
PHYSICAL REVIEW B VOLUME 42, NUMBER 1

Trace maps of general substitutional sequences
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It is shown that for arbitrary n, there exists a trace map for any n-letter substitutional se-

quence. Trace maps are explicitly obtained for the well-known circle and Rudin-Shapiro se-

quences which can be defined by means of substitution rules on three and four letters, respective-

ly. The properties of the two trace maps and their consequences for various spectral properties
are briefly discussed.

A; t+( o;(A( t, . . . , A„L), I 1, . . . , n. (2)

It this paper we will deal with deterministic one-
dimensional (1D) chains generated by substitution rules
acting on more than two letters or building blocks. We
will concentrate on the study of a broad class of physical
properties that can be described in terms of unimodular
2&2 transfer matrices (by unimodular we denote here a
matrix with determinant equal to one). In the case of
chains generated by two-letter substitution rules, such
spectral properties have been studied successfully in terms
of trace maps using a dynamical-systems-theory ap-
proach. ' Ali and Gumbs found the trace map for a
special three-letter substitutional sequence. Some doubts
have appeared recently on whether such trace maps exist
for substitutional sequences with four letters. Here we
will show that trace maps do indeed exist for arbitrary
substitutional sequences. We will also investigate two spe-
cial cases in more detail.

An n-letter substitution rule can be written as

a; —o;(a), . . . , a„); t -1, . . . , n.

Here o;(a ~, . . . , a„) are arbitrarily long strings consisting
of arbitrary combinations of n letters a; (a~ ——a, a2=—b,
a3 =—c, . . .). The letters can represent n different building
blocks of a 1D chain or layered structure. We will define
n canonical chains 3; limL A; L, such that 8;0
—=a;, and A; L+~ is obtained from A; t by applying the
substitutions of Eq. (1). A; L serves as the unit cell of the
Lth periodic approximant of the ith infinite canonical
chain A; . ' Clearly,

this map is at most three dimensional, and its calculation
has been automated recently by Kolar and Ali. Their
procedure can be generalized to arbitrary n. Let a, b, and
c be unimodular matrices. Then"

Tr(a 'b) =Tra Trb —Tr(ab),

Tr(a'b) Tra Tr(ab) —Trb.
(3)

'P m, ,j 1

where N is arbitrarily large, and each ml is identical with
one of a;, . . . , a„(mutually independent unimodular ma-
trices) is

TrP P(x~, x2, . . . , xJ) . (5)

Here P is a polynomial with integer coefficients, x, Trnl,
where n, are all mutually different "irreducible" products
of the n matrices a;, such that each a; occurs in an n, no
more than once, and Trnjnn-'Trnk for j~k. The number
of such irreducible nj is equal to

t

Writing abac (ab) b 'c, one gets from Eq. (3) the re-
lation

Tr(abac) Tr(ab) Tr(ac) +Tr(bc) —Trb Trc . (4)

From Eq. (4), it now follows more or less directly that for
every substitution rule of Eq. (1) there is a finite-
dimensional trace map. Namely, repeatedly using Eq.
(4), one can show that the trace of

Let us assume that each building block a; is associated
with a unimodular transfer matrix a;. Then the whole Lth
generation chain A; L is represented by a unimodular
transfer matrix At; L such that At;o—=a; and At; t+~
=cs;" (At; L, . . . , At„ t ), a being the reversal of string
a;. In the periodic approximant approach, the allowed en-
ergies (frequencies) of the ith chain are those satisfying
the condition

~
TrAt; t ~

~ 2. '

Allouche and Peyriere showed that for n 2, there al-
ways exists a trace map, or recursive relation, mapping
Tr&; L into Tr At; L+ l. For unimodular transfer matrices

If to contains each a; no more than once, then TrP-Trnj
for some j, and Eq. (5) evidently holds. Otherwise, there
is an a;, which occurs in P at least twice. Using the in-
variance of the trace with respect to the cyclic permuta-
tions of a product of matrices, one can then transform
TrP to the form of the left-hand side of Eq. (4) with a;,
playing the role of a. All the matrix products, the traces
of which are taken on the right-hand side of Eq. (4), have
the number of factors smaller by at least one less than P
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had. This process can be repeated until Eq. (5) is ob-
tained. For n 2, we have the well-known values of J 3
and n~ a, b, and ab. For n 3, J 8 and n, a, b, c,
ab, ac, bc, abc, and acb. For n 4, J 24. J represents
the maximum dimension of all trace maps for the given n

Substituting a; At; L into n~, the X~.L Tr[nj(At; L)]
thus obtained represent suitable "trace coordinates" (cf.
Refs. I and 4 for n 2). All nj(AI; L+ I ) have the form of
the product P above, with At;Lp, laying the role of a;.
Thus x, ,L+I can be expressed in terms of x, L by the rela-
tions of the type (5). These relations constitute the trace

I

map we were looking for. In the presence of certain sym-
metries its actual dimension can be lower than J. Two ex-
amples (for n 3 and 4) discussed below will illustrate
this theory.

Circle sequence Although a binary sequence, it can be
obtained by means of a three-letter substitution rule.
Let us denote the three letters in this case as a, b, and c,
the Lth generation chains as 4L, BL, and CL, and the
respective transfer matrices as AIL, JVL, and GL. Equa-
tions (1) and (2), and the corresponding recursion rela-
tions for the transfer matrices in this case read

4L+ I CL4LCL AIL+ I GLAILGL

~L + I 4L CL CL4L CL JI/L + I GL AI L 8LAI L

CL+ I 4L~LCL4LCL GL+ I GLAILGL+L AIL ~

Because of the special form of these relations, we do not
need all eight trace coordinates mentioned above for n 3.
The following six coordinates will suffice:

XI TfJKL, SL, Tr(GLAIL ),
yL TrJVL, uL Tr(&LAIL),

zL TrGL, wL Tr(&LGL JI/L) .

Then from Eq. (6) one gets

XL+ I TfAIL+ I Tf(GL JKL),

yL, +I TrJVL+I Tr[(&LGL) GL],

zL+I TrGL+I Tr[(AILGL) Jt/L),

sL+I Tr(GL+ I AIL+ I ) Tr[(GLAIL ) GL JI/LAILGL

uL+ I
-Tr(&L+ IAIL+ I) -Tr[(GLAIL) 'GLAIL],

L+ I T (AIL+ IGL+ I Ji/L+I )

Tr[[(AILGL) GL] AILGLJV'L}.

One can apply directly the second formula of Eq. (3) to
all these expressions and obtain the 6D trace map,

XI +1 ZLSL XL, SL+1 XL+1ZL+1 QL,

P'L+1 SLXL+1 ZL, QL+1 XL+1)L+1 SL

ZL+1 SL WL P'L WL+1 P'L+ ISL+1 WL ~

It now would be easy to expand the right-hand sides of all
these relations in terms of old trace coordinates XL, yL, zL,
sL, uL, and wL, if so desired. This map is volume preserv-

ing (its Jacobian is identically equal to 1) and invertible.
Thus every point (x, y, z, s, u, w) in the 6D trace space
has exactly one predecessor. In these two properties the
map of Eq. (8) resembles the trace map of the Fibonacci
golden-mean sequence. ' The quantity

I, yLzI +sl QL XLwL

is an invariant of the map (8). There is no other polyno-
mial invariant of degree less than or equal to 3. The 3D
subspace (z y, u s, w ys —x) is an invariant sub-

I

space of the circle map, and 1„ in this subspace has the
Fibonacci-like form I„x +y +s —xys. The circle
map in this subspace reduces to a 3D map (in coordinates
x, y, and s) identical to the trace map of the two-letter
substitution rule (a bab, b ab ab) (note that this
corresponds, e.g. , to Gp=—Alp). This rule can be composed
of three Fibonacci golden-mean rules, and it belongs to
the class of quasi-PM (precious mean) rules whose trace
maps have the same invariant as the Fibonacci map. As
in the Fibonacci case, we can show that the interior of the
central part of the x +y +s —xys 4 surface (in the
above-mentioned 3D subspace) is an invariant continuous
manifold of nonescaping initial points. A similar 3D
nonescaping manifold exists in the subspace (z —y,
s —u, w ys+x) (e.g., Gp =——JVp). These seem to be
just subsets of a 6D continuous manifold of nonescaping
initial points near the origin: we have observed that if the
initial point of map (8) is in the 6D cube of the unit edge
centered at the origin, it seems to never escape to infinity
(see Fig. 1). From the 6D cube with edge of length 2 cen-
tered at the origin, less than 2% of all points (out of
64000000 regularly spaced initial points) escape to
infinity during the first 100 iterations. For example, along
the diagonal, all points x y ~z s u w 6 (= —0.66,
2] do not escape. From this 6D manifold of nonescaping
initial points many lower-dimensional continua of periodic
points protrude up to infinity, such as four ID continua of
fixed points: (x s u w O, z -y), (x y z w

0, u -s), (x y z w, s 2, u x —2), and
(x —y

—z w, s —2, u 2 —x ); seven 2D con-
tinua of period-2 points:

[x —y(s —1), z —y, u y(x —s/x), w y),
[x- —y(s+1), z- —y, u-y(x+s/x), w- —y],
[x y(s —1), z y, u y(x —s/x), w y],
[x y(s+1), z y, u y(x+s/x), w —y],

and the xw-, yz-, and su-planes; or at least six continua of
period-12 periodic points one of which is
(x y z s 0 u 1).

The proper circle sequence is binary. It can be ob-
tained from 4 of Eq. (6) if we assume that the a and b
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building blocks are identical, or JVp Alp. Then the initial
conditions satisfy the constrains yp xp, up xp 2,
wo xoso —zo, and we are left with only three indepen-
dent input parameters xo Trito, zo Tr80, and so

Tr(8pAtp), as it should be for a binary sequence. For
the often discussed diagonal model (with energy origin
such that the two different diagonal elements of the poten-
tial are + V at the a and b sites and —V at the c sites),
xp E —V, zp E+ V, and sp xpzp 2. As the energy
E changes, the initial point (xp,yp, zp, sp, up, wp) moves
along a 1D curve that seems to avoid for VWO the central
continuous nonescaping region as it has been observed in

other quasicrystals. For V 0 (periodic chain), this curve
lies in the invariant 3D subspace mentioned above, and its
portion corresponding to the continuous allowed band
E 6 [—2, 2], can be found on the central nonescaping part
of the I, 4 surface, where

~ xL
~

~ 2 everywhere. Energy
E 0 corresponds to the period-2 periodic point
(0,0,0, —2, —2,0) at the intersection of the second and
seventh continua of the period-2 points listed above. En-
ergies E ~ 2 correspond to the fixed points (+ 2, +'2,
~ 2, —2, —2, + 2), both lying in the third continuum of
fixed points which in turn is a subset of the third continu-
um of the period-2 points above.

Rudin Shapi-ro sequence can also be defined by means
of a substitution yule, this time on four letters. We will
need one more letter, d, the corresponding Lth generation
chain will be DL, and the corresponding transfer matrix
Pr. . Equations (1) and (2), and the corresponding recur-
sion relations for the transfer matrices in this case read

a ac, &Ly) &LCL, ~L+i 8L~L

b dc, &g. +I DLCLe JVL+I 8LPL ~

C~ ab, CL+ I ~L~Li 8L+I JVL~L

d ~ db, DL+ ) DL&Le PL+ l JV LPL .

(10)

wr TfPr, , r'r Tf(JVL8r ),
oL =Tr(8LAfL JV r PL), sL Tr(JVLPr. ) TrJVL TrPL,

pL =Tr(8LPt JVL&L), tr Tr(JVL&L) —TrJVr. TrALL.

However, even this number can be reduced to eight.
Starting from the second iteration, one can drop sL, tL,
oL, and pL as they can be expressed in terms of other coor-
dinates. Using Eqs. (4) and (10), one can write for L & 0,

sL+1 Tr(JVL~L8L JUL ) Tr(JVL~L )Tr(8L~L )

=Tr(JVr 8r ) —TrJVr Tr8r rL —
yLzL .

In the same way, the same result is obtained for sL+I.
Similarly, tL+ I t L+ I qL

—xL ~L. Also, we have qL+ I

Because of the regular form of these relations, only 12
trace coordinates need to be introduced out of the max-
imum of 24 for n 4. A suitable choice is

xL TrAtL, sL Tr(8LAtL) —Tr8L TrAtL,

yL TrJVr, tL Tr(8LPL) —Tr8LTrPL,

zr Tf8r, qr Tr(JKL Pr ),

z

W .

FIG. 1. Circle map: Projections on four different coordinate
planes of a nonescaping orbit (first 5000 iterations) starting with
xp —0.5, yp 0.34, zp —0.2, sp —0.1, u 0.12, and
wp —0.4. All axes range from —0.6 to 0.6.

XL+ I XI ZL +SL SI + I rL —yLzL

yL+ I ZLL+tL tL+ I qL XLL

ZL+I xLyL+tL, qL+I xL~LrL xL ~L+22 2

L+ I yLL+SL rL+ I yLZLqL
—

yL
—ZL+ 2 ~

2 2

(12)

The initial conditions are x
~ Tr(8pAtp), y ~ Tr(8pPp),

z
~ Tr(JVpJKp), w[ Tf(JVpPp), s ] rp ypzp, t ~ qp—xpwp, q ~ Tr(8o&oJVoPo), and r

~ Tr(8oPoJVo&o).
The map of Eq. (12) is volume nonpreserving and nonin-
vertible. A general point (xL+~,yr+~, zL+~, . . . ) need not
have any predecessor (xL,yL, zr, . . .) at all. An example
of such a point is the origin. Most of the points have a
finite number of predecessors. There are two 3D sub-
spaces, (z y, w x, t —2, q r 2) and (z y, w=x,
s —2,q r 2) [both contained in the 6D invariant
subspace (z y, w x) j, whose every point has infinitely
many predecessors. Among these points with infinitely
many predecessors is also the fixed point (2,2,2,2, —2,—2, 2, 2). Thus this point is the attractor of the Rudin-
Shapiro map, probably with a fractal basin of attraction
similar to that of the in detail investigated 2D copper-
mean or Thue-Morse (TM) maps. The existence of
points with infinitely many predecessors also implies un-

or alld

or +, -Tr [(8r Atr ) 'AtL 'PL (JV L Pr ) 'Pr 'AtLl

XL+ I wL+ I rL+ I xL+ I L+ I +2.2 2

Therefore, we can write qL+~ xLWLrL —xL —WL+2 for
L & 0. Similar results can be obtained for rL ~ ~ and pt ~ ~,

eliminating in this way pL. The remaining recursion rela-
tions are easy to obtain, and for L & 0 we get the 8D trace
map;
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der certain conditions the nonexistence of a polynomial in-

variant. We believe that also in this aspect the Rudin-
Shapiro map resembles the copper mean and TM maps.

The proper Rudin-Shapiro sequence is binary. In its
usual notation it can be obtained from A of Eq. (10) by
substituting a and c with 1, and b and d with —l. In oth-
er words, the building blocks a and e, and b and d, must
have identical properties, or 8p Alp and Pp JVp. For
this case the trace map of Eq. (12) can be used from L 0
if the initial conditions are chosen as xp zp TrAtp,

yp =wg TrJV'p, sp 2, qp rp Tr(ApJV'p), and tp

qp
—xpyp. Again, there are only three independent in-

put parameters xp, yp, and qp. For the diagonal model,
xp E —V, yp E+ V, and qp xpyp —2. For E 0
(center of the central gap of Fig. 8 of Ref. 6) and L) 2,
xt is a polynomial in V of degree 2 '. Its two lowest
terms are x2t 2 —atV + or xql~l 2 —PtV +
where at and Pt are positive integers. For V =0, the initial

point (xp, yp, . . . ) ends up in the fixed point (2,2,2,2,
—2,—2,2,2) in just two iterations. For all L ~ 2, the equa-
tion xt. (E -0, V) 0 has a finite number (increasing with

L) of solutions Vt.;. In the immediate vicinity of these
roots,

~ xt. ~

~ 2, and thus E 0 is allowed for such values
of V and the central gap closes. As L cc, the roots Vt.;
remain clustered in the same regions, which explains the
dependence of the central gap width on V in Fig. 8 of Ref.

6. This dependence should be the same down to V=O.
However, none of the roots Vq; seem to be fixed as L
and we believe that eventually ~xt ~

~ for any V&0
and E 0. Though arbitrarily small for some values of V,
the central gap ~ould thus always be of nonzero width,
and the curve in Fig. 8 of Ref. 6 would never actually
touch the horizontal axis except at V=O. For compar-
ison, in the case of circle sequence, the polynomial equa-
tion xt (E O, V) 0 has the only real solution V=O for
all L, which leads to a monotonous dependence of the cen-
tral gap width on V.

We have shown that for an arbitrary n-letter substitu-
tional sequence, there always exists a trace map that
determines the spectral properties of the system. We have
found these trace maps for two special cases and studied
their most important properties including the invariants,
periodic points, and the manifolds of nonescaping points.
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