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Possible vortex-glass transition in a model random superconductor
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We examine, with Monte Carlo simulations, the off-diagonal long-range correlations in a highly
simplified model of a three-dimensional disordered superconductor in a magnetic field. Compar-
isons are made to the three-dimensional Ising and XY Edwards-Anderson spin-glass models.
Somewhat surprisingly, the model superconductor behaves very much like the Ising spin glass,
suggesting that it too may have a spin-glass-like ordered phase at nonzero temperature, namely
the vortex-glass phase.

The order parameter in a superconductor is the complex
scalar pair wave function y, which may also be viewed as
a two-component real vector. One may then make analo-
gies between the various ordered phases of a superconduc-
tor and magnetically ordered phases of two-component
(XY) classical vector spins. The Meissner phase, which
has uniform y, has a ferromagnetic phase as its analog.
The Abrikosov vortex-lattice phase of a type-II supercon-
ductor is analogous to a type of antiferromagnetic phase
with a fairly large unit cell, as occurs in uniformly frus-
trated XY models. Quenched random disorder destabi-
lizes the Abrikosov vortex lattice, and the analogous mag-
netic system would be a randomly frustrated XY model
and thus a spin glass. Here we study, via Monte Carlo
simulations, a highly simplified model for such a disor-
dered superconductor in a magnetic field to see whether it
has a spin-glass-like ordered phase at nonzero tempera-
ture. Unfortunately, as generally occurs in studies of
spin-glass-like models, the evidence we produce is not very
strong, but on balance it seems to favor the existence of
such a phase.

The analogy between spin-glass models and a random
granular superconductor in a magnetic field appears to
have been first pointed out by Shih, Ebner, and Stroud. '

A granular superconductor with weak coupling between
grains may be modeled as a Josephson-junction array.
The coupling energy between two grains is —Jjcos(P;—

p,
—A;i), where J;i is the Josephson coupling, p; and p~.

are the phases of the pair condensate wave function [e.g.,
yj ~exp(i&~)] at the centers of the two grains, and A;J is
the line integral A;J ee JA dl of the vector potential A
from one grain center to the other. In a random granular
superconductor both J;J and A;i are of random magnitude.

To simplify the model, let us put the grains on a regular
simple cubic lattice, assume nearest-neighbor couplings
only, which are all of magnitude J1 1, and keep only the
random-vector potential A;~.. The resulting model has the
Hamiltonian

H = g eos(f; Qj A(j ),
(ij )

where the sum runs over all nearest-neighbor pairs. This
simplification by putting the system on a regular lattice
and keeping only the most convenient and essential aspect
of the disorder, when applied to spin glasses results in the

Edwards-Anderson model. In fact, if the A;~ in (1) are
all randomly equal to either 0 or x, then the model (1) is
the Edwards-Anderson +' J XY spin glass, with randomly
ferromagnetic (A;, 0) or antiferromagnetic (A;, z)
coupling between adjacent spins. The angle pj is that be-
tween the x-axis and the fixed-length two-component clas-
sical spin at site j, when (1) is viewed as an XY spin-glass
model. This XY spin-glass (XYSG) model is one of the
three systems we compare in this paper. It has been simu-
lated by Jain and Young, who find no sign of a finite-
temperature ordering transition in the temperature range
they studied.

The random-superconductor (RSC) model we will
study here is (1) with the A;J quenched random numbers
uniformly distributed between 0 and 2x. The line in-
tegral, modulo 2x, of A dl around any elementary pla-
quette of the lattice is then also uniformly distributed be-
tween 0 and 2x, which amounts to a net magnetic flux
(modulo the flux quantum) passing through the plaquette
that is uniformly distributed between zero and one flux
quanta. We examine this as a highly simplified model for
a random (but not necessarily granular) superconductor
in a penetrating magnetic field. However, there are at
least three properties of real random superconductors that
are absent in this model: First, a real magnetic field is not
static, but has its own fluetuations. We are studying the
extreme type-II limit where these fluctuations can be ig-
nored, even though the fluctuations in the p's are impor-
tant. Second, the disorder in a real supereonduetor arises
from random couplings J;J. Any random component of
the magnetic field in the sample just reflects these random
eouplings because the externally applied field is uniform
on microscopic scales. However, once the A;i's are ran-
dom there does not appear to be any reason to expect ad-
ditional disorder in the J~- s to result in qualitatively
diff'erent behavior for our model (1). Finally, in a real su-
perconductor the applied field breaks the spatial symme-
try of the system, since it is oriented in a particular direc-
tion. Our model (1) has on average the full symmetry of
the underlying lattice. In high dimensionality (d 6) this
difference does not appear to matter; whether it matters
for d 3 is an open question.

A nonrandom type-II superconductor in a magnetic
field between H, . l and H, 2 has an Abrikosov vortex-lattice
phase at low temperatures. Quenched disorder destroys
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the vortex-lattice correlations beyond a finite lattice
correlation length. The usual gauge-invariant off-
diagonal correlation function is

p

l r'
Ge(r, r') (expi p(r)-p(r') —„A dl ), (2)

where p(r) is the phase of the condensate wave function at
r and the line integral is along the straight line from r to
r'. Note again that we are using units where the quantum
of magnetic flux is 2n. The angular brackets in (2) repre-
sent a thermal average, while the square brackets are an
average over realizations of the disorder. In the presence
of disorder Go(r, r') will reflect the short-range vortex lat-
tice order for small (r —r'), but decay at long distances
with some correlation length, go. Here we want to focus
on the correlations for lengths longer than go. Thus our
main justification for choosing a completely random A;~ is
to reduce go as much as possible, making the long-distance
regime beyond go as accessible as possible. More realistic
models with more short-range order presumably have
larger go, making the behavior for distances longer than go
less accessible.

If a random superconductor in a field has a vortex-glass
phase, s the simplest fully averaged correlation function to
show the ofl'-diagonal long-range order (again neglecting
fluctuations in A) should be

G(r, r') [~(expi[p(r) -p(r')))
~
].

For our lattice model this correlation function is

G;J [
~
(expi (p; —

&J )& ( j .

(3)

The usual "spin-glass susceptibility, " that diverges at the
phase transition, is

Z&o ZGij . (s)
j

The third model we will consider here is the Ising spin
glass (ISG). This may be viewed (somewhat perversely)
as again Hamiltonian (1) but now with the {A;;1 and the

[p, l all restricted to take on only the values 0 or z. More
conventionally, the Hamiltonian for the Ising spin glass
1S

H g JJSS~, (6)
&ij )

where S; +' l. Here we will take J;1 +' -' so that (1)
and (6) have the same mean-field transition temperature
and the same first terms in their high-temperature expan-
sions for @so.

In Fig lwe sh.ow a log-log plot of (gsG —I) vs T for
the three models, all on simple cubic lattices. The Ising
data are from Ogielski, ' the XYSG data are from Jain
and Young, while our data for the random-super-
conductor model (1) were obtained from new Monte Car-
lo simulations. In the limit of high temperature, the three
models have identical (iso —1)-I/T . Below the mean-
field transition temperature T, " J1.5=1.22, the two
spin-glass models show significantly different temperature
dependences of Zso. For the XY spin glass the behavior is
quite consistent with a zero-temperature transition with
gag-T ", @=5. The Ising spin glass, on the other hand,
shows a much stronger growth of gsG as the temperature
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FIG. 1. Spin-glass susceptibility gsz vs temperature T for the
three models compared here. For the RSC (this work) and the
XYSG (Ref. 3), the error bars where not shown are smaller
than the symbols. For the 1SG, Ogielski (Ref. 10) did not esti-
mate the statistical errors. The lines are guides to the eye. In
the limit of high temperature the three models have identical
@so and, in this limit, the slope on this log-log plot of (@so—l )
vs T approaches —2.

is reduced, and is believed to have an ordering transition
at' '~ T, =0.6 (remember we have changed the tempera-
ture scale by a factor of 2 from Refs. 10 and 11). Our
random-superconductor model' shows a @so between the
two spin-glass models, but at low temperatures its temper-
ature dependence is much closer to that of the Ising spin
glass, indicating that it too may have an ordering transi-
tion with 0 & T, &0.6.

The random superconductor in a magnetic field has
symmetry that is intermediate between the two spin-glass
models. The XY spin-glass Hamiltonian is invariant un-
der global proper and improper rotations in spin space.
For the random superconductor the only symmetries are
global proper phase "rotations" p; p;+8. The global
improper "rotation" p; —p; is time reversal, which is
not a symmetry due to the presence of the magnetic field.
Thus the symmetry of the random superconductor in a
field is a subgroup of that of the XY spin glass. The Ising
spin glass has as its only symmetry global inversion in spin
space which is the rotation p; p;+x. Thus the symme-
try of the Ising spin glass is a subgroup of that of the ran-
dom superconductor in a field. One might have guessed
that the presence or absence of the continuous rotational
symmetry is the primary source of the differences between
the Ising and XY spin glasses. However, that would sug-
gest that the random superconductor in a field, with its
continuous rotational phase symmetry, would behave
more like the LYspin glass. Figure 1 suggests otherwise.

A few words about our simulations: They were per-
formed on various different computers, with the longest
runs being done on the Connection Machine Model CM-
2. Our program ran at a rate of approximately 100
Monte Carlo spin flips per processor per second on the
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Connection Machine, and we used up to 2' =1.6X 10
processors in parallel. In all cases we ran multiple realiza-
tions of the disorder [A;Jl in order to obtain objective esti-
mates of the statistical error. Measurements were made
over differing ranges of time in order to determine when
equilibrium results were obtained. Samples of different
sizes were run in order to study the finite-size effects (see
below). The longest runs are those represented by the
T 0.75 point in Fig. I where 2 replicas each of 23 reali-
zations of the disorder for samples of size 323 with period-
ic boundary conditions were each run for 2's=2.6& 105

Monte Carlo steps per site. Samples up to size 16' were
run for 0.85~ T~ 1.1, while 8' sufficed at higher tem-
peratures to obtain @so.

Some finite-size results comparable to those obtained by
Bhatt and Young" for the Ising spin glass are shown in

Fig. 2. For each realization of the disorder for samples of
size L ' and periodic boundary conditions we have simulat-
ed two replicas with the same [A;J[ but different initial
conditions and updated with different random numbers,
monitoring the (complex) overlap

q -g exp 4'(yji —lsj2)}, (7)
J

where ltd is the phase at site j in replica a. We then ob-
tain [( ) q [ &j and [( ( q ~ &1, combining them into the "re-
normalized coupling constant"

I q I'
(8)

In the disordered phase for a large system, q will have a
two-component (Req and Imq) Gaussian distribution
with g 0. At zero temperature (q ( L does not fluctu-
ate so g 1. Bhatt and Young'' calculated the analogous
quantity for the Ising spin glass and found that g is essen-
tially size independent for TS T„, while g drops to zero
with increasing L for T & T„, as it must. Our results in

Fig. 2 are quantitatively quite similar to theirs, again
showing that, in the temperature and size range studied,
our random superconductor model (I) behaves very much
like the Ising spin glass, and may order at T, &0.6.
Finite-size data for the XY spin glass are not presently
available for comparison.

It has recently been suggested ' that random type-II
superconductors in a field may quite generally exhibit a
vortex-glass ordered phase. Preliminary experimental evi-
dence for a vortex-glass ordering transition has been ob-
tained' for films of the cuprate superconductor YBa2-
Cu3Q7. Here we have examined what appears to be in
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FIG. 2. "Renormalized coupling constant" g(L, T) for sam-

ples of finite size L ' of the random superconductor model (1). g
is defined by Eq. (8). Up to a multiplicative temperature scale
change, this figure is quantitatively very similar to those of
Bhatt and Young (Ref. 11) for the three-dimensional + J (their
Fig. 7}and Gaussian (their Fig. 10}Ising spin glasses. The lines
are guides to the eye and again the error bars, where not shown,
are smaller than the symbols.
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some sense the simplest three-dimensional model that
could exhibit such a vortex-glass ordered phase. Just as
for three-dimensional Ising spin-glass models, it is not
possible to obtain very solid evidence of the presence of
the ordered phase (if it indeed exists), due to our inability
to equilibrate the systems at low temperatures. However,
the behavior of the random-superconductor model is
quantitatively quite similar to that of the Ising spin glass,
and for the latter system there is fairly good experimental
evidence for the transition' that probes time scales far
beyond those accessed in simulations. Thus we have ob-
tained preliminary evidence that the three-dimensional
random-superconductor model (I) may have a vortex-
glass ordered phase at positive temperature.
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