.33 (Refs. 7 and 8) [P„,=0.4539 (Ref. 9)] where the
correlation length and the susceptibility diverge, and the
specific heat develops a cusplike singularity with a jump,
as in the k transition of liquid helium. ' The critical be-
havior can be described by power laws,

g= i T —T, ~, v=0. 669+0.002,

X=lT —T, l
', y=1.316+0.0025,

(2a)

(2b)

where we have taken the critical exponents v and y from
the standard renormalization group calculation. " Ap-

excitations. In two dimensions (a=0) the system is
equivalent to an ensemble of pointlike vortices with loga-
rithmic interaction, while in three dimensions (a=i) it
can be described as an ensemble of vortex loops, with
parallel line elements interacting via the usual Coulomb
potential ~ 1/r Wh.at is happening in the interinediate
region of a? To investigate this question we choose in
this paper the Villain form of the XY model, instead of
the cosine form, since it is known that topological excita-
tions and spin waves are simply decoupled in the Villain
form.

In 2D the XY system exhibits a KT transition that is
characterized by its smoothness (being formally of infinite
order). There appear no long-range orders nor singulari-
ties in thermodynamic quantities for zero external fields.
The transition point TK~ is located by an exponential
divergence of the correlation length ( and the susceptibil-
ity g at P= 1/T=0. 73 (Ref. 4) [or, in the cosine model,
at P„,=1.114+0.003 (Ref. 5)]. More precisely, ap-
proaching TK~ from high temperatures, the correlation
length g and the susceptibility y exhibit the KT behavior
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plying the scaling relation ac=2 —Dv, this implies for
the specific heat C of the 3D XY model a negative ex-
ponent ac (which should not be confused with our an-
isotropy parameter a),

described by the 2D model.
Now we follow the standard method of duality trans-

formation. ' The periodic Gaussian factors in (5) have
the Gaussian Fourier components

C =
~

T —T,~, ac = —0.007+0.006, (3) g exp[ ,—'P—(p 2—rrn ) ) = g f~(b) exp(iby),
n&Z bcx

showing that C remains finite at T, . Note that due to
this property the maximum of C can, in principle, be dis-
placed from the location of the cusp. In the low-
temperature phase, the magnetization m develops accord-
ing to"

f„(b)=(2vrP) ' exp[ b—12P] .

The integration over 0 yields

Z=C g g5v ~ oexp[ —S(b)],
I b,. ) x

(6)

rn =
~
T —T, ~

~, P=0.3455+0.020 . (4) C= P (2') ~ a 1/2

It is quite interesting to imagine how the two trajectories,
the maximum of C and the peak of g, vary as functions of
a from three dimensions to two dimensions. Are they
separated from the beginning (at three dimensions)? Or
do they move together until just the end at two dimen-
sions, and then jump discontinuously at two dimensions?
We will see below that the most natural case is the fol-
lowing: The cusp of C is always accompanied with the y
singularity. The power-law behavior of C near the cusp
at three-dimensions exists for all aAO and is converted
into the essential singularity as = exp[ bc IQ T——TKT ]
at two dimensions (a=0). Due to the finiteness of C, the
maximum of C can deviate more and more from the loca-
tion of the cusp, thus tracing its own trajectory with de-
creasing a and ending up with a 207o deviation at two di-
mensions.

The paper is organized as follows. In Sec. II, the Vil-
lain model and its topological representation are intro-
duced. In Sec. III, several theoretical analyses are col-
lected. In Sec. IV, the results of Monte Carlo (MC) simu-
lations are given. Section V is devoted to discussions.

S(b)=(2P} 'g [b +b +a 'b )

The constraints V; b, (x )
—=g, [b, (x )

—b, (x 1)]—=0 are
solved by introducing the integer-valued gauge field a,
through

b; =e; VIak(x+1) . (8)

Z=C f gdA;4([A ])g g5-, exp[ —S(A, l)],
X, l II, I x

(10)

S(A, l)=(2p) ' g [(VqA3 —V'3A2) +(V3A )
—V)A3)

Z now takes the form of a sum over a, , which is rewritten
by the Poisson summation formula,

g f(a)= f dA g f(A)exp(2miAl) . (9)
aEZ lez

Then, following the treatment of the 3D case, ' we have

II. MODEL AND VORTEX-LOOP REPRESENTATION

The partition function Z of the Villain form of the an-
isotropic XY model is given by

Z= g g I d8(x)I2n. exp( —S ),
In, I x

(5)

Sv
=—g [(V, 8—2m.n, ) + ( V'28 —2n.n 2 )2.

+a(V38 —2mn3) ],
where x =(x, ,x2, x3 ) EZ are the sites of a three-
dimensional cubic lattice, and i ( =1,2, 3) denote the
directions. The angles 8(x ) parametrize O(2) spins
s(x ) = ( cos8(x ), sin8(x ) }, the lattice gradients are
V,-8(x)—:8(x+i) —8(x), and the integer variables n; sit
on the links (x, x +i) The param. eter P is the inverse
temperature times the exchange coupling constant
J=J

&

=Jz, and a =J3IJ measures the anisotropy of (1,2)
plane versus 3 direction. Note that the case a = 1 repro-
duces the correct 3D expression, while the case a=0
gives rise to a set of independent layers, each of which is

S(1)=4' 13 ,' g 1;(x)V;~.(x,x—')lj(x'),
X,X

(12)

where the potential V,"(x,x') between two line elements
is a diagonal matrix with elements given by

+a '(V, A2 —V2A)) ]—2nig A, l, .
X, l

As can be seen from (8) and (9), A, (x) is a gauge field,
and the functional 4( [ A ) ) has been introduced to fix the
gauge invariance under A, ~A, +V;l(,(x). The integer
link variables 1; describe conserved currents (V;L; =0)
coupled to A;. They can be interpreted as line elements
of vortex loops on the lattice. Actually one may establish
the relation

1; =E;~k V~ nk (x +i )

at the level of stationary points. In the continuum termi-
nology, n, of (5) measure j dx, B,8, hence 1; counts the
vorticity Jd8 around a plaquette in the (j,k) plane. By
integrating over A, , we arrive at the system of such vor-
tex elements,

Z =Cg g 5- exp[ —S (1)],
II, I x
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V, (x,x')=diag(a, a, l)V(x —x'),
d 3k ik(x —x')

V(x —x') =
—~ (2ir) [K, +K~+aK3]

(13)

where ( C~ ) is the average size (area) of clusters. The
crossover into 3D behavior takes place around J3 ——J,
&.e.,

(18}
K, —:2(1—cosk, ) .

Z reduces to the correct expressions in the limits of
a=0, 1, owing to the a dependence of V(x). In particu-
lar, at a =0 only the line elements I3 survive and interact,
within each plane, through a logarithmic potential (there
is no interplane interaction). Note that similar expres-
sions have been derived in Ref. 13 for a 2D system with
continuous imaginary time, describing its quantum statis-
tics.

For the later discussion it is useful to establish a rela-
tion with the cosine form of the XY model which is ob-
tained by replacing Si, in (5) by

S„,= —P„,g [cos(V,8)+cos(V28)+a„,cos(V38)] .

(14)

The b-loop representation corresponding to (7) is then ob-
tained by replacing

exp( b /2P) ~—Ib(P„,)/I0(13„,),
exp( b /2aP) ~—Ib(a„P„,)/I0(a„P„,),

(15)

where Ib(P„,} are modified Bessel functions. Following
an argument given in Ref. 8, we may equate the first non-
trivial Fourier components (b, =+1) to obtain

li(P„,)
exp( —I /2P) =

0 cos

I,(a„P„,)
exp( —I /2aP) =

IO +co cos
(16)

This defines a locus p=p(p„, ),a=a(a„„p„,) in the p-a
plane, say, along which the two XY model forms become
almost identical over a wide temperature range, including
the critical points.

Hikami and Tsuneto' then employed the relation
( ~C~ ) =g =$0exp[2b&/QT —TKT] to derive the cross-
over temperature T~(a},

4b~
Tx.(a )—Tr&

[1n((0a)] (Ina)
(19)

Tz(a ) T, (0)=a'—r (20)

in agreement with general scaling analyses. ' Using
( ~C~ ) =g as in Ref. 14, on the other hand, would have
resulted in a different power law =a' '=a' ' +" '. No-
tice that the XY-model behavior (19) can partly be
recovered from (20) by taking the "infinite order" limit
y~ ao, yielding a and thus suggesting some logarithmic
behavior.

Let us also give a remark for the nonlinear O(3) o
(Heisenberg) model, which is considered to describe the
antiferrornagnetic behaviors of high-temperature super-
conducting materials. It has the transition temperature
T, (0)=0, and /=exp(b&/T), X=exp(b&/T). ' Using
these properties, a similar estimate gives rise to

where we have gathered all numerical constants in g0.
Assuming that T, (a) = Tx(a), this implies the desired es-
timate of T, (a).

Let us make a few comments on this estimate. Al-
though we agree with the final I/(lna) law, one should
use the relation ( ~C~ ) =ay/p (~ is a constant) to esti-
mate ( ~C~ ), which is known to be valid for the stochasti-
cally defined clusters in the Ising model [with @=1 (Ref.
15}],and to be satisfied very well numerically for the 2D
XY model [with a=0. 8 (Ref. 15)]. Since both g and

" exhibit an exponential behavior in the 2D XY
model, this yields the same estimate (19), apart from the
replacements 4b~~bz =(2 rl) br —and (0~F0.

For a model with a conventional critical point
governed by power-law singularities g = t ",X= t r (e.g. ,
the Ising model), our estimate yields the power deviation

III. THEORETICAL ANALYSIS
T, ( a ) = T~( a ) oc

1

[lna/
(21)

A. Renormalization-group and scaling argument

One of the main interests in the intermediate region,
0&a & 1, is to calculate the a dependence of the critical
temperature T, (a}. The shift T, (a) TKT has been es--

tirnated in Ref. 14 for small a by using renormalization-
group (RG) and scaling arguments. For later discussion
it is useful to review it here. For small a and high tern-
peratures, the (XY) planes are essentially decoupled, and
( and X behave as in a pure 2D system. As TKT is ap-
proached from higher T's, larger and larger clusters of
correlated spins will grow. These may be considered as
block spins with an effective interaction in the z direction
given by

(17)

This is in accord with one-loop RG calculations' (which
are simpler in this case, since T, (0)=0, so that a pertur-
bative calculation becomes applicable).

Let us finally discuss the precise meaning of a in
(17}—(19). Since the coupling J between spins referred to
in Eq. (17) is clearly the coefficient of s; s, in this subsec-
tion a should have been that in the cosine form, a„,. For
small a,„„the mapping (16) gives the relation

This logarithmic mapping generates a dramatic conse-
quence, since upon inserting it into (19) we find for the
Villain model,
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(23) a, the partition function can be written in the following
form:

In the Villain model we thus expect a smooth approach
of T, (a) to TKr —-1/0. 73 as a~0. Z= d6 x F, V)6 F~ V~6' 6, V30 (25)

B. Approximate self-duality

1

2
= 2m Pa V(0), (24)

with V(0) being the a dependent potential in Eq. (13).
Note that the a dependences appear in such a way that
the single condition (24) is sufftcient to realize ASD for all
three directions simultaneously. The curve of (24) is
drawn in Fig. 1.

C. Migdal renormalization group

Here we shall use Migdal's recursion to examine the
RG trajectory of the system for general values of a to get
an overview of the crossover phenomena.

Let us consider the renormalization-group equation of
the model (5). We generalize the Migdal recursion equa-
tion to systems having anisotropic couplings. Hence
our parameter a is regarded as an effective (running) cou-
pling constant. If we introduce the lattice spacing vector

In Ref. 19 a method has been presented for estimating
the transition point P, for a = 1. It is based on the duali-

ty between the two loop-gas representations (7) and (12) if
the potential in (13) is approximated by its value at the
origin. A similar approximate self-duality (ASD) argu-
ment can be applied to our case to find P, for each a. Ex-
plicitly it leads to the following relation:

Here we have introduced effective local Boltzmann fac-
tors F for the (1,2) direction and G for the 3 direction.
Reflecting the O(2) symmetry of the system they are
periodic functions and can therefore be expanded into
Fourier series

F,(y)= g f,(b)exp(iby),
bex

G, (p) = g g, (b ) exp(ibg) .
bEZ

(26)

(27)

SGL x ] + 2 ++ 3 +~ +g
Note the a in front of

~ B3$~ . Upon rescaling,

(28)

this becomes a~B3$~ = ~B3$~, and the action SoL
simplifies to a symmetric one in terms of the (x],x2,x3)
coordinates. For such a symmetric system, Migdal recur-
sions are written down with all three scaling factors
&( ] A2 A 3 being set equal to &(,. This means that, for the
original (x],x2, x3) coordinates, we should choose A, 3 to
be

To obtain recursion equations from the spacing a to A.a,
we consider the Ginzburg-Landau expansion with a com-
plex order-parameter field &I)(x), corresponding to our sys-
tern,

Zo„= g Jdg(x)dg'(x) exp( —SoL),

0
(B}t A3=A, ,]](a)=1+&a(A,—1), (29)

as read from (28). Then the critical properties should be
unchanged. Explicitly the recursion equations from the
lattice vector a=(a, a, a3) to a„,„—= (Aa, ia, A,,]]a3) turn
out to be

0 6ii

0.4-

F, (&p) = g [f,(b)]"exp(ibp)
bEZ

G, (y)= g [g,(b)] "exp(ibp)
bex

A,
2 (30)

0.2-

a (C)
0 0.2

I

0.4
I

0.6
(A)

0.8 1.0

From the original argument one can easily identify the
places at which A. is replaced by k,~. The extension to
0-dimensional lattice with anisotropic couplings o.'„ is
straightforward. Now let us define a couple of relevant
coupling constants. Actually we are interested in the re-
normalized (inverse) temperature P(a) and the renormal-
ized anisotropy parameter a(a), which are defined as

FIG. 1. Phase diagram in the a-P plane. The continuous line
shows the critical points estimated by the approximate self-

duality (ASD). The symbols (0 ) and (~ ) are the critical points
and specific-heat maxima determined from Monte Carlo (MC)
simulations with L =16. The symbols (X) are the critical
points given by the Migdal renormalization group (RG). The
arrows illustrate typical flows of RG into the infrared region.

F,(y) = exp[ —
—,'P(a)&I]& +O(&p )],

G, (&p)= exp[ —
—,'P(a)a(a)p +O(g4)] .

(31)

The results of our numerical study of (30) are given in
Fig. 1. The line of critical points, (a„P, ), separates the
low- and high-T phases. There are then the following
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fixed points (see Fig. 1}:

(case A) a=1, P=O (3D high T),
(case B): a=1, P=~(3D low T),
(case C}: a=O, P=O (2D high T) .

(32a)

(32b)

(32c)

Some typical renormalization flows are also shown. We
observed that a remains zero when it was initially zero.
For a nonzero starting value of a ()0), it is always
driven into a=1. The recursions have been initialized
with the Villain action, and the scale parameter has been
chosen to be A, =1.6 so that P, at a =1 agrees with the
correct value ( =0.33).

It has been shown ' that the Migdal equation fails to
reproduce the KT transition at a=0. Instead, it predicts
only the high-temperature phases; hence P, = ~ for
a =0.

cancel in the free energy, as they should because it is an
extensive quantity.

The high-temperature expansion of y proceeds in a
similar manner. The main difference is that this time one
must consider loops and chains, since y is a lattice sum
over spin-spin correlations, each having starting and end-

ing points.

IV. MONTE CARLO STUDY

For a quantitative analysis we shall now present the re-
sults from Monte Carlo (MC) simulations. In Ref. 22 a
MC analysis has been done to obtain the curve of critical
temperature T, as a function of a in the cosine form of
the XY model. Here we present a set of MC results for
the Villain form of the model, including the specific heat,
the susceptibility, and the density of vortex loops.

D. Series expansions at high temperatures

The representation (7) is a convenient starting point for
a systematic high-temperature (character) expansion. As
P~O, large b loops are energetically suppressed by
powers of exp( —1/P), so what one needs to do is to or-
ganize the sum over loop configurations according to the
growing total length of loops, I, as

'2N 'N

Z= [ I+Zq+Z61

v'2n pa

+ +ZI+ ] .

(33)

In the next order of I =6, there are three different shapes
of loops: the "flat" (six links of successive directions hav-
ing, say, 1,1,2, —1,—1,—2); the "bend" (say,
1,2, —1,3,—2, —3); and the "twist" (say,
1,3,2, —1,—3,—2). We find that

The leading contribution Z4 comes from the elementary
plaquettes with b; =+1, which appear in 2X3XN posi-
tions: The factor of 2 accounts for the sign of b, 's (direc-
tion of flows), and the factor of 3 counts the directions of
plaquettes. By taking the lattice anisotropy into account,
we readily find

Z4=N(2W +4W W )
(34)

1 18'= exp —,8' = exp
2P

' ' 2Pa

A. MC simulation

a
lnZ /L, c= —P e. (37)

The specific heat was calculated by measuring the energy
fluctuations involved. The "magnetic" observables are
the magnetization m and the susceptibility y (per site)
defined as usual by

m=(~m~}, y=lBL'[(m'} —m'], (38}

where the angular brackets denote averages with respect
to the partition function (5), and m:g„s(x)/L is t—he
magnetization of one configuration. To locate the transi-
tion points we found it convenient also to record the cu-
mulant'4

Let us first describe the setup of our MC simulations.
We used simple cubic lattices of sizes L with L up to 24
and periodic boundary conditions. For updating the
configurations, it is convenient to sum over the integer
variables n;(x) in Z explicitly, and to apply the standard
Metropolis algorithm only to the phase variables 8(x).
We approximated them by (2n /N)k, k = 1,2, . . . ,
N =100. The update was organized in a checkerboard
scheme to allow for efficient vectorization on a Cray X-
MP supercomputer. Because of the peculiar properties of
the two-dimensional XY model, a study of the crossover
from the 3D behavior requires both measuring "thermal"
and "magnetic" observables. For the former we have
chosen the internal energy e and specific heat c (per site),

Z, =N[4W'+36W'W'. +4W'W'. ] . (35) x= 1 —
& m '}/3& m '}', (39)

The enumeration of Z8 is quite tedious, since there are al-

ready three two-dimensional and eight three-dimensional
shapes that are geometrically distinguishable, and one
disconnected graph. The result reads

Z =N[4W +220W W +108W W +4W W

+N(2W +8W W +8W W )] . (36)

It is easy to check that all disconnected configurations

which measures essentially the kurtosis of the spin distri-
bution. For small P, the distribution becomes Gaussian,
and ~ approaches —,', while for large P, a. tends to —', . It is

known that a exhibits a sharp crossover at the transi-
tion point P, . This criterion for determining P, is usually
less sensitive to finite-size effects than, e.g. , using the lo-
cation of the susceptibility peak.

Furthermore we have measured the density and (to
some extent) the distribution of the vortex lines I;(x) cal-
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culated from (11) with n, determined from minimizing

(V, e 2m—n, ) at each link. (Recall that in our update
procedure the n,- variables are summed over so that they
are not explicitly available. ) This procedure is easily seen
to be equivalent to the more conventional method pro-
posed by Tobochnik and Chester, which amounts to
adding up V;8(mod2m) around each plaquette.

Most data points are averages over 100000
configurations, after discarding 10000 sweeps through
the lattice for thermalization. The statistical errors are
estimated by dividing each run into blocks of, say, 1000,
2000, and 5000 sweeps, calculating the block averages,
and taking the variance of these averages.

B. Results of MC

Let us now turn to the results of our simulations. In
Fig. 1 we compare the Monte Carlo critical line in the a-
P plane (denoted by circles) with those derived in the
preceding sections, the continuous line determined by
ASD and the crosses by Migdal recursion. In 3D(a= 1 )

the transition point is known from previous MC calcula-
tions ' to be at P, =0.33. ASD predicts P~sD=0. 317.
In the opposite limit of 2D(a=0} the Villain model un-
dergoes a KT transition at PKT-—0.73. It is defined as
the diverging point of y and the correlation length g. Re-
cently, Chui and Giri have performed MC simulations
of the cosine form and determined several critical points
of P„, for values of a„,down to 0.01. We have checked
that their values of critical points, when mapped into our
a-P plane through the relation (16), are consistent with
our values of critical points. However, we have proceed-
ed far more into the 2D region because, according to (16),
near the transition the smallest value of a=0. 1 in our
simulation corresponds to a„,=0.0003.

For all a+0, the critical behavior in the very vicinity
of P, is supposed to be governed by algebraic singulari-
ties, as in the 3D case. This can be seen, e.g., from the
GL expansion (27). In the strict sense of universality, the
point a=0 is an isolated discontinuity. However, in the
broader region of temperature away from the critical
point, various observables are expected to show a con-
tinuous crossover from 3D-like to 2D-like behaviors as a
decreases.

That this is really the case is demonstrated in Fig. 2,
where the specific heat on a 10 lattice is plotted for vari-
ous a' s. Notice that our specific heat at a=0 is —,

' bigger
than in the pure 2D XY model due to the extra prefactor
C in Eq. (7). Also note the discontinuity at P=oo:
lim& „c(a=0)= 1 while lim& „c(a& 0)= —,'. The
shapes at a=0. 1 and 0.2 are very similar to that of 2D;
they are clearly distinguishable from the 3D behavior
with sharp peaks as observed for a ~0.4. It is interesting
to note that this crossover value of a accords nicely with
the region of breakdown of ASD (see Fig. 1). Of course
this MC crossover is lattice-size dependent. In order to
estimate the finite-size effects, we have repeated the simu-
lations for a couple of a's on lattices with L varying be-
tween 8 and 24. As an overall tendency, we observed
that the size dependence increases quite rapidly with de-
creasing a.

In Fig. 3 we show the finite-size effects for o; =0.2. The

0

o 3~ ~ / O2

/."'. I /"
0

Q
a I a I I OC4lCLar~

0.25 0.5 0.75 1.0

FIG. 2. Specific-heat curves on a 10' lattice for a varying be-
tween a = 1 (3D) and a =0 (2D).

continuous curves in the e and c plots show the high-
temperature character expansion obtained from (33)—(36)
by keeping b loops of four, six, and eight links (indicated
by the boxes). A similar expansion with b chains and
loops with five, six, and seven links yields the susceptibili-
ty curves shown in Fig. 3(d). The MC data in Fig. 3 show
quite pronounced size dependences even for the largest
lattice available. From the crossing point of the cumu-
lant curves in Fig. 3(e) we estimate P, =0.57. For a=0. 1

the plots look similar, but the peak height of c seems to
be saturated now around c,„=2.2 for lattice sizes up to
L =24. (Actually it is even slightly decreasing with in-

creasing size. ) The location of the peak, however, is still
size dependent. It moves into lower temperatures with
increasing size. This is consistent with the interpretation
that, on smaller lattices, one observes apparently a KT
behavior with T „k displaced to higher values than T„
while only for very large lattices can the genuine 3D-like
critical behavior be seen.

The overall behavior of the crossover phenomena can
be understood intuitively by referring to the vortex de-
gree of freedom. In Fig. 3(f) the average numbers of line
elements of vortex loops are shown, where M, (~, 0 ) and

M2 M ] denote the numbers of nonvanishing elements

I„/z directing in the x, and x2 directions, and M3
(A, 6}denotes the number of 13 in the x3 direction.
More and more of them are excited as the temperature
increases.

In Fig. 4 snapshots of vortex configurations are
displayed. For small a vortex elements along the x3
direction appear always in pairs with small spacings and
opposite directions of Row. As mentioned earlier, follow-
ing Eq. (13), they can be interpreted as precursors of the
2D pointlike vortices that play the dominant role in 2D
thermodynamics layer by layer. They are connected by
long and complex networks of vortex lines lying within
the (1,2) planes.

In Fig. 5(a) we show the variation of the ratio
R —=M3/M, of line-element numbers with respect to a
and P. The ratio decreases, as a decreases, showing that
"interplane" elements I3 indeed become suppressed com-
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for smaller a.
Concerning the global structure of the a dependence of

the specific heat C, we understand the following behavior
to be most natural and consistent with our MC simula-
tion. The location of the power singularity and the loca-
tion of the maximum may be two independent quantities.
While they seem to coincide at 3D, they follow two
different lines as a decreases. The power singularity will
eventually be converted into an essential singularity in
the very end at 2D. The location of the maximum, on the
other hand, will be smoothly connected with the KT peak
in 2D. It is important to recognize that this scenario is
possible due to the finiteness of C at its cusplike power
singularity, which, in turn, is supported by the negative
value of its 3D critical exponent ac in (3).

Let us finally consider some implications of our study
to models of high-T, superconductivity. %'e would like
to point out that in determining experimental values of a
for high-T, materials one should be extremely careful in
using consistent assumptions: The values of a near TKz
in the Villain and cosine form of the XY model differ by
orders of magnitude. For example, using the vortex pic-

ture, Martin et al. ' have estimated a = 10 from the ob-
served anisotropy of the conductivities. This corresponds
to a„,=10, or when it is the other way around,
a„,=10 would yield a=0. 13. Apart from other as-
sumptions, the vortex picture itself suggests that the Vil-
lain model is more natural, since the cosine model suffers
from large renormalization effects due to the spin-vortex
coupling. In any case, a consistent use of one representa-
tion is crucial for a correct estimate of a.

Finally, we hope that our results will be useful for pre-
dicting the phase properties of microscopic models of
high-T, superconductivity, which can be mapped
effectively onto the anisotropic XYmodel.
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