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A perturbation method for the calculation of transport properties in disordered one-dimensional
media is presented. It permits considering cases of strong and weak disorder and different initial
conditions in a unified way, giving new results and reproducing known ones. The effective-medium
approximation (EMA) appears as the zeroth-order step of our diagrammatic scheme. The method
is applied to the random-barrier and random-trap models. The range of validity of the EMA is es-
tablished. Exact results beyond the EMA are obtained for the low-frequency behavior of the
frequency-dependent diffusion coefficient and the modified Burnett coeScient associated with the
average Green's function and with the response function of the problem.

I. INTRODUCTION

A standard model to study transport in disordered
media is a random walk (RW) on a lattice in which the
transition probabilities per unit time take random
values. ' The connection of this approach with related
models such as continuous-time random walks (CTRW)
is well known. The statistical characterization of
diffusion processes is usually given in terms of the long-
time behavior of the moments of the displacement n(t) of
the random walker. In particular, the asymptotic time
dependence of the mean-square displacement ( n ) is
considered. One generally finds (n )-t . In the ab-
sence of disorder, 5=1. The situation where 5&1, indi-
cating anomalous diffusion, can occur in the presence of
disorder. An equivalent characterization of subdiffusive
behavior (5 & 1) is given by the law with which the
frequency-dependent diffusion coefficient D(z) vanishes
as z~O. One usually distinguishes between weak and

strong disorder. For weak disorder, 5=1 and the zero-
frequency diffusion coefficient D(z=0) is finite. Strong
disorder leads to a model-dependent exponent 5 & 1, im-
plying D(z =0)=0. A different characterization of the
statistical properties of the transport process can be
given, for example, in terms of first-passage-time distribu-
tions. In this paper we are concerned with RW models
for weak and strong static disorder.

A common approximation to deal with RW in statical-
ly disordered media is the effective-medium approxima-
tion (EMA). Other interesting approximations are based
on scaling assumptions"' or on the CTRW and its ex-
tensions. From the point of view of exact calculations in
the models considered in this paper, results for weak dis-

order were obtained by Zwanzig and extended by a di-
agrammatic calculation by Denteneer and Ernst. For
strong disorder there is the calculation of Stephen and
Kariotis by the replica trick and its extensions' and the
one of Nieuwenhuizen and Ernst" by an integral equa-
tion approach.

These calculations leave, nevertheless, a number of im-
portant open questions. We first note the lack of a
unified approach: Different methods are available for
weak and strong disorder with no relation among them
and with no connection with the very much used EMA.
The consequence is that a standing open question was
when and to which order of calculation the EMA gives a
correct result for D (z). The answer was known for weak
disorder but not for two common models of strong disor-
der, namely models B and C of Ref. 1(a). For model B it
was not known to which order beyond the leading one
the EMA gives a correct result. For model C there was
only a conjecture, " which turned out to be wrong, that
the EMA gives the correct leading term. The situation is
even much less clear for higher-order diffusion
coefficients as the modified Burnett coefficient""' for
which the exact leading contribution for models of strong
disorder has not been reported. Another aspect is that
the presence of disorder naturally leads to an effective
non-Markovian diffusion process. This implies a non-
trivial dependence on initial conditions because of
memory effects, which has not been analyzed at length. '

Likewise, the EMA features a non-Markovian RW with
transition probabilities between nearest-neighbor sites,
but deeper non-Markovian effects connect the dynamics
at a site with sites beyond nearest neighbors. These
effects, not analyzed in previous approaches, turn out to
be dominant in the calculation of high-order statistical
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properties such as the modified Burnett coefficient.
The above questions are addressed in this paper'

within a calculational scheme based on a new diagram-
matic perturbation method. This method separates, in a
natural way, the contributions given by the EMA which

appears as the zeroth-order step of our perturbation
scheme. In this way we have a unified approach to mod-
els of weak and strong disorder in which the validity of
the EMA and effects beyond it can be considered. The
specific RW models considered are the random-barrier
(RB) and the random-trap (RT) models' defined below.
They are considered in the context of the models of disor-
der A, 8, and Cof Ref. 1(a).

The outline of the paper is as follows. In Sec. II the
models to be considered are defined. We introduce an
effective master equation (EME) for the non-Markovian
process obtained by averaging over disorder
configurations. The EME contains, in a exact way, the
effects of disorder. The role of arbitrary initial conditions
is discussed here. Section III sets up a diagrammatic cal-
culation of the diffusion coefficient by a perturbative
treatment of disorder. This perturbative series is reor-
ganized in Sec. IV to introduce an effective non-
Markovian medium as a zeroth-order step. This zeroth
order happens to be the EMA and the perturbation
around the EMA is constructed. Sections V and VI are
devoted to the calculation of the diffusion coefficient D (z)
and modified Burnett coefficient, respectively, within the
scheme of Sec. IV. Corrections beyond the EMA are cal-
culated. In Sec. VII we calculate the diffusion and
modified Burnett coefficients associated to the response
function of the RB and RT models within the scheme of
Sec. II. Our main conclusions are summarized in Sec.
VIII. Appendix A contains some properties of the
Terwiel's cumulants' used in our development. The
evaluation of the order of some diagrams used in the
main text is given in Appendix B.

II. EFFECTIVE MASTER EQUATIONS: THE
RANDOM-BARRIER AND RANDOM-TRAP MODELS

Our starting point is a master equation (ME) describ-
ing RW in a disordered medium:

d, P(r)=HP(r)+0&P(r) . (2.1)

The components P„(t) of the vector P(t) are the proba-
bilities of finding the walker at site n at time t. The
operator defining the master equation is splitted in a non-
random part (H) and a random part (0&). The disor-
dered medium is described by a set of random-transition
probabilities associated here with 0&. A configuration of
the medium is defined by a particular value [g] of these
transition probabilities. For each configuration [g), (2.1)
defines a RW characterized by P(t) The statistical .prop-
erties of the RW in the disordered medium are described
by (P(t)), the average of P(t) over the distribution of
possible configurations [g). The average of (2.1) gives an
equation for (P(t)). Such an equation is called an
effective master equation. It incorporates the whole
effect of the disorder on the statistical properties of the
RW.

Particular examples of (2.1) are given below, but we
first consider a general method to obtain an EME for a
general situation (2.1). We introduce a projection opera-
tor P which averages over possible configurations of dis-
order; that is, Pf = (f ), where f is any function of the
configuration [ g j . Applying P and Q =—1 —P to (2.1), we
find it equivalent to the following set of coupled equa-
tions:

a, (P & =H(P )+V O, (P &+WO, QP,

d, QP =HQP+QO((P)+QO(QP .

(2.2a)

(2.2b)

where P is the initial distribution P =P(t=O). Equa-
tion (2.3) can be solved iteratively as

QP(r)= g (MQOr) [QQOg(P( )&+G( ~O)QP'],
p =-0

(2.4)

where we have introduced a convolution operator 4 act-
ing on time-dependent vectors f (t) as

(4f( ~ )).(r)=—g J dr'G„(ter')f. (r') . (2.5)

The index m takes values on the sites in the lattice. Sub-
stituting (2.4) into (2.2a), a closed equation for (P(t) ) is
finally obtained:

B, (P) =H(P)+P g ( ~
0&Q)i~O(P&

p=0

+P g (O~QM) 0(QG( ~0)P
p=0

(2.6)

Equation (2.6) is the desired EME. It is an
integrodifferential equation describing the evolution of
the average one-time probability distribution for the
walker (P„(t)&. Its convolution form indicates that, al-

though starting from a Markovian ME, the average over
disorder introduces, in general, an effective non-
Markovian process. The non-Markovian character of the
process is also evidentiated in the presence of a term in
(2.6) involving the initial distribution P . We note, how-
ever, that this term involving the initial condition van-

The linear character of these equations allows us their
formal solution. This is the way in which Klafter and Sil-
bey' and, for a general initial condition, Haus and
Kehr' established the relation between diffusion in ran-
dom media and generalized ME's. We find it more con-
venient, for our purposes, to look for a solution of (2.2) in
which 0& is considered as a perturbation to H. In this
way we obtain a perturbative series in which the different
terms can be explicitly evaluated.

In terms of G(t~t'), the Green's-function matrix of the
nondisordered problem, (2.2b) is equivalent to the in-

tegral equation

QP(r)=G(r~O)QP + J dr'G(r~r')[QO&(P(r'))
0

+ QO~QP (t')],
(2.3)
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ishes if QP =0, that is, if P = ( P ). This happens if the
initial distribution is specified independently of the possi-
ble configurations of the medium, for example, if
P„=5

The general result (2.6) has been derived for a medium
of arbitrary dimensionality and rather genera1 forms of
static disorder. In this paper we will consider two partic-
ular one-dimensional models known as random-barrier'
and random-trap' models. Both models are defined start-
ing from a general one-step Markovian ME in a chain:

a,P„(t)=w„-„P„„(t)+w„,P„,(t)
—(w„++w„)P„(t) . (2.7)

w„(w„) is the transition probability per unit time to go
from site n to site n+1 (site n —1}. Disorder is intro-
duced here by considering w„as random variables. The
RB and the RT models differ on the symmetry require-
ments imposed on the transition probabilities w„—+.

In the RB case one models a situation in which

+W„—W~ ) =Wq (2.8)

The ME (2.7) can then be written as (2.1), in which

(HP) „=IJ(E„++E„—2)P„=pK„P„,
(ONP)„= (1 E„)4„(E„+——1)P„.

(2. 10)

(2.1 1)

We have introduced shifting operators E„* acting on
functions of the site n as E,, f„:f„+,. ——

In the same way, for the RT model, defined by

The w„'s are taken to be independent random variables
identically distributed so that the medium is translation-
ally invariant on the average. We can separate w„ in an
average part p,:—( w„) and a random part g„:

w„=lu+ g„, ( g„)=0 .

+=w„w„=w„ (2.12)

where the w„'s are again independent random variables
identically distributed, the master equation has the form
(2.1) with H given in (2.10) and

(OtP) „=K„(„P„. (2.13)

t},G„(t~t'}=@K„G„(t~t'), G„(t+~t)=5„
which is known to be'

(2.14)

G„(t~t')=e '~" ''I~„~[2@(t—t')], t &t' (2.15)

Ik(x) is a modified Bessel function. We first consider the
explicit expression for the second and third term in the
right-hand side (rhs) of (2.6) for the RB model. Their
convolution form simplifies, if expressed in terms of the
Laplace transforms G(z) and P(z) of G (t lt') and P(t),

A complete definition of the models requires the
specification of the statistical properties of g„. Following
the definitions of Ref. 1(a), we will refer to model A as
the one for which the probability distribution of
w„=1M+g„ is such that the inverse moments

PM =—((w„)™)(I=1,2, . . . ) exist. This general situa-
tion corresponds to weak disorder. Strong disorder cor-
responds to situations in which these inverse moments
diverge, and we will distinguish between models B and C.
Model C is defined by a probability distribution
p(w„) = (1—a)(w„), 0 & a & 1, w„E (0,1). Model 8 is a
limiting case of strong disorder obtained from model C
with a=0.

We can now make explicit the form of the EME (2.6)
for the RB and RT models just defined. We first note
that, in these cases, the Green's function is the solution of

P g (1 E„)g„(E„+——1)Q g G„„(z)(1 E„)g„(E„+——1 )Q g G„„(z)
p=0 Pf — 00

2

x$

We have introduced

n
p —

1

(1—E„)g„(E„+ —1) g G„„(z)(1—E„)g„(E„+—1)Z„(z) .
P

(2.16)

Z„(z)—= (P„(z)) + y QG„(z)P (2.17)

Equation (2.16) can be simplified taking into account that E„and E„are adjoint operators, so that expressions of the
form

g„(E„+—1)g A„(1 E)g F— (2.18)

become

g„g [(E„+—1)(1 E+)A„]g F— (2.19)

By repeated application of this property, (2.16) is transformed into
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(1 —E„)g g P(„6J„„(zg'„Q.. .J„„(z)g„(E„+—1)Z„(z),
p=O n . . . n] 7 ' ' ' 7 p

where

(2.20)

J„=(E„—1)(1 E—)G„=G„+)
—G„+) +, —G„+G„+,=K„G„

In the last equality we have used the fact that G„depends only on the difference n —m.
In (2.20) we observe the appearance, in a natural way, of Terwiel's cumulants, ' defined as

(2.21)

(2.22)

These quantities appear rather often when the average of a stochastic differential equation is written in
integrodifferential form. Some of their useful properties, relevant for our development, are summarized in Appendix A.
In terms of Terwiel's cumulants, (2.20) becomes

(1—E„)y y J„„(z) J„„(z)I(g„g„g„)r(E„+—1)(P„(z))
p 0 n ] & ~ ~ y n

+ & l«„' —1)Gn m(z)H(nkn kn Pm )rl . (2.23)

The statistical homogeneity of the chain implies that

&C. +kk. , +k
' ''k.,+k &T

—(k.(.,

' ' 'g. &T&k (2.24)

and that J„and G„depend only on ~n
—m~. Using these facts after letting the operator (1 E„)exp—licitly act in

(2.23), (2.6) becomes

z & P(z) ) P=H ( P—(z) ) + W(z) (P(z) ) +n(z), (2.25)

where H(P) is the disorder-independent contribution, W(z)(P(z) ) gives disorder effects independent of the initial
condition and Q contains the contribution associated with the initial condition

(H(P &)„=qK„(P„&, (2.26)

(W(z)(P(z)) }„=g g J„„(z) J„,„(z)(g.g„,
' ' ' g. & K. &P. (z)&

p 0 n ] y ~ ~ 7 n

(2.27)

II"„(z)=—,
' g g (1 E„)J„„(z)—J„„(z)J„(z)(g„g„(„P)T .

p =0 n], . . . , n, m

(2.28)

Similar manipulations to those just done for the RB model can be done for the RT. The final result for the EME has
the same form as (2.25), the only difference being the explicit result for 0:

nRr(z) =K„y
p=O n], . . . , n, m

J„„(z) J„„(z)G„(z)(g„g„. g„P )r . (2.29)

An important consequence of these results is that when-
ever 0 =0 the RB and the RT models are exactly
equivalent, as long as we are only interested in one-time
properties; that is, properties which could be obtained
from (P„(t)). The equality of 0 and 0 often occurs
because both vanish. As mentioned in connection with
(2.6), this happens when P =(P ). A particular in-
teresting case of this situation is when P„=6„„,so that

0

(P(t)) is the average Green's function of the problem.
In such a case, (2.25) with Q=O is the exact equation
both for the RB and the RT models. The fact that the
average Green's function is the same for the RB and the
RT models has been pointed out previously by other au-
thors. ' However, a certain confusion about this point
exists in the recent literature. ' In Sec. VI we discuss a
calculation of the response function. For this calculation

it is necessary to use (2.25) with QAO and the differences
between the RT and the RB models become apparent. In
the remaining of this paper we mostly consider the aver-
age Green's function; that is, the solution of (2.25) with
the initial condition P„=5„„.

Equation (2.25) for the average Green's function can be
written in a compact form as

z & P„(z) &
—5„= y T (z)K„(E„+) & P„(z)),

(2.30a)

where the kernel T (z) is given by
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order moments of (P„(t)&. In fact, D (z) is expanded as

Dq(z) =D (z) q—D2(z)+0 (q ) . (3.7)

p=1 nl, . . . , n

XJQ„ (z) . . J„ (z} .
1 p —1

The frequency-dependent diffusion coefficient is defined
as

(2.30b)
D(z)= lim D (z)

q~O
(3.8)

The term (g &, which is identically zero, has been ex-

plicitly written for future comparison [see Eq. (4.2)].
Equation (2.30) is of the form proposed by Klafter and
Silbey' but here we have an explicit expression for the
memory kernel T (t t') i—n terms of Terwiel's cumu-

lants. A main effect of averaging over disorder is the
non-Markovian character of the effective process which
is reflected in the presence of a memory kernel in (2.30).
A second effect is the appearance in (2.30) of effective
transitions of any step size m (Ref. 18), while in the origi-
nal RW (2.7) only transitions between nearest neighbors
appear. Equation (2.30) is the basis of our calculational
scheme discussed in the next sections.

and the modified Burnett coefficient as

D (z) —Dq(z)
D, (z)= lim

q~O q
(3.9)

&n (z)&= f "dte " g n (P„(t)&
0

n = —oo

In terms of these two quantities, the Laplace-transformed
second and fourth moments of P„can be obtained as

(n (z)&= f dt e " g n (P„(t)&= D(z),=2
n = —oo

Z'

(3.10)

III. PERTURBATIVE TREATMENT
OF DISORDER: DIAGRAMMATIC CALCULATION

OF THE DIFFUSION COEFFICIENT

24 1
D2(z)+ [D(z)]-

Z2 Z
(3.11)

The EME (2.30) allows a perturbative calculation of
the frequency-dependent diffusion coefficient D (z)
around the nondisordered system. Introducing the
Fourier and Laplace transform of P„(t),

We now address the calculation of D(z) leaving the cal-
culation of D2(z) for Sec. VI.

From (3.4), (3.6), (3.8), and (2.30b), the following exact
expression follows for D (z):

(P (z)&= f dt e " g e '~( P(t)&,
0

n =

and using P„=5„„,(2.30) becomes
0

(3.1)
D(z)= +lug

p=1 n1, . . . , n

XJQ„(z) J„„(z).
1 P

—1P

z(P (z) &
—1=1' (z)E (P (z) &,

where

K =2[cos(q) —1]

and

f' (z) = g i (z)e™.

The solution of (3.2) can be written in the form

(3.2)

(3.3)

(3.4)

(3.12}
This gives a perturbation series around the nondisordered
result D(z)=p, in which higher-order terms involve
higher-order Terwiel's cumulants. In order to analyze
the series it is important to note that the value of the cu-
mulant ( go(„g„&Tdepends only on the sequence of

1 P

different and equal indexes which it contains. For exam-
ple, the following cumulants have the same value:

( CO(140(3(3(1 &T ( (5(2(5(1klf2 &T

& P, (z)& =
z+q D (z)

(3.5)

which identifies the frequency- and wave-number-
dependent diffusion coefficient

2[1—cos(q)]

q
(3.6)

The small q behavior of D (z) characterizes the lowest-

(3.13)

This is so because of the statistical homogeneity of the
chain and the statistical independence of random vari-
ables with different indexes. This fact indicates that it is
convenient to split the sum over (n, , . . . , n ) in (3.12) in
several parts, each part containing cumulants with the
same value. For example, the P=2 term in (3.12) can be
written as

nl, n2 nl (WO),

n2 (&n1 0)

&kk. , k., &HO. .J..., + g &g.g.g„, &~ J.„,+ g &g,g„g„&~,„J„„
n2 (~0) n1 (~0)
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The cumulants in the rhs are not affected by the sums be-
cause of the property exemplified by (3.13). Each group
of terms resulting from the splitting is conveniently
represented as the average of an adequate diagram. A di-
agram of order p contains p+ 1 random variables and it is
defined as follows: Each random variable („ in the cumu-

lant will be represented as a point on a horizontal line,
each function J„„,accompanied by a projector 6, as the

J
segment of the line joining the points corresponding to

and g„. To indicate which of the random variables
I J

g„have the same index, the associated points in the dia-
1

gram will be joined by a curved line. An internal sum
over each index different from zero is also present. The
number of internal sums in a diagram is called I. The or-
der of the diagram p and I are the two important quanti-
ties to characterize a diagram, as is seen in the remaining
of this paper. The first 14 diagrams with a nonvanishing
average contributing to (3.12) are displayed in Fig. 1.
The analytical expression for the first four is also given.
Note that the properties of Terwiel's cumulants (see Ap-
pendix A) considerably reduce the number of diagrams
with a nonvanishing average. For example, in (3.14) only

J„(z)=2A (z)[B(z)—1]5„

+(1—5„)A (z)[B(z)—1] [B(z)]i"

(3.15)

where

and

2

A (z) =(2p) ' —+
IM 4p

' —1/'2

(3.16)

the last term is different from zero. The other ones con-
tain cumulants consisting of two or three independent
pieces, or they contain an isolated random variable which
is not connected to any other point by a curved line. The
average of such diagrams vanish (Appendix A) and they
are not included in Fig. 1.

Up to this point we have a diagrammatic perturbation
scheme' for D (z) that we write symbolically as

o(z)=)s+(X diagrams

In order to know if this is a good high- or low-frequency
perturbation series, we need to know the z behavior of the
functions J„(z). From the Laplace transform of (2.21)
with (2.15) we observe

p= I

p=2

0 0

0 0 0

4p(&-P) 4p Joo

gp (&-P) 4p (&-~)4p( J oo)

B (z) =1+
2p

' 1/2
Z Z'—+
p 4p

(3.17)

p=3
0 0 0 0

1~&

3
(p(&-~)Cp (&-~)4p (&-0 4p (& 00)

Z„(o0-P) 4((-P) 4o((-P)(n(& on)

Z, (o((-P)4((-P)40-P)(o(& gs) ) &~

The large- and small-z behavior is

J„(z~oo )- —25„z '+(1 —5„)p '(p/z)'"

J„(z~0)-—5„p '+(1—5„)(2p) '(z/)tt)'

)1/2] n —m~ —1

(3.18)

(3.19)

10

o o o

o o

0 0 n n 0

o ~o o

0 n

n n

0 n n 0 0

The analysis of (3.12) at high frequencies is easier to per-
form. Using (3.18), we observe that the average of all the
diagrams of order p for z~oo is of order z ~, so that
(3.12) defines a systematic perturbation series in this case.
The results of Denteneer and Ernst can be reobtained or-
der by order in z ' from our perturbation theory.

The low-frequency (z ~0) behavior of the series (3.12)
is more difficult to analyze. To lowest order in z, each
term J„„contributes with a factor —p ', and each J„
m Wn, with an additional factor

(2p) '(z/p)' [1—(z/p)' ]'"

0 n n n 0

The internal sums in each diagram involve this last term.
Noting that

2(1 — ) (3.20)

FIG. 1. The first diagrams with a nonvanishing average con-
tributing to Eq. {3.12). The ana1ytica1 expression is given for the
lowest-order diagrams.

we observe that each sum introduces a factor of order
(z/)M) '~ for small z. In summary, the order in z of a di-
agram containing N, functions J„„, N2 factors J„
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(num), and I internal sums is

(N2 —I) l2—N) —N2 Z
p

p
(N~ —I)/2

(3.21)

Substituting into (3.24),

M„J„n
(M„f ) (3.27a)

g„(z)= g (g„J„„) g„.
p=0

(3.22)

We note that the quantity g„(z) is not a simple random
function, but a random operator which has to be under-
stood as acting on random functions. The sum in (3.22)
can be explicitly carried out as follows. We apply the
operator P„ to an arbitrary random function f,

0.f= g (J..k. (1—'P)]'g.f
p=0

=k.f+ g (J..k. (1 »PX.f-
p=1

=k.f +J..kl.f J-s. & f.f—
&

Solving for g„f,
g„f=M„f —M„J„„(g„f),

where

(3.23)

(3.24)

We have explicitly written the factors p (of order z ) for
later use because p will be replaced by a function of z in
the analysis of next section.

The result (3.21) implies that the leading contribution
(of order z ) to D (z) comes from diagrams with N2 =I so
that I=O. These are the infinity of diagrams whose aver-
age contains cumulants of the form (go go) T, such as
diagrams 1, 2, 3, and 6 of Fig. 1. Likewise, an infinity of
diagrams contribute to each order in z in (3.12). As a
consequence, to render our perturbation series useful for
low frequencies, some rearrangement or resummation of
the series becomes necessary.

A first possible resummation is that represented di-
agramrnatically in Fig. 2. It consists in the summation of
all the diagrams contributing to the leading order in z .
These are the diagrams in (3.12) in which contiguous
indexes n; take the same value. The sum will be denoted
as g„(z):

so that the following expression is finally found:

M„Jnn

1+ (M„)J„„
5„=M„— n (3.27b)

After this resummation, the perturbative series (3.12}can
be rewritten in terms of g„(z}as

D(z)=p+ g
p =0 nl (&0),

n ( -nl),

n (Wn l)

& g,(z)g„ (z) g„ (z)&,

XJo„(z) J„„(z). (3.28)
1 u —l p

The sum is now restricted to terms in which a given index
n; does not coincide with its nearest neighbors n;+ &. The
Terwiel's cumulant in (3.28) is

(3.29)

where each factor g„, except the one at the far right,
l

must be understood as an operator acting on its right.
The series (3.28) can again be represented as a sum of
averages of diagrams. The diagramatic rules are the
same as before, except that each factor g„, replacing the
factors g„ in (3.12), will be represented by a circle on the
horizontal line. In the new diagrammatic series there are
no diagrams with a circle joined by a curved line to any
of its nearest neighbors. However, there are new dia-
grams with a nonvanishing average: those are the irre-
ducible diagrams containing isolated circles. In the prim-
itive series this type of diagram vanished because
(g„)=0 (see Appendix A), but now (g„(z))%0. The
lowest-order diagrams up to p=4 with a nonvanishing
average contributing to (3.28) are displayed in Fig. 3.
The order in z of each diagram is still given by (3.21) be-
cause ( g„(z) ) -0 (z ). The zero-frequency diffusion
coefficient D (z=O} is then completely determined by the
term p=O in (3.28):

n

1 —g„J„„
(3.25) D(z =0)=p+ lim (Qo(z))

z~O

The term (g„f) can be obtained applying P to (3.24) so
that

(3.26)

n n n n

FIG. 2. Diagrammatic representation of Eq. (3.22) expressing
the resummation of the diagrams contributing to order z in
(3.12).

&M, )=p+ lim = ' . (3.30)z-o 1+ (Mo)J~ wo

In this way we reobtain the exact result of Ref. 7. It
means that whenever the inverse moment P&

= ( wo
' ) ex-

ists, D(z=O) is finite and no anomalous diffusion appears
(&")-t).

However, the series (3.28) is not useful to calculate the
low-frequency behavior beyond the limit z=O. Indeed,
frequency-dependent corrections to (3.30) come from an
infinity of terms. For example, diagrams 2 and 3 of Fig.
3, and all the diagrams obtained from them by adding cir-
cles in their interior, contribute in order z' . More im-
portant is the fact that (3.29) gives rise to the appearance
of the inverse moments P~ = ( wo™)which diverge in
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p=O

p=2

p=4

'0

0 p 0

0 n m 0

k rn

has led to an efficient method for a systematic calculation
of D (z) at high frequencies, but it is unable to give a sys-
tematic calculation of the low-frequency behavior of
D(z). We already discussed that (2.30) shows that an im-

portant effect of averaging over the disorder
configurations is the introduction of non-Markovian dy-
namics. Then, it is reasonable to expect that a perturba-
tive representation of diffusion in a disordered medium as
a perturbation around a non-Markovian dynamics would
have better convergence properties that the perturbation
scheme discussed in the previous section.

With this idea in mind, we rewrite the master equation
for the RB model [Eqs. (2.1), (2.10), and (2.11)]by adding
and subtracting a new term:

7
n m n O

x(E„+ 1)P„(i—') . (4.1)

B,P„(t)=J dt' I'(t —t')K„P„(t')

+ J dr'( 1 E„ )[(—p, +(„)5(t —r') —I (r —t')]
0

FIG. 3. The first diagrams with a nonvanishing average con-
tributing to Eq. (3.28),

the case of strong disorder. These shortcomings identify
the difficulties of a straightforward perturbation expan-
sion around the nondisordered medium. More drastic
rearrangements of the series (3.28) are necessary to have a
useful perturbation theory.

IV. PERTURBATIVE EXPANSION AROUND
AND EFFECTIVE NON-MARKOVIAN MEDIUM

In the preceeding sections we have considered the
sources of randomness g„as perturbations around the
homogeneous part of the jump rates p. This treatment

We will use the explicit form of the RB model, but as
shown in general before, the same results would follow
for the RT model as long as the initial condition P„=5„„
is used.

The first term in the rhs of (4.1) represents a non-
Markovian RW in a homogeneous medium in which only
nearest-neighbor sites have influence on a given site. The
second term will be interpreted as the perturbation
around this medium. After averaging over disorder
configurations this perturbation term will induce effective
transition probabilities of any step size besides modifying
the one-step transition probabilities given by I (t t ). —
Our strategy will be to maintain I (t t') undefined an—d
to formally construct a perturbation series for D (z) along
the lines of Sec. III. The idea is then to determine
I (t r') a posteriori by—imposing that the perturbation
expansion around the non-Markovian dynamics defined
by I has the best possible convergence properties in the
low-frequency limit. Applying the general formula
(2.6)—(4.1), we obtain an expression formally identical to
(2.30), but now

& ( )=[f'(z)+(q &]5 o+ y y ~ri09. ,
''n.

, n &T&0. ,
(z f')

P=l nl, . . . , n

(4.2)

I (z) is the Laplace transform of I (t t '), —
r);:—p+ g;

—f'(z), and g„ is the solution of

zg„(z, r) —5„=rK„g„(z,f) . (4.3)

That is, Jl„(z,f') is the function obtained from
(3.15)—(3.17) by changing p by f'(z). Explicitly,

(z, f') =2A(z)[8(z) —1]5„

where

2
—1/2

A(z) = (2f') ' —+r 4r'

' 1/2

8(z) = 1+ —+
2r"

(4.5)

(4.6)

+(1—5„}A(z)[8(z)—1] [8(z)]l"

(4.4)
The diffusion coefficient D (z) is obtained in terms of

T (z) from (3.4), (3.6), and (3.8):
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D(z)= g 7 (z) . p=3

This defines a perturbation series for D (z) formally
analogous to (3.12). As we did there, can we can sum up
the infinity of terms containing cumulants of the form
(t)o . t)0)T. This introduces a random operator %„(z)
which is the counterpart of g„(z) in (3.27). We obtain

p=4

p=5 3

p QO~ p

4„(z)= g (t)„6Jf„„)t)„
p=0

=M„—
M n nn

1+(M„)g„„
where

@+(„—0(z)I„=
1 —[p+g„—f'(z) ]Jf„„

(4.7)

(4.8)

The perturbative series around f'(z) for the diffusion
coefficient becomes 0 m p m

D(z)=f'(z)+ y
p =0 n

I
(WO),

n& (Wn&),

t

n (Wn ~)P

X&0.
,

' (4.9)

n ~~ o

FIG. 4. The first diagrams with a nonvanishing average con-
tributing to Eq. (4,9) with the condition (4.10).

w„—I (z)

1 —[w„—f'(z) ]g„„(z,f' )

=0 (4.10)

This defining condition turns out to coincide with the
self-consistency condition of the EMA. ' f'(z) obtained
from (4.10) is the diffusion coefficient in such an approxi-
mation. So, (4.9) is a perturbation expansion around the
EMA. Equation (4.9) will permit us to establish the
range of validity of the EMA and a systematic calcula-
tion of the corrections to the EMA.

The first diagrams with a nonvanishing average con-
tributing to (4.9) with the choice of f'(z) given by (4.10)
are displayed in Fig. 4. To stress that circles and lines
represent different functions that in Fig. 3, a solid circle
has been used to represent ql„(z) and a double line stands
for J„6. This perturbative scheme remains well
behaved for z~ oo, as it was already the case of (3.12).
The low-frequency behavior has to be studied for each
particular model of disorder. We summarize, in Appen-

The sum in the rhs of (4.9) can be represented again as a
sum of averages of diagrams. The structure of such dia-
grams is the same as in Fig. 3, but now the circle means
ip„ instead of p„and the line means J„a instead of
J„Q. At this point it becomes clear how to considerably
reduce the number of diagrams with a nonvanishing aver-
age contributing to (4.9): If we choose f'(z) such that
(%„(z))=0, all the diagrams containing isolated circles
would have a vanishin average (see Appendix A). This
defining condition for (z) can be written, through (4.7)
and (4.8), as

dix 8, some technical steps needed in such analysis car-
ried out in Sec. V.

V. DIFFUSION COEFFICIENT FOR MODELS
OF WEAK AND STRONG DISORDER

In this section we discuss the explicit calculation of the
low-frequency behavior of D(z) for models A, 8, and C
defined in Sec. II.

A. Weak disorder: Model A

For weak disorder a variety of exact results are known
for the low-frequency behavior of D(z). We study this
model here as an illustrative case and as a testing bench
of our calculational scheme. We begin by considering the
order of the average of the diagrams contributing to D (z)
in (4.9). For the case of weak disorder, it is known""'b'
that the EMA predicts I (z)-0 (z ), namely,

+0(z3/2) P (~ —M) (5.1)
J

This can be seen directly from (4.10) and (4.4)—(4.8).
Taking into account this fact, it is shown in Appendix B
that the diagrams of order p and I internal sums are of
order z' ' . Therefore, the most important diagrams
of order p are those with the maximum value of I. Given



10 662 E. HERNANDEZ-GARCIA et al.

that 1 &I & (p —1)/2 if)8 is odd and 1 &I &p/2 —1 if p is
even, we find that the most important of the diagrams of
order p is of order z' 1+",where i [ ] means the in-
teger part.

This result shows that the perturbation series (4.9)
gives a systematic way of calculating the low-frequency
behavior of D (z) because higher-order diagrams (larger
p) contribute only to higher order in z. In particular, it
shows that the EMA gives, for D(z), the exact leading
contribution of order z .

The first correction to the result of the EMA
D(z)=f'(z) is given by (4.9) as the average of the dia-

gram with the lowest value of p; that is, diagram 1 of Fig.
4 with p= 3 which is of order z:

w+R w+8 (5.7}

where R is given in (83}. Recalling that, for model 8, the
probability density for a rate w is p(u)) =w, u) E (0,1), the
averages in (5.7) lead to

1 —R In(1+R)+R lnR =f'[In(1+R) —lnR] . (5.8)

This is an implicit equation for f' that can be solved itera-
tively. Using (87) we find

B. Model 8 of strong disorder

We begin by solving the EMA equation (4.10) for f'(z).
It can be written as

( po'II +p'p )T(JO )'
m (40)

2 lnllnz

lnzl
l
lnzl

ln2 (lnllnzl )

( %p% i %0%') ) T
= ( 4'p)II i +o'P i ) = ( M() ) (5.3)

=(%0% )%0% )}T g (Jo ) . (5.2)
m (%0)

Using (810) and (811),we obtain that

+(2 ln2 —1) 2
+(In2 —1)

(lnllnzl)

llnzl'
(5.9)

From (82) and (87}we have, for small z,

(M2)2 p
—8

Wp

1 z
(Jo )'-2 g

m (&0) m=1

' 1/2 3

~ 1/'2 -

3lml
zx 1——

1 z
4f" f'

[1—(z/f')'"]'
1 —[1—(z/f')' ']'

The sum in (5.2) can then be evaluated as

(5.4)

(5.5)

The two first terms in (5.9) were obtained within the
EMA in Ref. 5(b) and by the replica trick by Stephen and
Kariotis. The three first terms had been obtained by the
exact calculation by integral equations of Nieuwenhuizen
and Ernst. " These results imply that the EMA gives the
exact result at least up to terms of order llnzl . The
question which we now address is to find the order in z
for which the EMA result (5.9) becomes incorrect. For
this purpose we need to analyze the order in z of the
corrections to the EMA as given by the expansion (4.9).

In a term of (4.9) [see (89)], the order in z of
QJO„J„„is given by the general result (88), but

1 p
—

1 p

the evaluation of the order in z of the cumulant
()Po )P„)T requires some care: The analysis in Ap-

t
pendix 8 shows [see Eq. (813)] that a diagrain of order p
and I internal sums is of order

Combining (5.5) and (5.4), we obtain the following expres-
sion for the first diagram of Fig. 4 at low frequencies:

' )/2 p+)

(
P)(I+) )/2

z
(5.10)

'22
p

—
4(p p2)2 (5.6)

This fact, combined with (88), shows that the diagram of
order p and I internal sums is of order

' 1/2 p+] 1/2 p ~ I /2r
This gives the first correction to the EMA calculation of
D (z). It agrees with the alternative exact calculation of
Denteneer and Ernst. It indicates that, against earlier
conjectures, the EMA gives an incorrect result for D (z)
in order z, being exact in order z and z '

Higher-order corrections to the one given by (5.6) can
be calculated in a similar way considering the higher-
order behavior of the diagram in (5.2) and also the small-z
behavior of the diagrams in Fig. 4 with higher value of p.
In summary, the known results for weak disorder are well
reproduced within our scheme in which the EMA contri-
butions appear naturally separated from the rest.

-O(f''+'), &p, (5.11)

where I ~ 1. Terms with I=0 are absent in (4.9). The re-
sult (5.11) has two important consequences. First, the
leading correction to the EMA is of order f' —llnzl
Therefore, all the terms explicitly written in (5.9) and ob-
tained within the EMA are exact for D (z}except the last
one which needs to be modified by corrections to the
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n

o M&& O o

FIG. 5. Diagrammatic representation of Eqs. (5.13) and (5.14) giving the first correction to the EMA for models B and Cof strong

disorder.

EMA. A second fact is that the expansion around the
EMA given by (4.9) is not entirely appropriate for strong
disorder because diagrams of arbitrary order in p contrib-
ute to the same order in z. This is so because the order of
a diagram given by (5.11) depends only on I. We note,
however, that the perturbation scheme (4.9) continues to
be useful since a diagrammatic resummation can be easily
done. Figure 5 shows the pair diagrams, that is, those
containing two random variables 4'0 and +„, so that
I= l. According to (5.11) those are the diagrams contrib-
uting to the leading order f' . We can write, up to order

3

p odd:

p even:

~ ) — —2f'—
0 1 0 T

' 1/2 p+1

—2f'—
0 1 1 T z 2

'2

x
(p+1)/2 —1

(5.17)

D (z) = f'(z)+ & X ) + & Y)

with

(5.12)

r r

'2
( Z fr )) /2

X
2

1 1

p/2 p/2 —1

(5.18)

and

p 3,

p Odd

&x&= y
p =3,
P Odd

& +Oe„e,+„%'„),( JO„Y
n (%0)

&woe, eOe, e)), g (JO„Y'
n (%0)

(5.13)

With these results we have

4f"
&x&+& Y) —g,=3, p(p —1)'

p odd

where

orr 4f 3 =sf",
,=4, p'(p —2)
p even

(5.19)

&Y)= g g &eOe„e,e„+O),(JO„)J'
p =4, n (40)
p even

3k+2
, 2k (2k+1)(k+1)

= ——5+4 ln2=0. 239 989 82. . . . (5.20)
= X &'PO'P)+O'P) ' +O) X (JO. )'.

p =3, n (&0)
p even

(5.14)

2A~[(8 —1)] ~

i —S'
which behaves for z ~0 as

(5.15)

& X ) is the average of the first row of Fig. 5 and & Y ) is
the average of the second one. The cumulant in the
terms of order p contain @+1factors %.

The sum g( Jo„p can be computed from (4.4) —(4.6) as

( Jo„) — [8(z)—1]'~ y [8(z)]~'"'A(z) ~

n (wo) [8(z)] n (wo)

Equation (5.19) gives the leading correction to the EMA
result D(z)=f'(z), so that the exact result up to order
~lnz~ is given by

D(z) =f'(z)
I 1+2 [f'(z)]'I . (5.21)

C. Model C of strong disorder

We recall that model C is defined by a probability dis-
tribution p(w) =(1—a)w, 0 (a ( 1, w G (0,1). The
larger a is, the stronger the disorder is. The diffusion
coefficient for this model was calculated within the EMA
in Ref. 1(a). The leading contribution to f'(z), solution of
(4.10), is

(J )- 1 1 z

n (WO)

P f »2

(5.16)
with

al(2 —a) (5.22)

The small-z behavior of the cumulants in (5.13) and

(5.14), containing p+1 factors )p, can be read out from

(813):
C()(a ) = sin(ma )

(1—a)vr2

2/(2 —a)

(5.23)
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There are two other calculations of D (z) for this mod-
el. '" A direct comparison of these results with (5.22)
and (5.23) has not been made and it has only been conjec-
tured" that the EMA gives the correct leading result for
D (z). With our perturbation scheme around the EMA,
we are now in a position of analyzing the validity of the
result of the EMA by evaluating the corrections given by
the perturbation series (4.9). The order in z of the cumu-
lant (4„. . %„}Tis analyzed in Appendix B. Com-

0 p

bining (B8) with this analysis [Eq. (B16)],we find that any
diagram in (4.9) is of order f', which is of order z ~'

independently of the value of p and the number of inter-
nal sums I. The consequence of this fact is twofold.
First, since any diagram contains a contribution modify-
ing the lowest-order term given by the EMA, the conjec-
ture" that the EMA gives the correct leading contribu-
tion turns out to be incorrect. However, it also implies
that the leading exponent of z in D (z) is that of f'(z) and,
therefore, it is correctly given by the EMA. Second is
that we would need a ressummation of all the diagrams to
obtain the exact low-frequency behavior for any a. In-
stead of searching for such a summation that would lead
us to the complicated expressions of Refs. 9 and 11, we
take advantage of our method being specially suitable for
an expansion in u, which is an expansion in the strength
of the disorder.

For small a, the coefficient Co(a) of the result of the
EMA [Eq. (5.23)) can be expanded as

The question is how the perturbation around the EMA in
(4.9) modifies this coefficient for small a. The analysis in
Appendix B shows that the lowest-order correction in a
to the coefficient of the leading-z dependence (z ' ') is
of order a + . This imphes that

D(z)-C(~)z "'-", (5.25)

and, since I ~ 1,

C(a)=CO(a)+O(a') . (5.26)

p Qdd:

(+ +, ql, ) —[ —2f'(r/z)'"]~ "(zf'/4)'

X [B(1—a, (p + 1)/2+a —1)]

(5.27)

The first correction for small a to Co(a) is that of order
a . This correction can be explicitly calculated within
our formalism. Since it is associated with I=1, it comes
from the sum of diagrams in Fig. 5. Those were the dia-
grams already contributing to the leading correction to
the EMA in model B. It then follows that D (z), to lead-
ing order in z and order a, is given by (5.12)—(5.14). The
required expression for the cumulants involved follows
from (B16):

Co(a) =a 1+—1na+a(1 —ln2)+
a (a lna)
2 8

a lna+ ( —' —ln2)
2 2

+ 3 — —3 ln2+(ln2)
2 3

p even:

(y y y ) -[—2f'(f'/z)'~']~+'(zf'/4)'

XB(1—a, p/2+a)

XB(1—a, p/2+a —1), (5.28)

+O((alna) ) (5.24)
where B( yx) is the P function. ' Combining this result
with (5.16), we find

z [B(1—a, (p —I )/2+a)]
p =3)
p odd

p ——4

p even

B(1—a, p/2+a)B(1 —a, p/2+a —1)
(5.29}

(X}+(Y) —Aa [I+O(ulna)]z ' ', (5.30)

so that

C(a)=CO(a)+ Aa

with A given in (5.20).

(5.31)

Using the expansion (B18} for the P function B, (5.29)
reproduces the same series already summed up in (5.20).
The final result is then

UI. THE MODIFIED
BURNETT COEFFICIENT

The calculational method developed in Secs. III and IV
can be used to calculate higher-order moments of P„(t)
or, equivalently, successive diffusion coefficients beyond
D (z). This gives information about higher-order statisti-
cal properties of the transport process. In this section we
discuss the calculation of the modified Burnett coefficient
Dz(z), defined in (3.9), for models A, B, and C. As it was
the case in the calculation of D (z), model A is discussed
to check the consistency of our approach since exact re-
sults for the low-frequency behavior of Dz(z) were al-



42 TRANSPORT. . . IN DISORDERED ONE-DIMENSIONAL MEDIA: 10 665

f', (z)=D(z) q'F—(z)+O(q ),
D2(z) can be calculated as

(6.1)

D2(z) =
,', D (z)—+F(z). (6.2)

It trivially follows from (2.30a) and (3.4) that F(z) van-
ishes when only effective transitions between nearest-
neighbor sites (m=0) occur in the EME. This implies

ready reported by Denteneer and Ernst. The situation
for strong disorder is much less clear. The available cal-
culation by Nieuwenhuizen and Ernst" gives only the ex-
ponent of z in the leading term and makes no connection
with the results from the EMA. Within our scheme we
are able to establish such connection and to obtain the
full correct leading term in D2(z).

We start by noting that from (3.6), (3.9), and the expan-
sion

that, given D (z), the calculation of D2(z) becomes non-
trivial due to the effective non-Markovian dynamics
reflected in the influence on the dynamics of a given site
of other sites beyond the nearest neighbors. We also re-
call that the EMA neglects this contribution since the
EMA corresponds to an EME of the type (2.30a) with
m =0, so that F(z)=0. We will show below that, for the
three models A, B, and C considered here, the contribu-
tion of F(z} to D2(z) in the low-frequency limit is of the
same order (model A) or more important (models B and
C) than the contribution of D (z). This means that the
effective transition probabilities in (2.30a) with ~m~ )0
are particularly important in the calculation of statistical
properties of higher order than D (z).

The explicit calculation of D2(z) starts substituting
(4.2) in (3.4) and applying the resummation (4.7). We
then find

f', (z)=f'(z)+ g g (%,%„)II„),J,„J„„1— ' +,' +
p=3 n&, . . . , n

=D(z) —q'-,' y y' n2(e, q„.e„),J,„J„„+O(q'),
p=3nl, . . . , n

(6.3)

which identities the function F(z) in (6.1) as

F(z)= —,
' g g' n ( )I)0)I„I+„)T

p=3nl, . . . , n

X J()„ (6.4)

important diagrams of order p:
model 3:

( (p -I)/2 1) (i[p/2] —) (/2
max

model B:

(6.7)

2a "(1+a")
n a"

n (WO)

instead of (3.20). We then find

(6.5}

The prime indicates that the sums contain the same re-
strictions as in (3.28) or (4.9). F(z) can again be
represented as the average of a sum of diagrams topologi-
cally equivalent to those of Fig. 4. The difference is that
now an extra factor n accompanies the variable +„

P
represented by the last circle in the diagram. The pres-
ence of this factor reduces the number of diagrams since
some of them, such as diagrams 2 and 7 of Fig. 4, vanish
because n =0 for these terms. The order in z of the
different diagrams can be calculated along the lines
previously discussed. The order of the sum
gnp JO„J„„is calculated repeating the argument

2
np —1np

leading to (3.21) or (B8), but now using

fI+3
1

I=, z/lnz/'
' (6.8)

model C:

( f 2f (I + 1)(2—a)/2 —a(I + 1)/2 —
1) (3a —2)/(z —a) (6.9)

The situation is similar to what we had found for D (z).
For model A, diagrams with higher p are less important,
so that (6.4) gives a systematic perturbation expansion.
For models B and C, the order of the diagrams is in-
dependent of p. For model B only diagrams with I=1
contribute to the lowest order in z. For model C the or-
der of a diagram is also independent of I so that all dia-
grams contribute to F(z) in the lowest order in z.

Next we explicitly calculate the leading contribution to
D2(z) for models A, B, and C. For model A, the leading
contribution to D(z) is correctly given by the EMA as
discussed in Sec. V,

p On
I

n

1/2 p
1 z

(,I +2)/2

D( }=zP +)O(z' ) .

(6.6)

The order in z of the cumulant ( %0%„.. (Ii„)T in (6.4)
1 p

is that already obtained in the calculation of D(z}. It is
of order z for model A and that given in (B13) and in
(B16) for models B and C, respectively. Combining these
results with (6.6), we finally find the order in z of the most

The first contribution to F(z) is given according to (6.7)
by the diagram with p= 3 (diagram 1 in Fig. 4) which is
also of order z . The consequence is that both D(z) and
F(z) contribute to the leading order. Therefore, the
EMA, for which F(z)=0, does not reproduce the correct
result. The explicit contribution of F(z) is calculated
from (5.3), (5.4), and (4.4) —(4.6) as
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2

()Ii )I/„)Ii )Ii„) (J „) n —,'r,' —' —P,
n (XO) l8

X g n (Io)
n (WO)

-(-.'-' )'

X (Osp)

2

(6.10}

The modified Burnett coefficient for model A is then

D2(z). The correct dependence given by (6.16} agrees
with the estimation of Nieuwenhuizen and Ernst. "With
our perturbation method and in analogy with the calcula-
tion of D (z), we are now able to calculate Fo order by or-
der in a. From (6.9), we see that the coefficient of the
leading term in any diagram is of order a +, so that the
first contribution for small a to Fo comes from diagrams
with I=1; that is, again those contributing to (X)
defined diagramatically in Fig. 5. From (6.6) and (B16},
we obtain that, to lowest order in u, the leading z contri-
bution is

D2(z)= + 1—1 1 2

12 108 p2

2

p
—1+O( )/2) (6.1 1)

QC 4

(X ) y 4a (3a —2)/(2 —a)

p (p —1)
p odd

This result reproduces the one in Ref. 8.
For model 8 the leading contribution to F(z) is given

by the sum of diagrams with I= 1, that is F(z)=(X),
where X is defined diagramatically in Fig. 5. We recall
that ( Y ) in Fig. 5 vanishes here because of the extra fac-
tor n =0. Using (4.4) —(4.6) and (6.5), we have

(X)= g —,
' gn2(e, e„q„)T(g,„)t'

p =3,
p odd

4 (3a —2) /(2 —a) (6.17)

(Z) (ga4+. . . )Z(3a —2)/(2 —a)+
2

(6.18}

VII. THE RESPONSE FUNCTION
FOR THE RANDOM-BARRIER

AND THE RANDOM-TRAP MODELS

where 8 is defined in (6.14). In summary, Fo =Ba and

1 z
X

' 1/2 p

(f'/z)'"

2
()I(0)I)) 4()T

n =3, 2 p
p odd

(6.12) H„(t) =—. y C„,. (t)P", (7.1)

The response function lI„(t) is defined for each
configuration of the disorder as the probability for a dis-

placement of size n, starting from a stationary situation;
that is,

and replacing (5.27), we get

(X)- y
~ =3 p'(p —1)' z

p odd

where

16B
z)lnz)4

' (6.13)

where P" is the stationary solution of (2.1) and G„„(t)is

the Green s function of (2.1); that is, its solution with ini-

tial condition G„„(t=0)=5„„.We are interested in the

average over disorder ( II„(t)) of (7.1). A frequency- and
wave-number-dependent diffusion coefficient Dq"(z) can
be associated to H„(t) as in (3.5):

00
1B—= g 2

=
—,'g(3) —24+ 12 ln2+ —7m2

k=i (2k+1) k2
(A, (z)) —=

z+q D "(z)
(7.2)

=0.039 503 795. . . . (6.14)

Here, g(3) is a Riemann g function. ' The important fact
is that, for small z, this contribution is greater than the
leading one of D (z) coming from the EMA, so that

ft~(z) is the Fourier and Laplace transform of II„(t). For
the RB model, P"=1/X, where N is the number of sites
in the chain. X must be taken as infinity at the end of the
calculation. From (7.1),

D2(z}-F(z)- 16B
zflnz)4

(6.15)
H„(t)=(1/X) g G„+ (t),

We note that this exact result disagrees with the estima-
tion of the z dependence of the leading order of D2(z)
given in Ref. 11 by an integral equation method.

For model C, all diagrams for F(z) contribute to the
leading order in z given by

and invoking the statistical homogeneity of the medium,
(H„(t))=(G„o(t)). Then, the average response func-

tion coincides with the average Green's function, the
main quantity considered in this paper. This function
satisfies Eq. (2.30). For the RT model, we have

F ( )
—F (3a —2)/(2 —a) (6.16) pSt

tj
(7.3)

We first note that, since D(z)-z ' ' [Eq. (5.25)], the
leading contribution to D2(z) is given by E(z). A conse-
quence is that, as in model B, the EMA does not give
even the correct exponent of z in the leading term of

so that, in this case, (H„(t)) does not coincide with the

average Green's function.
In the remainder of this section we present a calcula-
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tion of D "(z) for the RT model in the case of weak disor-

der as an example of the application of (2.25) with (2.29).
II„(t) does not satisfy a ME of the form (2.1), so that it
must be calculated indirectly. Following Ref. 8, we
define

Q„„(z}=
K„

(D —p)5„„.

the initial condition (7.11) and the definition of Terwiel s

cumulants, we find

and

P„„=N5„„P„" (7.4)
p=o nl, . . . , n

H„„.(t)—= pc( „„(t)P„.„. . (7.5)
XJ„„(z) J„„(z)

1

a, H„„,(t)=K„(q+g„}H„„,(t) .

The initial condition for H„„.(t) is

H„„(t)=P„„,=%5„„.P„'t .

(7.6)

(7.7)

The Fourier transform of II„(t) can be calculated from
the Fourier transform of II„„.(t):

ft, (t) =A„(t),

ft (t) =—g e'"~H„„(t)e
n, n'

(7.8)

For the case of weak disorder, the central limit theorem
allows us to write (7.3) as

The matrix II„„.(t) satisfies the ME (2.1) with (2.10) and
(2.13}:

(7.15)

2Dz (1—cosq)

q Iz —2(1 —cosq)[D —T (z)])
(7.17)

and

From (7.12) and (7.15) we finally find, for the Fourier-
and Laplace-transformed response function,

& ft, (z) &
=

& ft„(z}&

1+2(cosq —1)[D —f'~(z) ]/z
(7.16)

z +2(1—cosq) f'~(z)

1~(z}is given in (3.4}.
The exact expression for the frequency- and

wavelength-dependent diffusion coefficient is extracted
from (7.16) and (7.2):

D 1PSt
N w„

(7.9) D"(z)= lim Dz"(z)=&w„'& ', Vz .
q~O

(7.18)

where, for N large enough,

D~&1/w„& '=P, ' . (7.10)

Then, from (7.7), II„„(t)is the solution of (7.6) with ini-

tial condition

H„„(t=0)=5„„D/w„. (7.11)

z&11„„,(z)& —S„„,= y„Z (z)K„(E„') &11„„.(z)&

+Q„„.(z) . (7.12)

T (z) is given in (2.30b) and Q„„(z) is given by (2.29)
with H„„(t=0)as initial condition:

n„„,(t)=K„+ g J„„(z). .J„„(z)G„(z)
P=O nl, . . . , n m

X & g„g„.g„H „,(t =0) &, .

(7.13}

This last expression can be further manipulated. By us-

ing

The average over the disorder of (7.6) leads to an equa-
tion formally identical to (2.25). Its explicit form in the
Laplace representation can be compactly written as

This is the known exact result for the diffusion
coefficient of the response function for the RT tnodel.
We have seen how it can be recovered without our for-
malism.

The modified Burnett coefficient can also be calculated
from (7.17}and an expansion similar to (3.7):

ti( )
1 D(z) D—

12 z
(7.19)

D (z) is the diffusion coefficient associated with the
Green's function; that is, that given in (3.12) or (4.9) and
explicitly calculated up to order z' combining (5.1) and
(5.6). Equation (7.19) is a remarkable exact relation be-
tween the Burnett coefficient associated with the average
response function and the diffusion coefficient associated
with the average Green's function for the RT model and
weak disorder. It permits the calculation of D2 (z) up to
order z" ' if D(z) is known up to order z". In particu-
lar, from (5.1) and (5.6), D2" (z) is, up to order z,

2

Dn( )=p i 2 ~(p )
—1i2

2 1
2p2

1

11P2—6M' —4ÃP2 —Pi

24

zG„„(z)—5„„=pK„G„„(z)=pJ„„(z), (7.14)
+ —'+O(z'i }12

(7.20)
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Analogously, the result for D2 (z) up to order z given in
Ref. 8 can be reobtained from the result for D(z) up to
order z, also given there.

VIII. SUMMARY AND CONCLUSIONS

+O(z'") (8.1)

Where the first two terms are correctly given by the
EMA and the term of order z contains a contribution
from the EMA and the correction given in (5.6). The
modified Burnett coefficient for model A is given by
(6.11). Equations (8.1) and (6.11) coincide with the results
of Ref. 8. The known result for the diffusion coefficient
associated with the response function of the RT model,
D "(z)=P, ', Vz, has been recovered. We have also ob-
tained an exact relation [Eq. (7.19)] valid for all frequen-

In this paper we have presented a diagrammatic calcu-
lational scheme which fully incorporates the non-
Markovian effective behavior caused by the averaging
over disorder configurations. The method is based in an
exact effective non-Markovian equation. It gives a
unified approach to the calculation of transport proper-
ties in cases of weak and strong disorder. It leads to a
perturbation expansion around the EMA so that it natu-
rally identifies the domain of validity of the EMA and
permits us to improve it. Our scheme has been applied to
the RB and RT models of RW in the context of the mod-
els of disorder A, B and C of Ref. 1(a). Our treatment of
arbitrary initial conditions in the non-Markovian effec-
tive dynamics identifies the equivalence of the RB and the
RT models in the calculation of the probability distribu-
tion of the diffusing particle for a fixed (nonrandom) ini-
tial condition. The different response functions for the
two models have been considered. We have also shown
that the influence in the effective non-Markovian dynam-
ics at a given site of sites beyond its nearest neighbors be-
comes dominant in the calculation of the modified Bur-
nett coefficient for strong disorder. These effects are not
taken into account within the EMA.

Our main specific results are for the diffusion
coefficient and modified Burnett coefficient. We repro-
duce here their complete expressions for convenience.
Model A has been used as a consistency check of our
scheme. For this model of weak disorder, the diffusion
coefficient of the average Green's function is, from (5.1)
and (5.6),

2

D(z)=P, ' 1+ ' '
(P )I"

2p2

11P2—6P3Pi —4PfP2 —Pi

24

cies, which permits the calculation of D2~(z) from the
knowledge of D (z).

For model 8 the diffusion coefficient associated with
the average Green's function is given by

D(z) = — 1—2 ln /1nz[ ln2 (ln~lnz~ )

ln~lnz~ ln2(ln2 —1)+43

(ln~lnz )

/lnz/'

3 =m /4 —5+41n2 .
(8.2)
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APPENDIX A: PROPERTIES
OF TERWIEL'S CUMULANTS

AND RELATED STATISTICAL QUANTITIES

Terwiel's cumulants are defined as'

(x,x, x„),=px, ax, ax„, (A 1)

where [X, I are random quantities and P average over its
probability distribution. By induction, the following ex-
pression for Terwiel's cumulants in terms of moments of
X; is obtained:

The three first terms reproduce the result in Ref. 11.
The sixth term, of order ~lnz~ contains the first correc-
tion to the result of the EMA given by the coefficient A.
Within the EMA, A =0. The modified Burnett
coefficient for model B is given by (6.15).

For model C, the lowest-order contribution in z to the
diffusion coefficient of the average Green's function is
given, for small a, by

D(z)=[CO(a)+ Aa +O(a lna)]z ~' '+ . , (8.3)

where Co(a ) is given in (5.24) and A is the same
coefficient as that in model 8, so that the first correction
to the EMA appears in the amplitude of the leading term
in order a . The modified Burnett coefficient for model C
is given by (6.18).

Finally we point out that the calculational scheme
developed here can be generalized to deal with problems
in several dimensions. It is also possible to use this
method to treat problems of dynamic disorder. We also
point out that a related scheme can be developed for the
calculation of transport properties for disordered con-
tinuous media, as well as passage-time properties of
RW in the presence of disorder.

n —
1

(x, . x„),= g ( —1)'
i =0 (II (.- (I (n

&x, x, )&x, „x,) . &x, , x„).
Some examples of this formula are
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&x, &,=&x, ),
(x,x, ),=(x,x, ) —(x, )(x,),
(x,x,x, ),=(x,x,x, ) —(x, )(x,x, ) —(x,x, )(x, )+(x, )(x, )(x, ),
(x,x,x,x, ),= &x,x,x,x, &

—&x, ) (x,x,x, ) —&x,x, &&x,x, ) —(x,x,x, )(x, )+ &X, ) (x, &(x,x, )

+&x, &(x,x, )&x, &+&x,x, &&x, ) &x, &
—&x, )(x, )(x, )(x, & .

(A3)

Expressions (A2) and (A3) are valid when [X;] are non-
commuting random operators as well as when they are
simple random variables, provided that the ordinates of
the factors in these formulas is preserved.

It is easy to derive from (A2) two important properties
of Terwiel's cumulants.

(i) If it is possible to split the ordered set [X, X„j
appearing in (Al) into two sets, IX, Xk ] and

IXk+, X„I without altering the ordinates and in such
a way that the variables in one set are statistically in-
dependent from those in the other set, the cumulant van-
ishes. This can be seen from (A2) by noting that some of
the moments factorize and cancel out with other terms.

(ii) If some random quantity in (Al) has a vanishing

z; = vi(1 —w;Pv; ) . (A4)

V, is a random variable and 8'; is a nonrandom quantity.

P and 1II in (3.27b) and (4.7) [see (81)] are random opera-
tors of the general form (A4). The algebraic steps needed
to evaluate the moment

average ((Xk) =0), this quantity appears only once in
the cumulant and it is independent of the rest of the ran-
dom variables in the cumulant, the cumulant vanishes.
This is due again to the factorizing of some of the mo-
ments in (A2).

A quantity related to a Terwiel's cumulant is the mo-
ment (Z, Z„), where IZ, I are random operators of
the form

(z, z„)=pv, (1—w, pv, )v (1—w pv ) v„(1—w„( v„))
are very similar to those needed to obtain (A2) from (Al). The final result is

(A5)

n

(z, " z„)= y( —1)'
i=0 ]&II & . . &1, &n

(v, v, v, )w;(v, v, „v, )w, &v, &
. w, &v, v„).

(A6)
Some explicit examples are

(z,z, ) =(v, v, ) —(v, ) w, (v, v, ) —(v, v, ) w, (v, )+(v, ) w, & v, v, &w & v, &,

(Z1Z2Z3) ( V1V2V3) ( V1)W1( V1V2V3 1 2 2 2 3

—(v, v, v, ) w, (v, )+(v, ) w, (v, v, ) w, (v, v, )+(v, ) w, (v, v, v, ) w, (v, )

+& v, v, ) w, (v, v, ) w, (v, &
—(v, ) w, (v, v, &w, (v, v, ) w, (v, ) .

(A7)

APPENDIX B: LOW-FREQUENCY BEHAVIOR
OF SOME DIAGRAMS

In this appendix we analyze the low-frequency behav-
ior of the terms in our diagrammatic expansion. The ex-
plicit form of 4„(z) in (4.7) can be simplified using (4.10):

1P„(z)=1%„(1—J„„PIN„) . (81)
The order in z of the cumulants in (4.9) depends on the
order of M„and Jl„„. From (4.8), M„can be conveniently
written as

I

The explicit form of J„„is obtained from (4.4) —(4.6):

1
=&oo= —=nn 00

Z

(z'+41 z)'" (84)

Z
lirn — =0 .
z-o f(z)

(85)

For models A, B, and C defined in Sec. II it is known'
that I (z) obtained from the EMA satisfies

w„—I (z)
1M„=[I (z}+R(z)] w„+R z)

where

R=——I—

(82)

(83)

The small z behavior of (84) is then

[1—
—,'(z/f )' +O((z/I )' ')],

and that of (83) is

(86)
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R(z)-'"' +—'+O '
4 $1/2 (87)

Finally, due to the fact that the internal sums do not
act on the cumulant [because of (3.13)], the average of a
diagram is of the general form

(88)

To estimate the order in z of a diagram it is also impor-
tant to consider the sums of the form QJO„. J„

l p —I p

where there are p factors J„„and I+ 1 of the indexes are
I

different. The sum is over the I indices different from
zero. Repeating the argument leading to (3.21), and tak-
ing into account (86) and (87), this sum is of the order of

1/2 p '~ '1/2
1 z

z

(+.+„, (89)

We now study the low-frequency behavior of the cumu-
lants in this last expression. For easier reference, we par-
ticularize the general expressions (A2) and (A6) to cumu-
lants and moments of the random operators 4„:

n —1

(I, 0„),= $ ( —1)'
i=0 1 I « I&n

1 I

& 'p] ' ' ' +], & & +],+ i
' ' ' p], &

' '
& p],. +] ' ' ' +. & (810)

i=0 1~1 « I (n
1 I

( M]M2 ' ' ' Mi )Ji 1 ( Mi M] +] ' ' ' Mi )J] ] ( Mi ' ' ' ) ' ' ' J] ] ( M] ' ' ' Mn )

(811)

We begin by considering the case of weak disorder. The
order in z of the cumulant (%0]II„V„)Tcan be es-

1 P

timated as follows: From (82), (87), and the fact that all
the moments ( w™) are finite, we see that

(M, (z) ) —O(z ), for all N&1 [if N= 1 we have, from
(4.10), (M) =0]. From (86), also J„„-O(z ). Applying
(Bll) now, we find that (%0 ]I(„) is of order z and

the same is valid [from (810)] for (%0 %„)T. Com-
P

bining this fact with (88), the order in z of the diagram in
(89) is z (P —I) /2

We next consider model B of strong disorder. To esti-
mate the order in z of (]Pa %'„)T, we first calculate

the small-z behavior of (M (z) ( for N&1 [if N=1,
(M, (z) & =0]:

and ( M M ) vanishes if any m, = 1.
lip n

In the expansion of (]p„%„)in moments of M
0 p

[Eq. (Bl1)], we see that the dominant term for z~O is
precisely (813). This is so because all the other terms
contain at least an additional fragmentation. This intro-
duces at least (a) a factor (zf')'/, (b) some new term M

is added inside some moment, introducing a factor of or-
der f'(f'/z)'/ if it is repeated, or making the moment
vanish if it is not, and (c) a factor J-O(1/f'). Then, all
the other terms in (811) contain at least a factor of orderf'- 0 (

~
lnz~

'
) with respect to (813).

Finally, in the expansion of (4'0 %„)Tin moments
P

of 4 (810), the term with i+1 moments is of order

)v

(M, (z)")-f'
I
1+0[(z/I")'"]IJ dw

(w+R)

' 1/2 p+1
1/2+(Ik +1)

(I z) (814)

—2f'— + I ~ ~z, 2(N —1)
(812)

Then, for averages of the form (M„M„) in which I
0 P

of the indexes [no, . . . , np I are different, [i ], . . . , iI ], be-
ing the i repeated m . times (g" ] m =p+1), we find

where the sum runs from k=O to i, and [I], I are the
number of different subindexes of %1 inside each moment.
Since

(M„M„&=(M, '&&M, '& &M, '&

1/2 p+1
g (I), +1)& I +1,

jc =0

—2I
z

I+]
( f )]/2

X
2

1

(m —1) (m —1)0 I

(813)

the dominant term is that containing the moment

( 40 . 1II„),given for small z by (813).
P

We now analyze the low-frequency behavior of
()IIo 1II„)Tfor model C of strong disorder. The small

P

z behavior of ( M (z)' ), N & 1, is
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(M )=(1—a)I tt) dto
(to +8)+

N
2(f'/z)'"+0 (z')

0 1+X
' N/2

1 —a}(—1) 2)v+~ '(zf }(1—a)/2 f NB(l —a N+a —1}
z

(815)

B(x,y) is the P function. ' For averages of the form (M„M„) in which I of the indexes Inc, . . . , n I are
0 P

different, I i „.. . , it I, bring the I, repeated m, times (gt" ) m, =p + 1), we find

(M„M„)=(M, ')(M, ') (M, ')
' 1/2 ' p+1

2(a —1)(I+ 1)(zP )(1—a)(1 + 1)/2 B(1—a, mo+a —1) B(1—a, mt+a —1) . (816)

If some m,. =1, the average vanishes. In the expansion of
((Ito (It„ ) in moments of M [Eq. (811)],all the dom-

inant terms are of the order of (816). This is so because
all the other terms contain at least an additional fragmen-
tation, introducing at least (a) a factor (zf')', (b) some
new M inside some moment, introducing a factor
f'(f'/z) /, and (c) a factor J-O(f' '). These three
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(5.22), is of order z . So, the order in z of ( %o . (I/„) is
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that of (816), although the numerical coefficients would
probably be different.
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the term with i+ 1 moments is of order

Given that g'k o (Ik + 1))I + 1, the order of
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ior of ( %o (I(„)T for small z and a. We calculate this

P

contribution by noting that the most important term for
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fragmentation introduces a factor
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Then, from (816), (88), and using that
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(1 —a)g(I~ 1+) 2/
(817)

we find that the coefficient multiplying the lowest-order z
contribution z ' ' is of order a + .
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