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A time-dependent Ginzburg-Landau theory is developed in order to characterize the results of a

recent computer simulation on a lattice gas driven by an applied chemical potential gradient act-

ing on the boundaries of the system. In accordance with the simulation results, the system shows

a linear density profile above the critical temperature and phase separation below the critical tem-

perature. It is furthermore shown that the driven system is equivalent to an equilibrium system in

an applied linearly dependent chemical potential proportional to the current.

I. INTRODUCTION

There is a current interest in phase transitions and criti-
cal phenomena of microscopic statistical-mechanical mod-
els driven in steady states far from thermodynamic equi-
librium. In contrast to the situation for equilibrium phase
transitions and critical phenomena where well-developed
theoretical constructs are available, the present under-
standing of kinetic phase transitions is limited and mostly
based on computer-simulation studies of simple micro-
scopic models.

A particular microscopic model which has been studied
extensively is the driven two-dimensional lattice gas with
diffusive dynamics subject to an external uniform
field. ' Computer simulations have shown that this sys-
tem undergoes a kinetic phase transition whose properties
depend on the field strength. The character of the phase
transition has also been elucidated using mean-field
theories and renormalization-group calculations.

Leaving aside the fact that kinetic phase transitions in

driven systems are abundant in nature ranging from
metallurgy to physics, chemistry, and biology, one of the
important theoretical questions is, of course, whether ki-
netic phase transitions can be characterized by critical ex-
ponents and whether they allow for a classification in

terms of universality classes similar to the scheme for
equilibrium phase transitions.

Recently a model of mass transport in a two-di-
mensional lattice gas driven by an external chemical po-
tential gradient was proposed. Simulation studies show
that this model also exhibits a kinetic phase transition
whose properties depend on the chemical potential and the
temperature. The model differs in important respects
from the driven lattice gas in a field in that the driving
force responsible for the flow only acts on the boundaries
of the system. In the bulk region a Kawasaki-type
Metropolis updating scheme' ensures local particle con-
servation as well as contact with a constant-temperature
heat bath. Except for the mass current imposed at the
edges of the system by means of a chemical potential in

conjunction with a periodic boundary condition, there is

no further coupling to the thermodynamic degrees of free-
dom.

In this paper we attempt to adapt a simple Ginzburg-
Landau-type mean-field description together with a
Langevin transport equation in order to describe some of

the features observed in the simulation study in Ref. 9.
We are able to account for the linear density profile above
the critical temperature and the phase separation below.
We furthermore believe that the kinetic phase transition
seen in the simulation is a particularly simple one since
the thermodynamics and kinetics are equivalent to an

equilibrium system in an applied linearly varying chemi-
cal potential.

II. GINZBURG-LANDAU THEORY

We take as our starting point the usual Ginzburg-
Landau form for the free energy, ' '

t 2
dn(x)F dx + r(n(x)—npj '—

2 dx 2

A. Equilibrium properties

The equilibrium properties of the system described by F
follow in the usual manner" by assuming u )0 and
rts:(T —T, ), where T, is the. critical temperature, and
minimizing F with respect to variations of n(x) Above.
T,. the system has a single phase with density no. At T,
the system undergoes a second-order phase transition and
can exhibit two possible uniform phases below T,. with
densities

n~ np+ ( —r/u) ' '-, n~ np —( —rlu) ' (2)

+ u[n(x—) —np)
1 4

4

This form is appropriate as a coarse-grained description of
a lattice-gas model with attractive interactions, corre-
sponding to the ferromagnetic case in the Ising model
analogue. We note that most of the simulations reported
in Ref. 9 are for the repulsive lattice gas, however, as will

become clear our main conclusion does not depend on the
specific form of the free energy in Eq. (1) and we use for
convenience the above generic form of F.

The order parameter n(x) is the spatially varying den-

sity and np the uniform average density. In order to mod-
el the simulations study in Ref. 9 as closely as possible we

only assume a density variation in the x direction and con-
sider a slab of thickness L.
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In an external field the system shows phase separation.
Following Ref. 9 we impose opposite chemical potentials
at the boundaries of the system, i.e., +'iu at x + L/2,
corresponding to a symmetry-breaking term

—p(x)n(x) p(b(x —L/2) —b(x+L/2))n(x) (3)

The character of the solutions to Eq. (4) are well known

(see, e.g. , Ref. 12). Above T„ the uniform phase np is
stable in the bulk region. At the boundaries the density
n(x) adjusts to the chemical potentials and varies in an
exponential fashion over a range given by the correlation
length g (I/~r ~

)'~. Below T, the interface is smooth
over a distance given by the correlation length g. In the
bulk region the nonuniform density profile is symmetric
about x 0 and is given by the kink solution '

n (x) n p
—( —r/u ) ' tanh(x/g J2) . (5)

At the boundaries the densities ni and n2 are again adjust-
ed to the chemical potential over a transition region of size

g. This concludes our summary of the equilibrium proper-
ties of the model in Eq. (1) in a finite geometry with im-
posed chemical potentials pertinent to the simulation
study in Ref. 9.

8. Transport properties

The transport properties of the model in Eq. (1) are
conveniently discussed by introducing the usual time-
dependent Ginzburg-Landau description. " Considering
only variations in the x direction and ignoring fluctuations
due to the heat bath we have quite generally the conserva-
tion law

dn dj
dt dx

' (6)

together with a model-dependent constitutive equation in
terms of F for the current j,

j(x) = —r d BF
dx bn(x) ' (7)

I being the damping coefficient. With a noise term in-
cluded Eqs. (1), (6), and (7) constitute the so-called mod-
el 8 proposed in Ref. 13 in connection with dynamical
critical phenomena, i.e., the case of a conserved order pa-

in the free-energy density in Eq. (1).
Ignoring for the moment boundary layer and interface

contributions to F, that is terms due to the presence of
-'(dn/dx)' in Eq. (1), the chemical potential has no

effect on the uniform phase np above T„where as the sys-
tem phase separates below T, with a nonuniform density
profile n(x) n2 for xp & x & L/2 and n(x) ni for

L/2 &—x & xp. In this approximation the position xp of
the interface is undetermined.

In order to correctly account for the boundary layer and
interface profile we include the term ~ (dn/dx) in Eq.
(1), and the minimum condition BF/bn 0 yields"

+r[n(x) —np]+u[n(x) np] ——p(x) .
d'n(x)

X

(4)

+ u[n—(x) —np] + n(x)1 4 jpx
4 I

(9)

and we conclude that as far as the density profile is con-
cerned the driven system is equivalent to an equilibrium
system with a linearly varying chemical potential
—jpx/I . This equivalence does not depend on the specific
form of F but follows alone from Eqs. (6) and (7). The
mass transport is essentially decoupled from the heat
diffusion. Drawing the parallel to the simulation study in
Ref. 9, the Kawasaki updating ensures local thermal equi-
libriurn according to a free energy or Hamiltonian of the
form in Eq. (9) and at the same time maintains the mass
transport. The imposed mass current enters as a spatially
varying chemical potential —jpx/I. The above situation
should apply to physical systems where the rate of mass
diffusion is much slower than the rate of heat diffusion in
such a way that the system rapidly attains thermal equi-
librium. Matching the effective chemical potential in Eq.
(9) to the applied chemical potential p we derive the rela-
tionship

j p 2pI /L (10)

for the current.
The discussion of the density profile n(x) now follows

easily from Eq. (8). Ignoring for the moment rapid densi-
ty variations, that is assuming d n/dx small, we obtain
above T,. a density profile which, in the bulk region near
x 0, is linear about np with a slope

jp/rI ~ 1

T —Tc

Below T, a simple graphical analysis shows that the sys-

rameter. Here we use the equations in order to model the
simulation study in Ref. 9.

Since the driving field (that is the chemical potentials)
only acts at the boundaries of the system it is not included
in Eqs. (6) and (7) which aim at describing the density
profile in the bulk region. This situation is quite different
from the driven lattice gas in an electric field E. ' Here
the field acts everywhere in the bulk region and is included
in the simulations' by means of a biased E-dependent
Metropolis updating scheme, and in the field theoretic
analysis by an additional current contribution in the
transport equations (6) and (7).

Our analysis now proceeds in a very simple manner.
Assuming a steady-state density profile Eq. (6) implies a
constant current jp throughout the system. Integrating
Eq. (7) for a constant current jp, inserting bF/bn extract-
ed from Eq. (I), and assuming an inflection point in the
density profile at x 0, we obtain the mean-field equation
describing the density profile in the driven system:

d'n
+r[n(x) —np]+u[n(x) —np] — . (8)

JpX

X r
The first thing we notice is that Eq. (8) also follows from
the equilibrium condition BF/bn 0 for the modified free
energy

dn(x) 1F dx + r[n(x) ——np]'
2 dx 2
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tern phase separates with densities n
~

and n2 at x 0.
As in the discussion of the equilibrium properties in

Sec. IIA the term d n/dx2 is necessary in order to
correctly account for the detailed spatial variation of
n(x). The interface at x 0 is continuous over a transi-
tion region of size

C-(I/I I)'" IT-T, I-'" (i2)

and given by the kink solution in Eq. (5). Similarly, at
the boundaries the density profile adjusts to the applied
chemical potential over a range g. These findings are in

qualitative agreement with the simulation study reported
in Ref. 9. In Fig. 1 we have shown the density profiles
above and below the critical temperature. By inserting
Eq. (8) in Eq. (9) it is easily seen that the dashed curve
corresponds to unstable and metastable solutions which
are unphysical in the present context.

Finally we note that in the linear density regime the
diffusion constant D inferred from the relationship j

-Ddn/dx has the form

D-I I. I IT-T. I,
and hence varies linearly with

~
T —T, J. This result is

also in qualitative agreement with Ref. 9.

III. SUMMARY AND CONCLUSIONS

We have developed a simple mean-field theory based on
the time-dependent Ginzburg-Landau theory in order to
capture some of the features observed in a recent simula-
tion study of a lattice gas driven by a chemical potential
gradient acting on the boundaries of the system.

In accordance with the simulation we find a linear den-
sity profile above the critical temperature and phase sepa-
ration below the critical temperature. We furthermore
show that the model is equivalent to an equilibrium sys-
tem described by the same free energy F but with an ap-
plied linearly dependent chemical potential proportional
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FIG. 1. The density profiles above and below the critical tem-
perature. The linear regime is in the vicinity of x 0. The
dashed curve indicates the unphysical region (arbitrary units).

to the current. This simple observation indicates that the
phase transition reported in the simulation studies might
be of a particular simple kind which falls in the universali-
ty class of the equivalent equilibrium transition.

We finally wish to emphasize the obvious limitations of
the present approach. Since we adhere to a continuum
formulation of the model and furthermore neglect fluctua-
tion effects we are, of course, unable to account for
features which are due to lattice effects such as a satura-
tion current and percolation threshold effects, as reported
in Ref. 9.
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