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We use a variational Monte Carlo technique to study the ground state of the two-dimensional
Hubbard model on a square lattice. We study the stability of the usual commensurate antiferromag-
netic phase against the formation of domain walls for various system sizes, band filling, and Hub-
bard repulsion. An instability towards diagonal domain walls is found for the values of the Hub-
bard repulsion studied (U =4—10t). W'e compute the condensation energy of the holes in walls.
Such an incommensurate antiferromagnetic phase is much stabler than any other solution.
Whether paramagnetic or purely superconducting, but superconductivity is found still to coexist
with incommensurate antiferromagnetism. %'e carefully compare our results with those of the
Hartree-Fock model and shed some light on the limitations of the Hartree-Fock solutions.

I. INTRODUCTION

Soon after the discovery of high-T, superconductivi-
ty, ' it was pointed out by Anderson that the two-
dimensional Hubbard model could be of some relevance
to these compounds. Another model also proposed was
the so-called t-J model, which was first introduced as the
strong-coupling limit of the Hubbard model and later
proved to be an efficient model to describe the two-band
structure of the high-T, compounds. ' This has lead to
a renewal of interest for understanding the nature of the
ground state of these models. One question of crucial in-
terest is the existence of superconductivity and the com-
petition with the usual antiferromagnetic phase that one
can expect for repulsive interactions.

By using a variational Monte Carlo method on the
t-J model, Gross, Yokoyama, and Shiba' '" were the first
to prove that close to half-filling the antiferromagnetic
phase was superset by a d-wave superconducting phase.
These results are consistent with small-repulsion renor-
malization calculations which also find a d-type pairing
away from half-filling. ' ' These variational results are
based on the assumption that under doping the antiferro-
magnetic phase remains commensurate, i.e., that the
wave vector of the magnetization remains at (m, m ) (for a
unity lattice spacing).

It was soon proposed that this commensurate phase
was unstable, and various types of incommensurate
phases have been investigated' ' leading to a further
stabilization of the antiferromagnetic phase. At small U
it was shown' that the most stable incommensurate
phase corresponds to a phase in which the holes are local-
ized in domain walls, and therefore to a linear polariza-
tion of the incommensurate modulation. Subsequently
the relative stability of vertical and diagonal domain
walls was studied, using the Hartree-Fock approxima-
tion. ' '

However, the wave function obtained with Hartree-
Fock (HF) is a poor variational wave function, since it is

much too high in energy, as was already the case for a
commensurate antiferromagnetic Hartree-Fock wave
function. ' The HF wave function has to overestimate
the antiferromagnetic order to reduce the Hubbard repul-
sion, i.e., avoid having a spin-up and spin-down particle
on a same site. As is well known, it is best to ensure a
part of the correlations between electrons of opposite
spins through a Gutzwiller projector. ' It is thus natu-
ral to wonder if the results concerning the incommensu-
rate phases subsist when these more complete and ener-
getically more reasonable wave functions are taken into
account. Moreover, a more efficient wave function is also
needed if one wants to compare with the energies of other
types of instabilities (e.g., superconductivity).

Our purpose is to check, by a Monte Carlo variational
calculation, the stability of the commensurate antiferro-
magnetic phase when a full Gutzwiller-type wave func-
tion is taken into account. We will also compare the en-
ergy of an incommensurate antiferromagnetic phase and
a superconducting one. Since, as will be shown, the in-
commensurate antiferromagnetic phase is stabler than
any proposed superconducting wave function' "' we
will examine in a crude approximation if it is still possible
to get superconductivity even with a strongly stabilized
antiferromagnetic phase.

II. MODEL AND METHOD

We use the two-dimensional Hubbard model on a
square lattice, with hopping restricted to nearest neigh-
bors

H= t g c, c, + gUn —tn(, (2. l)
(ij },o E

where ( ) stands for nearest neighbors, c, (c; ) destroys
(creates) an electron with spin o at site i, and

n; =c, c; . U is the on-site Hubbard repulsion (U&0)
and t the hopping parameter. In the following we will

take t = 1 which gives for U=0 a bandwidth of 8, and ex-
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press all energies in units of I;.

We compute, by the usual Monte Carlo integration
technique, the average value of H with a trial wave
function

~ f )

taken constant in space; thus, n; =N/L where L is the
number of lattice sites, and g and m, are to be determined
variationally.

~=&ylHly)/&ply) . (2.2)
III. SIMULATION AND RESULTS

In order to take into account the fact that doubly occu-
pied sites are disfavored by the Hubbard repulsion U and
to have a tractable function, ~P) is usually taken of the
Jastrow-Gutzwiller type

(2.3)

where P is a projector which reduces the weight of dou-
bly occupied sites and ~t)'jo) is a model wave function
which insures the fermionic antisymmetry.

We will take here the simplest form for the prefactor
Nd 21 22P =g, ' where g is a variational parameter and Nd

the number of doubly occupied sites. More refined pre-
factors have been studied by Yokoyama but will not be
considered here for simplicity.

~$0) depends on the expected long-range behavior.
Since we are interested by an antiferromagnetically or-
dered phase, we will take n; =

& n;
&
+n; &

) and
x,. +y,m;=( —1) ' '&n;

&
n; &—) as order parameters. n; and

m; are, respectively, the average number of particles and
the average staggered magnetization on site i ~Po) is the
N particle determinant made from one-particle states,
solutions of the Hartree-Fock Hamiltonian

H= — g c; c +—g[n, —cr( —1) ' 'm ]c, c;
(i j &, a i, a

(2.4)

Such a wave function describes the usual antiferromag-
netic phase if n;, m; are constants in space. On the other
hand if n; and m; are allowed to vary in space and are pa-
rameters to be determined self-consistently' ' such a
wave function can describe incommensurate antifer-
romagnetism with a linear polarization of the spin modu-
lation. For small U, such a solution has been shown to be
stabler than spiral like polarizations. ' Although in an
HF calculation it is possible to keep all the n; and n; as
variational parameters, here this would mean too much
computer time. Instead we will assume a functional form
for n; and m, which appears to fit very closely the
Hartree-Fock results. Since we want to describe an anti-
ferromagnetic phase with domain walls, we choose the n,
and I; to have the form

n; = 1 —a/cosh[(y, —y, )/g ]—a/cosh[(y, —
y2 )/g ],

(2.5)
m;=m tanh[(y, —y, )/g ]tanh[(y, —y2)/g ] .

This corresponds to two vertical domain walls at y, and
y2. a is fixed by g; n; =N where Vis the total number of
particles. The variational parameters g, g, g, m are fixed
by minimizing the energy. Note that a pure Hartree-
Fock solution means in our case keeping g=1. Diagonal
domain walls can be treated in the same way by changing
y; ~x; —y;. For the commensurate phase n; and m; are

A. Simulation

All the calculations were made on a rectangular lattice
with walls parallel to the smaller side. We have taken
periodic-antiperiodic conditions for vertical domain walls
and antiperiodic-antiperiodic conditions for diagonal
domain walls in order to avoid degeneracy of the Fermi
surface at half-filling. ' The calculations are made on
systems between 4X20 and 8X28 depending on U and
the doping in holes 5. To avoid important finite-size
corrections when comparing the energy of a commensu-
rate system with one with walls, we have to keep exactly
the same boundary conditions. It is thus necessary to in-
troduce two domain walls. Since the walls interact, the
locations y ~

and y2 of the walls have been chosen to have
the largest separation between the walls on the torus. If
this separation is high enough the interaction energy is
expected to become negligible compared to the intrinsic
energy of a single wall. This has been checked numerical-
ly for the systems studied.

The variational parameters were determined by using a
method proposed by Umrigar et al. for the study of
atomic systems. A set of configurations is generated
and then used to minimize the energy. This offers both
the advantage of good computing time performances and
that of using correlated measurements, which allows us to
compare energies that differ by less than the statistical er-
ror bars on uncorrelated samples. We have used at least
five independent simulations each of 4X 10 Monte Carlo
steps (MCS) to determine the minimum energy and pa-
rameters and the error bars. The order of magnitude of
the time needed to get one minimum is half an hour on a
Cray-2.

B. Results

The optimal parameters for U=4, 7, 10, for various sys-
tem sizes, are indicated in Table I. Since the best energy
is obtained when there is one hole per site in the wall, '

we have only considered systems where the number of
holes is 2L, where L is the width of the system, in order
to get exactly two wa1ls of holes. As can be seen in Table
II, the commensurate antiferromagnetic phase is unsta-
ble, close to half-filling, towards the formation of domain
walls in qualitative agreement with the Hartree-Fock re-
sults. '6'7 Even for quite large doping (5=0.1) there is a
significant energy gain due to the incommensurate insta-
bility.

The formation of domain walls also leads to a strong
increase of the antiferromagnetic order parameter as can
be seen in Fig. 1. We have shown the density and stag-
gered magnetization for V=4 and a 4X20 system, with
and without domain walls. At this doping (6=0.1), anti-
ferromagnetism is nearly destroyed in the commensurate
phase as can be seen on the staggered magnetization
m =0.2 (m=0.58 at half-filling). Between walls, con-



42 VARIATIONAL MONTE CARLO STUDY OF INCOMMENSURATE. . . 10 643

TABLE I. Optimal variational parameters and energies for various values of U and either commens-
urate system (C) or two vertical ( V) or diagonal (D) domain walls [see Eqs. (2.4) and (2.5)]. Note that
due to the Gutzwiller projection, the parameter m which would correspond to the staggered magnetiza-
tion for a pure HF wave function is quite different from the measured magnetization (see Table II).

4
4
4
4
4
7
7
7
7
7

10
10
10
10
10

Size

8X20
8X20
8X28
8X28
8X28
4X20
4X20
4X28
4X28
4X28
4X20
4X20
4X28
4X28
4X28

72
72

104
104
104
36
36
52
52
52
36
36
52
52
52

0.1

0.1

0.07
0.07
0.07
0.1

0.1

0.07
0.07
0.07
0.1

0.1

0.07
0.07
0.07

Type

C

C
V
D
C
V
C

D
C
V
C
V
D

0.07(3)
0.23(5)
0.15(3)
0.27(3)
0.27(3)
0.13(3)
0.27(3)
0.19(4)
0.28(4)
0.28(4)
0.10(2)
0.23(3)
0.14(2)
0.27(3}
0.26(3}

5.6(6)

5.9(3)
5.9(3)

3.1(2)

3.2(4)
3.4(4)

2.9(2)

3.2(2)
3.4(3)

3.7(3)

3.7(2)
3.7(3)

3.3(2)

3.5(4)
3.2(4)

2.5(2)

3.3(3)
2.8(4)

0.57(2)
0.59(2)
0.58(2)
0.60(2)
0.60(2)
0.41(2)
0.43(2)
0.42(4)
0.45(2)
0.45(2)
0.29(1)
0.35(2)
0.32(2)
0.37(2)
0.35(2)

versely, the staggered magnetization in the incommensu-
rate phase nearly keeps its half-filling value m =0.5. For
U=4 the walls are quite wide, and for the system shown
in Fig. 1 the modulation of the measured magnetization
is nearly sinusoidal due to a strong interaction between
the two walls. The properties of a single wall will have to
be measured on a much larger system in order to avoid
such an interaction between walls. Note that the incom-
mensurate modulation of the spin density is matched
with a significant charge density modulation at a double
period.

If U increases, the walls become narrower as shown in
Fig. 2. We have also shown on this figure the important

quantitative differences with the HF solution. The
Hartree-Fock results were obtained with the same
method and keeping g= 1. The walls are considerably en-
larged compared to what is predicted by Hartree-Fock.
The physical reason is that the condensation of holes in
walls results from a competition between the loss of ki-
netic energy if the holes are localized in walls, and the
gain in potential energy if the holes do not destroy the
antiferromagnetic order. But there is an artefact of the
Hartree-Fock wave function: In the HF wave function
the antiferromagnetic order is essential in order to mini-
mize the on-site repulsion. It is thus very dilcult to des-
troy this order due to the increase of available double oc-

TABLE II. Physical parameters measured with the optimal wave functions given in Table I. For the
incommensurate systems the staggered magnetization [for a commensurate system the staggered mag-
netization is defined as (S)=2L ' g, (( —l)'S;) and normalized to be l for a full antiferromagnetic
order] is defined as the staggered magnetization at mid distance between the wall (well defined if the
walls are su%ciently apart). E,„, is always smaller than E„;thus, the holes will always condense in
walls. One can also notice that diagonal walls are stabler than vertical ones.

4
4
4
4
4
7
7
7
7
7

10
10
10
10
10

Size

8X20
8X20
8X28
8 X 28
8X28
4X20
4X20
4X28
4X28
4X28
4X20
4X20
4X28
4X28
4X28

0.1

0.1

0.07
0.07
0.07
0.1

0.1

0.07
0.07
0.07
0.1

0.1

0.07
0.07
0.07

Type

C
V

C
V

D
C

C

D
C
V
C
V
D

(s)
0.19(3)
0.53(3)
0.38(3)
0.59(3)
0.56(3)
0.54(3)
0.77(3)
0.61(4)
0.81(4)
0.79(4)
0.60(2)
0.88(3)
0.72(2)
0.90(3)
0.88(3)

153.8(1)
154.9(2)
207.1(3)
208.7(3)
209.5(2)

55.8(3)
57.3(3)
72.9(2)
74.7(3)
75.8(3)
44.2(2)
46.1(3)
56.2(3)
58.8(2)
59.6(3)

—E/(2N)

1.068
1.075
0.996
1.004
1.006
0.775
0.795
0.701
0.718
0.728
0.613
0.640
0.540
0.565
0.573
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1.0

0.5

l
a a ~ a g a s a s I a a J incommensurate phase (e.g., spiral like) or of a spin

liquid.
In order to measure the stability of the incommensu-

rate phase we introduce the condensation energy of holes
into walls at half-filling by'

b 0 0
Q

E, =lim[E;„,(5)—E„(5)]/5,
5 —0

(3.1)

—Oa5

—1.0
0

s a 1 a a s a I s s s a I s s

5 10 15

cupancy. The thinner the walls are, the better. In the
Gutzwiller wave function the prefactor already takes care
of the double occupancy, so that in order to minimize the
kinetic energy, it becomes energetically favorable to en-
large the walls. The idea that due to the Gutzwiller pro-
jection the kinetic energy term plays a more important
role seems to favor the idea at large U of a homogeneous

FIG. 1. Profiles of density {solid dots and dashed line) and
staggered magnetization (triangles and solid line) for a 4X20
system at U=4. The staggered magnetization for a commensu-
rate system is also indicated (squares). Whereas the commensu-
rate system is nearly paramagnetic, the order parameter for the
incommensurate one is nearly the same as at half-filling
(m=0.58) due to the localization of holes. The creation of
domain walls strongly stabilizes the antiferromagnetism. Note
that, even for small values of U ( U=4), the density fluctuation
is not a small effect.

where E„;„,(5) is the total energy of a commensurate
(incommensurate) system. If E, (0 the holes will always
condense into walls. We have measured the condensation
energy on the largest system (smallest 5) which was ob-
tained in the simulation. Since quite large systems were
already necessary to avoid the interactions between walls,
especially at small U, no systematic extrapolation has
been tried, due to computer time limitations. Note that
especially for small U, where the walls are quite large,
very large systems (typically 4 X 28) were necessary to
avoid the finite-size effects due to the walls' repulsion.
Such a repulsion leads to a reduction (in absolute value)
of the condensation energy and thus destabilizes the in-
commensurate phase. Since the commensurate antiferro-
magnetic phase is little affected by the finite-size effects,
this will lead to an underestimate of the incommensurate
instability energy.

The results for vertical and diagonal domain walls are
shown in Fig. 3, together with the Hartree-Fock results
of Ref. 16. The condensation energy is lowered in the
presence of a Gutzwiller prefactor, as expected. Another
qualitative important different between the HF and the
full solution is that here, for all studied values of U, the
diagonal walls are stabler as shown in Fig. 3, whereas for
the HF solution a transition from vertical to diagonal

~ Q I a a l a ~ a l a a ~ l a s I I a a a l a ~ ~1.
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FIG. 2. Profiles of density (p) and staggered magnetization
(o.) for two vertical domain walls (solid and dash-dotted lines),
for a 4X20 system at U=10. In dashed and dotted lines is the
pure Hartree-Fock solution (obtained with the same method by
fixing g= 1). The effect of the Gutzwiller prefactor is to consid-
erably enlarge the walls. Since it weakens the Hubbard repul-
sion, the gain is kinetic energy associated with a larger wall su-

persedes the loss in magnetic energy.

FIG. 3. Condensation energy of holes in walls as given by
(3.1). A negative 5E indicates that the homogeneous phase is
unstable. Hartree-Fock results for vertical walls (squares) and
diagonal walls (bullets), from Ref. 16. Monte Carlo results for
vertical walls (triangles) and diagonal walls (circles). 5E is still
important but much lower than predicted by the HF calcula-
tions. As expected when U~O the effect of the Gutzwiller pre-
factor becomes less important. For the values of U considered
here, diagonal domain walls are stabler. The lines are simply a
guide to the eye.
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TABLE III. Minimum energy and parameters for a 6X6 system with 4 holes and Ult=10. SU and CAF denote, respectively, the
numerical results for a pure d-wave superconducting wave function and a commensurate antiferromagnetic one. SU+CAF is a wave
function with both superconductivity and commensurate antiferromagnetism (Ref. 23) [obtained by keeping v=O in (4.3)]. The re-
sults described under the subscript IAF and IAF+SU are those which are built on the crude incommensurate wave function (4.3).
The energy of the domain wall phase {incommensurate) is estimated using the condensation energy given in Fig. 3. The fact that the
antiferromagnetic phase is stabilized in both cases by the addition of superconductivity seems to suggest that incommensurate anti-
ferromagnetism and superconductivity can coexist. Note that a pure superconducting phase is not a good variational wave function
for the Hubbard model.

Type

SU
CAF

CAF+ SU
IAF

IAF+ SU
DW

0.19(2)

0.12(2)

0.07(3)

—0.35(4)

—0.49(7)

—0.4(1)

0.45(4)
0.45(4)
0.25(3)
0.25(3)

-0.5(1}
—0.5(l)

0.22(1)
0.28(1)
0.28(1)
0.29(2)
0.29(2)

20.29(3)
20.57(3)
20.63(5)
20.77{8)
20.86(6)

——22.25

0.10(7)

0.09(4)

domain walls was found around U=4. Since we know,
from small U analytical calculations, ' that when U~O
vertical domain walls are stabler we expect the transition
between vertical and diagonal domain walls to happen at
much smaller values of U than U=4. It is, however, nu-
merically difficult to investigate such small values of U,
since the system sizes needed to avoid interactions be-
tween walls demand too much computer time.

thus given by

k, (7 k k, !7++) k k+K, (7

"»+rc,~
= rrAc», ~+ rrc»+x, ~

(4.1)

where E =(m, ~) is the commensurate perfect nesting
vector, and k is limited to half of the Brillouin zone by
c,» (0. a» and P» are the usual Hartree-Fock antiferro-
magnetic coefficients, with the modified energy

IV. INCOMMENSURATE ANTIFERROMAGNKTISM
AND SUPERCONDUCTIVITY

a» = [[1—(e» —v)IQ(e„v) +D ]/—2I'~

&»
=

t [1+(e»—»~+(e» —»'+D']~2!'" .
(4.2)

The gain in energy due to incommensurate effects is
considerable compared to other instabilities, e.g. , super-
conductivity. At doping 0.1, it has been found that the
commensurate anti ferromagnetic phase was unstable
against superconductivity and that the energy gain was
5E =0.0085 per particle for U=10. The incommensu-
rate instabihty gives an energy gain of 5E=0.33 per hole,
thus 5E=0.033 per particle for the same doping. There-
fore the incommensurate antiferromagnetic phase has the
lowest energy actually exhibited and the superconductive
wave function no longer is a good variational candidate.
In order to know if superconductivity can occur in the
Hubbard model one has to wonder if the incommensurate
antiferromagnetic phase presents the same instability as
the commensurate one regarding superconductivity.

It is difficult to use the same method straightaway on
an incommensurate phase due to the importance of
finite-size effects in presence of an incommensurate wave
vector. One can, however, get a glimpse of the answer by
looking at the incommensurability effects in an
oversimplified and naive way.

The nesting vector is kept to (m., ~) and the energy is
changed in the usual Hartree-Fock expression by
c.k =ok —v where v is a variational parameter. This al-
lows the antiferromagnetic gap to be opened at the Fermi
surface even away from half-filling, but since the nesting
vector is kept to (m, n ) we do not mix the proper states
and such a solution is expected to be worse than a real in-
commensurate antiferrornagnetic wave function. The
one-particle antiferromagnetic wave functions (d ) are

These quasiparticle states are paired to make a supercon-
ducting d-wave wave function

~q, ) = p(u„+U„dt, d' „,)~0),
k

U» ~uk ~» ~[» I ++(Ek —))'+ I~» l']-
b,»=b, [cos(k„)—cos(k )] .

(4.3)

V. CONCLUSIONS

In this paper we have presented a variational Monte
Carlo study of incommensurate antiferromagnetic phases
in the Hubbard model. This incommensurate phase with

Such a function exhibits superconductivity and antifer-
rornagnetism. Using this wave function we have comput-
ed the different energies for various phases in 6X6 sys-
tems at U= 10 with four holes.

The results are shown in Table III. As was the case for
commensurate antiferromagnetism, the addition of super-
conductivity to the "incommensurate" antiferromagnetic
phase lowers the energy. One can therefore assume that
the incommensurate antiferromagnetic phase will show
the same instability towards superconductivity as the
commensurate one. However, taking into account the
proper incommensurate wave vector could change this
result. Note that from a strict variational point of view
the domain wall phase still has the lowest variational en-
ergy.
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diagonal walls is the lowest phase ever exhibited for the
Hubbard model at small doping and U between 4 and
ip 8,9,27

We have found that away from half-filling the com-
mensurate antiferromagnetic phase is unstable toward the
formation of domain walls in qualitative agreement with
Hartree-Fock calculations. The condensation energy of
holes in walls, although considerably lowered by the
Gutzwiller prefactor compared to the HF result, is still
sufficiently big to ensure that the domain wall phase is
the lowest variational phase.

Contrary to what was predicted by HF calculations, di-
agonal domain walls are found to be stabler for all the
values of U studied (4-10). This contradicts also quan-
tum Monte Carlo results (see also Refs. 30 and 31).
Although an incommensurate antiferromagnetic struc-
ture is observed, the wave vector of the modulation seems
to be located along the Brillouin zone (tr, rr 5), c—orre-
sponding in our case to vertical domain walls, for values
of U as high as U=4. So far the origin of the discrepancy
is not clear. But, as pointed out, finite-size effects are
quite important in the presence of an incommensurate
wave vector, and this could be sufficient to lock the wave
vector of the modulation along one of the directions of
the lattice in the quantum Monte Carlo simulations.
Note that in our simulations we have notable finite-size
effects for systems as large as 8 X20 (for U=4) and that
for the systems considered in quantum Monte Carlo (usu-
ally 6X 6 or 10X 10) the surface is about 40% of the sys-
tem. Of course, we cannot rule out the possibility of an
artefact of the projected Hartree-Fock wave function in
our results.

The condensation energy of holes in walls, although
considerably lowered by the Gutzwiller prefactor corn-
pared to the HF result, is still sufficiently big to ensure
that the domain wall phase is the lowest variational
phase.

We have used a variational wave function allowing a
coexistence between antiferromagnetism and supercon-
ductivity to show that the incommensurate antiferromag-
netic phase, as well as the commensurate one, seems to be

unstable towards superconductivity. Further studies are
necessary to understand this effect clearly, in particular
for domain walls, where carriers are not free. Neverthe-
less, the results of these variational calculations definitely
point out a hierarchy in the order of magnitude of the
different phenomena, the energy related to the magnetism
being about 20 times larger than the energy of pairing in
the range of U of interest.

Clearly the theory is much too crude to be related to
high-T, experiments. Although some incommensurate
structure has been observed in La compounds, in ytri-
um compounds the structure seems to remains always
commensurate, at least when looking along the diagonal
of the Brillouin zone. This is in contradiction to what
would be seen if diagonal domain walls occurred in the
system. Of course, many effects can affect the idealized
behavior predicted here for a real system. The domain
walls are charged objects and are easily pinned by impuri-
ties, which can lead to a very different behavior. The
effect of temperature on the walls is not clear. Moreover,
if nonlocal interactions were taken into account, such as
long-range Coulomb repulsion, it is not clear whether or
not walls would remains stable, or would be replaced by a
phase where the holes are homogeneously distributed.

The existence of other incommensurate phases' '
(e.g., spiral) can be studied by the same method, although
such a study would be more delicate due to boundary
condition problems. Particularly, the transition between
a linear incommensurate phase and a spiral state would
be interesting to study.
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