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The spin response of a spin-density-wave (SDW) state arises from two contributions: a Pauli term
(described by spin splitting of the Fermi surface) and an interband term resulting from virtual spin-

Aip transitions across the SDW energy gap. Both terms are anisotropic, and so is their sum. For a
linear SDW the axis of anisotropy is the SDW polarization vector; for a spiral SDW the anisotropy
axis is perpendicular to the plane of polarization. In either case the algebraic sign of the anisotropy
depends on whether Q/2k& is greater than or less than unity, where Q is the SDW wave vector.
The magnitude of the anisotropy (which is enhanced by exchange and correlation) can be as large as
-50%%uo. The hcp metals Ti, Zr, and Hf exhibit considerable anisotropy, but magnetic structure has
not yet been discovered for them.

I. INTRODUCTION

The spin dependence of exchange potentials between
electrons has a great influence on the ground state of an
interacting electron system. For an electron gas with
Coulomb interactions, it has been shown' that, in the
Hartree-Fock approximation, the paramagnetic plane-
wave state is always unstable towards the formation of a
spin-density-wave (SDW) state (in which the spin density
of the electrons is sinusoidally modulated). One may ex-
pect that the spin susceptibility of such a state is different
from that of a free-electron gas. It is the purpose of this
paper to discuss the anisotropy of the spin susceptibility
of either a linear or a spiral SDW state. The study was
prompted by our attempt to explain the observed anisot-
ropy in the magnetic susceptibility of group-IV hcp met-
als (Ti, Zr, and Hf). In Zr, for example, the magnetic
susceptibility parallel to the c axis is 1.65 times larger
than the perpendicular one. An explanation for this an-
isotropy has not yet appeared in the literature.

The model we employ here is similar to the nearly
free-electron model except that the SDW introduces a
spin-dependent, self-consistent single-particle potential
(as a result of the exchange interaction between elec-
trons). Unlike the diamagnetic susceptibility of a
charge-density-wave (CDW) state, where the axis of an-
isotropy is the CDW Q vector, the anisotropy axis of the
spin susceptibility in an SDW state is determined by the
spin-polarization direction.

There are two terms which contribute to the spin sus-
ceptibility of a SDW. The first term is like the Pauli sus-
ceptibility which arises from the expansion or shrinkage
of the Fermi surface for opposite spins. (This term is the
only one for a free-electron gas. ) The second term arises
from the virtual spin-flip transitions between the two sub-
bands created by the SDW energy gaps. For a linear
SDW both terms contribute if the magnetic field H is per-
pendicular to the spin polarization s. Only the Pauli-like
term enters when H is parallel to s. Electrons near the
SDW energy gaps align either parallel or antiparallel to
the SDW polarization direction. Consequently, these

electrons contribute little to the Pauli susceptibility term
when a magnetic field is applied perpendicular to s.
Thus, the Pauli susceptibility for H perpendicular to s is
smaller than the susceptibility parallel to s. A detailed
analysis shows that this reduction is almost cancelled by
the presence of the virtual transition term. Accordingly,
the anisotropy of the spin susceptibility is smaller than
what one would first expect.

With the experimental data for Cr in view, some
theoretical work on the spin susceptibility of a linear
SDW was carried out by Fedders and Martin. Using a
two-band model (and assuming a perfect nesting of elec-
tron and hole sheets of the Fermi surface), they found
that, at T =0, while the perpendicular susceptibility
remains finite, the parallel one goes to zero. This con-
clusion will not apply to our model. Our results indicate
that the perpendicular spin susceptibility can be either
larger or smaller than the parallel one, depending on how
the energy-gap planes passing through k=+Q/2 inter-
sect the Fermi surface.

Because of the weak dependence of spin susceptibility
on temperature, all calculations in this paper are made at
'1=0. We will first use the standard perturbation theory
to study the spin susceptibility of a linear SDW in Sec. II,
which is followed by a similar discussion in Sec. III for a
spiral SDW. In Sec. IV a mixed SDW-CDW state and
the influence of many-body effects are examined. We find
that, for a mixed SDW-CDW state, only the SDW com-
ponent causes an anisotropy in spin susceptibility and,
furthermore, this anisotropy can be significantly
enhanced by many-body effects. Finally, we present a
summary of the evidence that Zr has a SDW.

II. SPIN SUSCEPTIBILITY OF A LINEAR SDW

A linear SDW in an electron gas occurs if the single-
particle self-consistent potential is given by

V(r) = —Gcr, cosQ r, .

where 0. is the usual Pauli matrix. For simplicity we as-
sume the polarization of the SDW is along the x axis. 6
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is the SDW energy gap which, in general, depends on
temperature. The temperature dependence of 6 is similar
to that of the energy gap in a superconductor. ' Since we
are primarily interested in the susceptibility at low tem-
perature, G will be taken to be a constant.

The Fermi surface of an electron gas subject to the po-
tential (1) is shown in Fig. 1 by the solid curves. Elec-
trons with spin S =

—,
' and —

—,
' have the same energy but,

of course, their spatial wave functions differ. This degen-
eracy will be broken when one introduces an external
magnetic field along the x axis. The Fermi surfaces then
split as illustrated by the dashed curves in the same
figure. The spin susceptibility (parallel to the polariza-
tion), can be found easily by just counting the number of
electrons between the two Fermi surfaces, and is given by

1.2

1.0

0.8

Linear SOW

PsN(EF ), (2) g.-=G/4E,

N(EF )

X~~ IP N (E )
(3)

N(EF )/No(EF) has been studied by Overhauser in Ref.
3. Figure 2 shows the behavior of g~~/y versus Q/2kF
for several values of go, where go

=—G/4EF, and kF is the
Fermi radius of the electron gas in the absence of a SDW.
Point A in Fig. 2 (for go =0.05) corresponds to the Fermi
surface which makes critical contact with the energy gaps
introduced by the potential (1). Point 8 is where elec-
trons just begin to fill the higher-energy band. Between
& and 8, g~~/g~ is a straight line. At point 2,

X„=X,(I+2g. )'"

where ps is the Bohr magneton and N(EF) is the elec-
tron density of states at the Fermi energy EF. If we write

y~~
in terms of the quantities y~ and No(EF) for the corre-

sponding free-electron gas, we have

0.5 1.0
Q2k,

1.5

FIG. 2. Parallel spin susceptibility of a linear SDW. Dashed
curves indicate regions where the calculations are less accurate.

with

——Go„cosQr+H'
2m

(5)

for sm~ll go
As can be seen from the above discussion, the only

contribution to
g~~

comes from the splitting of the Fermi
surfaces for the two different spin states, i.e., from the or-
dinary Pauli mechanism. This result does not apply to gj
when the external magnetic field is perpendicular to the
polarization direction of the SDW. To see how another
term enters g», consider the Hamiltonian

=—Xp(I+go) (4)

I B~ext+z

t
I
I
I
0 I
I I
I I

I

r

I
I

8„=1/2

S„=-1/2
I

0i, I
I

I
I

r
I
I

H,„,is the magnitude of the applied external field. It is
straightforward (but tedious) to show that, for H,„,=0,
the eigenfunctions of 0 in the cr, representation are given
approximately by

(u„e'"'a+v e"" &"p1

+u e' "'~"p)

(u e'"'p+v e'"1

& (k+g).r)Nke Ct y

with the energy

FIG. 1. Fermi surfaces of an electron gas with a linear SDW.
Solid lines, no external magnetic field is applied. Dashed
lines ———,an external magnetic field {in the —x direction) is

applied along the polarization axis of the SDW.

E(k) =
—,'(eq+e„g)+—,'[(eq —e„g)+G ]'

G2

4(&~—e~+q)

where e&= A' k /2m. a and P are the usual Pauli spinors
with S, =-~- and —

—,'. If we let k& =—k Q/Q, —and + in
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6
Sln2/k =

k
(10)

with Wk=[(ek —ek Q) +G ]' . If one replaces Q by—Q in Eqs. (7) and (8), one finds the eigenstates and ener-
gies for —Q/2 & k& & 0, and for k& & —Q/2.

From Eq. (6), with H,„,WO, the only nonzero matrix
elements of 8 ' which involve the "mostly spin-up" state

& q(k —Q) t I& 'lqkt &,

1j(t( k+Q ) $ I
8

I fk ( & The first one provides a correction to
the energy, and the other two provide corrections to the
wave function of the state. The band structure and the
spin-Aip interband transitions are shown in Fig. 3. Up to
first order in H,

„„

the perturbed wave functions are, for
"mostly spin-up" states,

& P(k —Q)}I& 'lgkt &

4kt Wkt E E 1 (k —Q)l
k k —Q

0(k+Q) } ~k1
(11)(k+Q) l

k k+Q

The energy correction is

(cos2(k —u)„)
AEk) = —P~H,„, 2

nk
(12)

Eq. (8) correspond, respectively, to Q/2& k& &0 (states

below the energy gap) and k& & Q/2 (states above the en-

«gy gap)
The coefficients in Eqs. (7) are

Q k
—COS(k,

V), =S111)k,
(9)

Nk=
2(ek+Q —ek)

and

n k=(l+ u) )'~

where cos(k and singk are determined by

FIG. 3. The energy band structure of a linear SDW when a
magnetic field is perpendicular to the polarization. Interband
transitions which are highly anisotropic also contribute to the
spin susceptibility.

For the "mostly spin-down" states,

&&(k Q)tl& l&k(&
((' k ( t('k l + ~(k —Q ) t

k k —Q

& Ak+Q)tl&+ E E 4(k+Q) t
k k+Q

and the energy correction is

( cos2(k —u) k )
~Ek& —VaHext

nk

(13)

(14)

The k dependence of EEkt and EEk} in Eqs. (12) and
(14) indicates that the splitting of the Fermi surfaces is no
longer uniform. Indeed, as shown in Fig. 4, the external
field has little effect on the electrons near the SDW ener-

gy gaps. The spin-related magnetic moment of the per-
turbed state g f t is given by

I & &(k —Q)t I&
Mkt —ps &gktl~zlgkt &+2@,H,„, [1—f(E„Q)]

Ek —Q Ek

k+Q k

where f(E) is the usual Fermi-Dirac distribution function. The factors [1—f (Ek Q)] and [1 f(Ek+Q)] enter —be-
cause virtual transitions are allowed only from occupied states to unoccupied states. The magnetic moment Mk& of
state p k& can be obtained by interchange of 1 and J, in Eq. (15). Summing Mk( and Mk& over all occupied states gives
the total spin magnetic moment

lM —
3 I [Mkt f (Ek+bEkt )+Mk) f (Ek+bEk) )]dk(2'�)

1
(Mkt+Mk) )f (Ek)+(Mk) —Mk) ) AEkt dk .(3f

(2~)3 BEk
(16)
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8,=1/2 where S is a surface of constant energy. In our case this
reduces to

dk~(2vrm /fi )dkgdEq,

which leads to

I
I
I
I ~

I
I I
I
I
1

S =-1/2
2

\
1

I
I

I

II, I
I I

I
II

2vrm Q 2 & dx
2 ~2 2 ] —x X2+g2

(19)

where x =2k /Q, and k is the maximum value for
k&. The volume integral I, is more difficult. For the
case in which the SDW gap intersects the Fermi surface,
the states contributing to I, are those shadowed in Fig. 5.
Since the Fermi surface has cylindrical symmetry about
k&, it is convenient to use a cylindrical coordinate system
in which I, becomes

FIG. 4. Fermi surfaces of an electron gas with a linear SDW
when the external magnetic field is perpendicular to the polar-
ization axis of the SDW, and in the —z direction.

Q
—k k

Pi
I) =2(2n } f dkg f k dk

0 0

At zero temperature f (E) becomes the step function
B(EF E) and Bf—/BE —5(E EF). Su—bstituting Mzt
and Mzt into Eq. (16}and dividing by H,„„weget the
perpendicular spin susceptibility

21 ~ I &@(k—Q)pl~, lgkt & I'Xi=, 4
(2m) Ek o E~—

where

and

m p&

x
[(fi Q/2m) (Q —

2kg) +6 ]

(EF+-,' 8'„)——,'kg —
—,'(kg —Q)

(20)

(21)

X[1—f (Eq q)]f (Eq)
T

kp =
2 (EF—

—,
' Wq) —

—,'kg —
—,'(kg —Q)

1/2

(22}
+ I & q„l~,lq» & I' —,

BE),
dk . (17)

The second term in Eq. (17}is just the Pauli susceptibility
term arising from the splitting of the Fermi surfaces in
Fig. 4. This term is smaller than the value of

y~~
(corre-

sponding to the splitting shown in Fig. 1) because there
are fewer states between the surfaces. This reduction,
however, as we will show below, is largely compensated
by the first term in Eq. (17), which arises from the virtual
transitions across the SD% energy gap. In order to illus-
trate this result, we substitute Eqs. (7) and (8) into Eq.
(17), and neglect the corrections from tok and
G'/4(~k ~g+Q) ~e find

4Pa G
2 e E —E„eE„&—E dk

(2n) "g ~ Wq

Substituting Eqs. (21) and (22) into Eq. (20) and in-

tegrating with respect to k, we obtain

2 2
2rrm Q 2 & XFI = g dX

g2 2 x —] 2( 2+ 2)3/2

dX

mX +g
(23)

r ' ~ ~
~ ~ ~ ~

~ ~ ~ ~ ~ ~
~ 0 ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~

where again the variable k& has been changed to

G2—f 6(E„—EF )dk

+X~i+O(g ) (18)

where Eq. (10) has been used. O(g ) includes all higher-
order terms of g =2mG/A Q that have been omitted.

For convenience we denote the two integrals in Eq. (18)
by I, and I2. The surface integral I2 is easily performed
if we make a change of variables dk~dSdEgll&qEql

FIG. 5. Notations for the integration of Eq. (20). The range
of k& is from 0 to k„,.
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x =2k&/Q, and xF =2kF/Q. As can be seen from Eqs.
(18), (19},and (23), Iz is cancelled by the second term in

I„and the remaining term in Eq. (18) is, in general,
much smaller than I, or I2 alone. It should be men-
tioned that this result does not depend on the magnitude
of the Q vector; that is, the cancellation still occurs when

Q ~ 2k . Actually, we can rewrite Eq. (18) as follows:

0.2—
Linear SDW

4@~ G2 e EF—E~ —e EF —E~
XJ.

(2m. ) "g ~0 W E~-q-Ek
0.0 '=

62 5(E„—EF) dk+y„+O(g') .

(24}
-0.2— g,-=-G/4EF

Most of the contribution to the integral comes from the
small region near the energy gap at k=Q/2. However,
in this region we have

0.5
I

1.0
Q/2kF

1.5

e(E,—~, )
—e(~F +Q —Q) ~5(E~ EF)—

E~ q
—Ek

(25)

FIG. 7. Anisotropy of the spin susceptibility for a linear
SDW.

I =X (1—g )+O(g )

=X~+0(g ), (26)

1.05

Linear SDW

for small g. This is why I2 is largely compensated by I, .
For the case of critical contact, we have from Eqs. (18),

(19), and (23),

where Eq. (4) has been used in the last step. To calculate
y~ accurately to second order in g, we have to evaluate
the integrals in Eq. (17) numerically. Figure 6 shows the
relation between yj/y and Q/2kF for several go's. No-
tice that g =(2kF/Q) go and remember that the approx-
imation for the wave functions (7) are valid only when g
is much smaller than unity. Therefore, our results for
small Q's are less accurate (if we keep go constant), and
this is indicated in Figs. 2 and 6 by the dashed lines. The
anisotropy of the spin susceptibility (g~~

—yj)/y~ versus
Q/2kF is plotted in Fig. 7, which clearly illustrates that
the anisotropy can be either positive or negative depend-
ing on the location of the SD% energy gaps relative to
the (undistorted) Fermi surface.

III. SPIN SUSCEPTIBILITY OF A SPIRAL SDW

~~ 1.00
I /

I I
I I

I I

I

I
I

I
i
I
I

——(o. cosQ r+o sinQ. r),p2 6
0 2 2 x (27)

In a spiral SDW state, an electron gas possesses a con-
stant fractional spin polarization at every point, whereas
the direction of the polarization varies in a helical fashion
as a function of position. The self-consistent single-
particle Hamiltonian for such a state can be written as

0.95
0.5

I

1.0
2k,

1.5

FIG. 6. Perpendicular spin susceptibility of a linear SDW.
Dashed curves indicate regions where the calculations are less
accurate.

where 6 is the SD% energy gap. The second term in Eq.
(27), the SDW potential, connecting plane waves of wave
vectors k and k+Q having opposite spins, can be visual-
ized as a superposition of two linear SDW potentials with
polarizations perpendicular to each other. Eigenfunc-
tions of Ho can be found easily by solving a 2X2 matrix
equation exactly. For "mostly spin-up" states,
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costi, &e'"'a —singk&e'" Q "p, k& ) ——,
cos(1,te'"'a+sing„te'"+Q"p), kg & ——, (28)

with energy

—,'(ei, +e1,+Q)
—

—,'[(e1,—e„+Q}+6 ], kg ) ——,2 2 1/2

—,'(e„+e„+Q)+—,'[(ek —
e1,+Q) +6 ], k(2 &

(29)

and for mostly spin down" states,

cos)1,&e'"'~p+ sin(1, &e"" Q "a), k(2 )—,
E

with energy

T~( ye+ geQ) —,'[(ej( ek Q) +6 ], kg &—2 2 1/2 Q

2(eg+eg Q)+ 2'[(eg ek Q} +6 ]', kg )—

(30)

(31)

where g1, (cr =
T or 1 ) is given by

and

G
Sll12(1

ko.

W1, =[(e1,—ei,+Q) +6 ]

(32)

(33)

In the last formula a = 1 (or $ ) corresponds to the + (or —) sign. As implied in Eqs. (29) and (31), the SDW potential
of Eq. (27) creates an energy gap at k= —Q/2 for state 1(ti, &, and at k=Q/2 for state f1,&

We defin.e gi as the suscepti-
bility along the z axis, i.e., perpendicular to the SDW polarization plane, and

g~~
as the susceptibility along the x axis,

which is within the polarization plane.

A. Perpendicular susceptibility g&

If we regard A' '= p&H,„,a, as a pert—urbation, the only nonzero matrix elements of 8 ', involving the state $1,&, are
( 1t1& ~B '}fkt ) and ( g(j(+Q) 2 ~8 '}$11). Following the procedures in Sec. II, yi is given by

r

2@21 2 sin'2g„&
J e(E E„t)e(E( Q)—$ E )+cos 2(„t5(E„&E) dk-

(2n )'
(34)

=x, Q
~ 2kF

x 1+x 2 (xF 1)
+

m2

+ —ln[x +(x +g )' ](x2+g2)1/2~~1~4(x2+g2)1/2

x 2+1

(35)

where x, =2k, /Q and x 2
=2k 2/Q. k, and k 2 are the maximum values of

~
k

~
along the —Q and +Q direc-

tions, and k lies on the Fermi surface of the "mostly spin-up" electrons. Plots of Eq. (35) for several values of go are
shown in Fig. 8. Similar to Eq. (18), Eq. (35) indicates that, to first order in g, yi is equal to y at x,=—1 or

—1)»g.

B. Parallel susceptibility y~~

In this case, the perturbation H'= @AH,„,cr„connects—it/„t with g„i,Q,„Q,&, $11,+Q, &, and g1„+2Q1i. Note that
now (11(1,t~H'~@1, &) =0 and ($1,t~H'~i}'/1, &)WO. Since Ek(WE1,&

except for k&=0, we can still use standard nondegen-
erate perturbation theory to calculate the susceptibility g~~, which is found to be
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2)us 2 cos g) tsln g) ) sm g()r+q)tsm g) t[f(Eqt )
—f (E(g q)J )]+ (f (EkT )

—f (E(&+2q)()]
(2n ) E(g—q)t E[k+2q) &

cos g), tcos () (+
E E [f«)$)—f(E)$)] dk.

k$ kf
(36)

+ —,'5'(E), t EF)—
X(Eq( E),t ) +— (37)

At critical contact, i.e., when Q/2kF —=1+go, we find
to first order in go

X)) =Xp(1+—go) (38)

Therefore, for critical contact, the spin-susceptibility an-
isotropy of a spiral SDW state is, approximately, a quar-
ter of that of a linear SDW having the same energy gap
G. Figure 9 shows plots of X))/X~ versus Q/2kF for
several values of go(=G/4EF). The anisotropy of the
susceptibility (X~~)

—
XI )/X) is shown in Fig. 10.

IV. DISCUSSION

A. Spin susceptibilities of a mixed SDW-CDW state

In Sec. II, we have studied the spin-susceptibility an-

isotropy of a linear SDW. A generalization of such a

1.10

Spiral SDW

For small g, the second term in the integrand can be
neglected because its contribution is proportional to g .
The third term in Eq. (36) corresponds to the surface
term (i.e., the Pauli term) in Eq. (17). This is understood
from the following expansion for g &(1:

f (E),t ) —f (E),) ) =5(E),t EF )(E—),) E),t )—

state is a mixed SDW-CDW state in which both the
charge density and the spin density vary sinusoidally in
space. The self-consistent single-particle potential for a
mixed SDW-CDW state can be written as

V(r) = —G(sin(}) sinQ r+O„cosgcosQ r), (39)

X). '"=(X).—X)~}cos (t+X)~ . (40)

This result suggests that the spin-susceptibility anisotro-

py of a mixed SDW-CDW state is

+mix +mix

+mix

(X)) X) )cos P

Xl+(X))—Xl)»n'0
' (41)

where y.
~

and gj are the susceptibilities of a pure SDW
[i.e., /=0 in Eq. (39)]. When (I)=m. /2, the anisotropy
goes to zero, as is expected for a nonmagnetic state.

1.2

Spiral SDW

where P is the spin-split phase which can vary from 0 to
n. /2, corresponding to a change from a pure SDW state
to a pure CDW state. The Fermi surfaces caused by the
potential (39) are similar to those shown in Fig. 1. Since
there is still no contribution to the parallel susceptibility

X~~

'" from virtual transitions, X))
'" is given again by Eqs.

(2) and (3). It is conceivable that the anisotropy of the
spin susceptibility may only be related to the second term
in Eq. (39). Detailed derivations show that the perpen-
dicular susceptibility can be expressed as

1.05—

= 1.0

0.95 0.9

0.5

0.90
0 1

Q/2kF

0.8
0

Q/2k

FIG. 8. Perpendicular spin susceptibility of a spiral SDW. FIG. 9. Parallel spin susceptibility of a spiral SDW.
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0.2

Spiral SDW

0.1

=0.1

w 0.0

-0.1

-0.2
0

Q/2k~

FIG. 10. Anisotropy of the spin susceptibility for a spiral
SDW.

B. Influence of many-body e8'ects

Up to now, in our discussion of y, we have neg1ected
the influences of exchange and correlation interactions
between electrons. It is well known that one of the effects
of these interactions is to enhance the spin susceptibility
of an electron gas, as indicated by the well-known result

(42)

where y is the spin susceptibility including many-body
effects, and y is a positive constant. At electron densities
comparable to that in sodium, the increase in y over y
is about a factor of 2. The increase in platinum is
higher, probably of the order of 5. A schematic argu-
ment about Eq. (42) can be found in Ref. 7.

What we wish to emphasize here is that, according to
Eq. (42), many-body effects enhance not only the magni-
tude of the spin susceptibility but also its anisotropy. In
the case of a linear SDW, for example, take go=0. 15 and
let the SDW gap be in critical contact with the Fermi
surface. From Sec. II we know that

and that pl =—g~. Substituting y~~
or y~ into Eq. (42), and

for @=0.6, we find
p~~

—=1.50'~ . This anisotropy is
comparable to those found for Ti, Zr, and Hf, as noted
in the Introduction. At present there is no direct evi-
dence for SDW's in these metals. However, there has
been considerable interest in several unexplained proper-
ties of Zr which can a11 be understood if Zr has a 1ongitu-
dinally polarized SDW with Q=(2n /c)(001).

here) a SDW polarization vector s parallel to the hexago-
nal c axis. Zr also has an anomaly in its phonon spec-
trum, which can be explained if it has a linear SDW
with Q=(2m/c)(001). A "frozen-phonon" calculation'
has suggested that the Zr phonon anomaly might be attri-
buted to a band degeneracy which splits during the vibra-
tion of the zone-center optical mode, but it was necessary
to assume that Fermi-Dirac occupation factors followed
the electronic energy shifts instantaneously (despite the
fact that the optical phonon involved is the highest-
frequency mode of the phonon spectrum}.

The influence of SDW's on lattice dynamics has been
developed previously" and it was suggested that the
long-standing anomalies in the phonon spectrum of Pb
might be caused by a family of SDW's with

Q = (2m /a) I 210]. If we tentatively adopt the hypothesis
that Zr has a (001) SDW with s also along [001],then the
SDW is longitudinally polarized. A free-electron SDW
which is longitudinally polarized is invisible to magnetic
neutron scattering since then VXB=O (and, of course,
V B=O). It follows that (microscopically} B=O and,
therefore, there would be no interaction between the
SDW and a neutron's magnetic moment. The only way
to find a nearly free electron -longitudinal SDW would be
to observe magnetic satellites at Q+G, where G is a
reciprocal-lattice vector (not parallel to Q). Such satel-
lites would be extremely weak because of the small ad-
mixture of k+G wave-function components into the
plane waves of wave vector k (caused, of course, by the
weak crystal potential).

Field-induced magnetic scattering of neutrons at the
reciprocal-lattice vectors IGI has been studied and was
found to be isotropic. ' The implication is that the mag-
netic polarization caused by conduction electrons in Zr
must arise from s-wave components (which have negligi-
ble form factors at nonzero IGI). The theory of the
magnetic response of conduction e)ectrons' which in-
cludes both orbital paramagnetism and Landau di-
amagnetism (in addition to Pauli paramagnetism) has
been applied to the case of Zr. ' The magnetic response
was found to be essentially isotropic. Therefore, there is
no "conventional" way to reconcile the observed magnet-
ic anisotropy with either neutron scattering or standard
theory. We therefore suggest the possibility (based on the
present work) that Zr has a nearly free-electron SDW,
polarized longitudinally, with Q=(2m. /c)(001). This in-
terpretation is consistent with the magnetic anisotropy,
the lack of anisotropic magnetic scattering' for Cx&0,
and the behavior of the optical phonons near q=0. It is
also of interest to note that the proposed Q is nearly
equal to the spanning vector of the Zr Fermi surface'
along the [001] direction, a condition that favors the for-
mation of a SDW ground state. '
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