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Real-space renormalization-group study of the exchange-interaction model
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Through use of an approximation introduced by Suzuki and Takano, the Migdal-Kadanoff (MK)
renormalization-group transformation with the rescaling length b=2 is derived for the exchange-
interaction (EI) model. Both the standard MK method and its modification, which preserves the
free energy in the renormalization transformation, are used to determine critical temperatures and
thermal exponents of the EI model on cubic lattices for various spins.

I. INTRODUCTION

The exchange-interaction (EI) model' is a quantum
spin model in which the interaction between a nearest-
neighbor pair of spins S; and S has the form —JP, ,
where J is the interaction constant and P;J is the ex-
change operator. The operator P, has the property that
it permutes the spin coordinates of S, and S .. That is,

P;, Q(S;,S, ) =Q(S„S,)P,,
where Q(S, , S ) is any function of two spins S; and S, ,
which have the same spin multiplicity.

For S=—,
' the EI model is identical to the spin- —,

'

Heisenberg model. When S ~1, the exchange operator
P, is a polynomial of degree 2S in S, S . The expression
of P;J in terms of S;.S was derived by Schrodinger in
1941. The thermodynamic properties of the EI model
were first investigated two decades ago. ' As the calcula-
tion of nonlinear terms is very difficult, previous work on
the EI model is sparse. Even the mean-field approxima-
tion is not yet available. Our understanding of the ther-
modynamic properties of the EI model is mainly from the
study of high-temperature series expansions. '

In this article we study the critical properties of the EI
model by the real-space renormalization-group method.
The Migdal-Kadanoff (MK) renormalization for quan-
tum spin models proposed by Suzuki and Takano is de-
scribed in Sec. II. The decimation transformation of the
coupling constant with the rescaling length b =2 is de-
rived in Sec. III. In Sec. IV the standard MK scheme
and its modification, which preserves the free energy in
the renormalization transformation, are used to deter-
mine ferromagnetic fixed points and thermal exponents of
the EI model on cubic lattices for various spin values.
Summary and discussion on the antiferromagnetic fixed
points and on the renormalization transformation of the
magnetic field are given in Sec. V.

II. MIDGAL-KADANOFF APPROXIMATION
FOR QUANTUM SPIN MODELS

The Midgal-Kadanoff renormalization contains two
main steps: a bond-moving operation and a site-
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FIG. 1. Bond moving and site decimation of the MK method
with b =2 and d =2. Bonds (interactions) inside blocks of
length b in (a) the original lattice are moved to the edges of the
blocks to form (b) a decorated lattice. The decorated spins 0
and the isolated spins + are then decimated to obtain (c) the
rescaled lattice. The interaction between a connected pair of
spins S, and S, is H„ in the original lattice, is H;, in the decorat-
ed lattice, and H, ', in the rescaled lattice.

decimation transformation. In the first step the original
lattice is divided into blocks of length b in each direction.
All interactions [represented by bonds graphically in Fig.
1(a)] inside a block and those on the surface of a block are
moved to the edges of the block to form a decorated lat-
tice [also called restructured lattice; see Fig. 1(b)]. In the
decorated lattice, spins connected by two bonds are called
decorated spins, those not connected by any bond are
called isolated spins, and the others are called block
spins.

The interaction between a connected pair of spins S;
and S in the decorated lattice, denoted H, , is assumed to
be proportional to that of the original lattice [Fig. 1(a)].
In the standard MK method,

H" =b" 'H
lJ (J

for d-dimensional lattices, while in the modified MK
methods ' the proportional constant b" ' is replaced by
some temperature-dependent functions. This step is an
ad hoc approximation. It applies to quantum spin models
as well as to classical spin systems.

In the second step all decorated spins are then decimat-
ed to obtain a rescaled lattice [Fig. 1(c)]. Consider a
linear chain of length b, having b + 1 spins
S,S,, S2, . . . ,S~, and S&, where S and S& are block
spins and the others are decorated spins. Let
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H . . . p=H )+H)2+ +H~ (3} exp[K(p12+ p23)] =fo(K )+f1(K )(p12+ p23)

When the decorated spins in Fig. 1(b) are decimated, we
have

+f2(K)P, 3+f3(K }

H p
H'

pTr exp —g =exp
decorated

& &&
kT

& &&
kT

spins

(4)

where

X (P12P23+ P23P12 }

Here H'
&

is the interaction between a pair of block spins
S and S& in the rescaled lattice [Fig. 1(c)].

For classical spin systems, all spins commute, and Eq.
(4) is identical to

Tr exp
decorated

spins

—H

kT
= +exp

&~p)

—H'
p

kT (5)

The determination of H'& in Eq. (4) is reduced to the
one-dimensional decimation

f0(K )= (cosh2K +2 coshK )/3,

f, (K ) = (sinh2K +sinhK )l3,
f2 (K ) = (sinh2K —2 sinhK )l3,
f3(K )= (cosh2K —coshK )/3 .

Taking trace of S2, we obtain

Tr exp [K (P,2+ P23 )]= (2S+ 1)fo(K )+2f, (K )
2

(12)

exp( H'&IkT—) = Tr exp( H. . . ~—lkT) . (6)
2s s b

+[(2S+1)f2(K)+2f3(K)]P13 .

For quantum spin models, Eq. (5) is not valid because the
spins do not commute. In the approximate scheme pro-
posed by Suzuki and Takano, Eq. (5) is accepted as an
approximation. Then H'

&
is determined approximately

by a one-dimensional decimation transformation [Eq. (6)].

III. ONE-DIMENSIONAL DECIMATION
WITH b =2 FOR THE EI MODEL

Consider a system of three spins S], Sz, and S3. The
reduced Hamiltonian of the EI model is given by

Similarly, the left-hand side of Eq. (8) is

exp(K'P13+ G ) =e coshK'+ (e sinhK')P» .

Comparing Eqs. (13) and (14), we have

and

G =
—,
' ln[f+(K }f (K)],

where

(13)

(14)

(15)

(16)

—H(S, , S2,S3)lkT =K(P,2+P23),

where P, are exchange operators and K =J IkT is the re-
duced coupling constant. For this Hamiltonian, Eq. (6)
becomes

Tr exp[K(P, 2+P23 )]=exp(K'P»+ G ),
S2

where E' and G are functions of E and S.
To determine K' and G, expand exp[K(P, 2+P23)] in

power series in K:

f+(K)=(2S+1)[fo(K)+f2(K)]+2[f1(k)+f3(K)] .

(17)

Usually, a constant (2S+ 1) ' is subtracted from P; to
make the Hamiltonian traceless. ' For the traceless EI
model, the decimation transformation is

Tr exp [K[P,2 +P23 —2(2S+ 1) '] ]
S2

=exp I KO+ K'[p» —(2S+ 1) ']I,
E"

exp[K(P, 2+P23)]=1+g, (P,2+P23)",
n!

where K' is the same as Eq. (15) and Ko is given by

K11=G+ (K' —2K ) /(2S+ 1) . (19)
where I is the unit matrix. For a system of three spins
the operators P, and their products form elements of the
symmetric group of degree 3. There are six different per-
mutations. It can be shown that

12+ 23) T( 2+ (P12+ 23}

+ —', (
—1+4" ')P

(p +p )2n —4( 1+4n —1)+4( I +4n —1)
3 2 3 4

(10a)

X(P12P23+P23P12) . (10b)

Summing over the even- and odd-power terms, respec-
tively, Eq. (9) reduces to

When S=—,
' Eqs. (15) and (19) reduce to those for the

spin- —,
' Heisenberg model.

IU. CRITICAL PROPERTIES
OF THE EI MODEL ON CUBIC LATTICES

In the standard MK method the renormalization trans-
formation of the coupling constant of the EI model on a
d-dimensional lattice is given by Eq. (15), in which
K=2 'K. We let b=2 in Eq. (2) as Eq. (15) is valid
only for b=2. By setting K=K'=K* in Eqs. (2) and
(15), the fixed points K ( =J/kT, ) can be determined.
The thermal exponents y, are then given by
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TABLE I. Critical temperatures kT, /J and thermal exponents y, of the EI model on three-
dimensional lattices obtained by the MK method. kT, /J determined from the high-temperature sus-

ceptibility series (Ref. 1) are shown for comparison.

Spin
S

MK method
three-dimensional lattices

kT, /J

kT, /J from series analyses
sc bcc fcc

lattice lattice lattice

5.82

4.80
4.32

4.04
3.86
3.73
3.00

0.72

0.76
0.78

0.80
0.81

0.82
0.88

1.68

1.27
1.07
0.99
0.91
0.85
0.51

2.52

1.93
1.64
1.45
1.32
1.24
0.74

4.02
3.10
2.64
2.35
2.14

1.97
1.19

In(dK'/dK )/ln2, evaluated at K*.
When d ~ 2, nontrivial fixed points are not found. This

is in agreement with the rigorous result that two-
dimensional spin systems with any form of isotropic in-
teraction cannot have a phase transition. ' For d =3, fer-
romagnetic critical temperatures and thermal exponents
of the EI model for several values of 5 are shown in Table
I. Critical temperatures of the cubic lattices determined
from the high-temperature susceptibility series are in-
cluded in Table I for comparison. Thermal exponents of
the EI model have not been studied before. Similar to
other models, '" the T, of the EI model determined by
the standard MK method are too high as compared to
those determined from the high-temperature susceptibili-
ty series.

To improve the MK scheme, in which one assumed
K/K=b ', two different approaches have been pro-
posed. In Walker's series-expansion method, K(K) is
determined by the requirement that in the renormaliza-
tion transformation the free energy of the whole system is
preserved exactly through a given number of terms in the
high-temperature series expansions. In the cluster-
decimation (CD) method, K(K) is determined by
preserving the free energy of a finite cluster of spina (with
certain boundary conditions) in the bond-moving step.

For a three-dimensional lattice, the smallest cluster in-
volved in the CD method contains eight spins. It is too
difficult to calculate the free energy of the EI model of
eight spins, as the dimensionality of matrices involved in
the calculation is (2S+1) X(2S+1) . We therefore use
Walker's series-expansion method.

For a system of X sites, the free energy per site of the
EI model is given by

f(K)=N 'ln Trexp K gP; (20)

The preservation of the free energy requires that

f(K)=a In(2S+1)+b "[(q/2)KO(K)+f(K')], (21)

where q is the coordination number of the lattice, Na is
the number of isolated spins in the decorated lattice [Fig.
1(b)]. For a d-dimensional lattice, a is given by

a =1—6 [ I+q(b —1)/2] . (22)

The right-hand side of Eq. (21) is the free energy of the
rescaled lattice. Its first term is contributed by isolated
spins, and the second term is contributed from connected
sites. There are Nb connected sites with Nb q/2
bonds in the rescaled lattice. Besides the energy f(K'),
each bond of the rescaled lattice carries a constant energy
Ko(K) given by Eq. (19).

The exact expression of f(K) is not known for general
models. It will be replaced by its high-temperature series
expansions to order n. High-temperature series expan-
sions of the free energy for the EI model are known to or-
der n =7 for general spin values on cubic lattices. ' We
have determined fixed points K* and thermal exponents

y, from Eqs. (15), (19), and (21) for cubic lattices by using
six terms (n =6) and seven terms (n =7), respectively, in
the free-energy series. Critical temperatures
KT, /J=(K*) ' obtained are given in Table II. The cor-
responding thermal exponents are shown in Table III.

TABLE II. Critical temperatures kT, /J of the EI model on cubic lattices determined by the
modified MK method using n terms in the free-energy series.

Spin
S

sc
lattice
n=6

bcc
lattice
n=6

fcc
lattice
n=6

fcc
lattice
7l —7

1.56
1.48
1.45

1.43
1.42

1.40
1.29

1.74
1 ~ 59
1.59
1.58
1.57

1.56
1.43

2.51

1.96
1.70
1.56
1.47
1.41
1.20

2.62

2.10
1.85

1.70
1.61
1.54
1.20
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TABLE III. Thermal exponents y, of the EI model on cubic lattices determined by the modified MK
method using n terms in the free-energy series.

Spin
5

sc
lattice
n=6

bcc
lattice
n=6

fcc
lattice
n=6

fcc
lattice
n =7

1.04
1.22
1.32

1.38
1.42

1.44
1.58

0.99
1.21
1.36
1.44
1.48

1.51
1.67

1.01
1.03
1.07
1.10
1.14

1.18
1.47

1.11

1.19
1.23

1.27
1.30
1.32
1.47

When n =7 fixed points are not found for the EI model
on the simple cubic (sc) lattice for —,

' (S( —", , and on the
body-centered-cubic (bcc) lattice for 1 (S~ 6. Fixed
points are not found in these cases because the seventh
term of the free-energy series contributes a large negative
amount to f(K ). The seventh coefficient of the free-
energy series is positive for the face-centered-cubic (fcc)
lattice. We expect that if longer series expansions are
available, the modified MK method will give more accu-
rate estimates of T, . When S ))1, n =6 and 7 yield the
same result for all lattices since the seventh coefficients
(and all odd terms} of the free-energy series vanish in the
limit S~~.

V. SUMMARY AND DISCUSSION

We have derived the MK renormalization of the EI
model with the rescaling length b=2. Both the simple
MK method and a modified MK method are used to
determine ferromagnetic critical temperatures and
thermal exponents of the EI model on cubic lattices for
several spins. Besides those determined by analyzing
high-temperature susceptibility series, the T, obtained by
the present method are the only estimates of critical tem-
peratures of the EI model. The present results are higher
than the findings of the series-expansion method for large
S and small q (coordination number), and are lower than
the series-expansion results for small S and large q.

The thermal exponents y, or the correlation exponents
v ( = 1/y, ) of the EI model have not been studied before.
From Table III we see that y, is an increasing function of
the spin.

In Sec. III we have derived the MK transformation of
the EI model at zero field. When there is a magnetic field
h (including the factor —1/kT) along the z axis, the
one-dimensional decimation [Eq. (6)] becomes

Trexp[K(P, z P+z3)+(h /q)(S„+yS2, +S3, )]
S~

=exp[G+K'p»+(h'/q)(S„+S3, )], (23)

terms (h/q)(S;, +Si, ) are moved together with the ex-
change interactions KP;, we have h =b 'h and y =2; if
the field terms are not moved at all, h =h and y =2d.

In the small field limit we express Eq. (23) in power
series in h and h'. The zeroth-order equation is the same
as Eq. (8) or (13}. The first-order equation which de-
scribes the decimation transformation of the magnetic
field has the form

h [go(K )(S„+Si,)+g i(K )(Si, +Sq, )Pi3]

=h'[(e coshK')(Si, +S3, )

+(e sinhK')(Si, +S3,)P»], (24)

where g„and g, as functions of K are too lengthy to be
presented here.

Equation (24) contains two diiferent sets of spin opera-
tors, (S„+S3,) and (S„+S3,)P», but there is only one
unknown function h'. When S=—,', (s„+S3,)=—(Si,
+S&, )P, &,

h' can be determined. That is,

h
' =h (go +g i )e /(coshK'+ sinhK'), (25)

where K' and G are given by Eqs. (15) and (16) [with
S=

—,']. For S ~ 1, the renormalized magnetic field
h'=h'(K, h ), which satisfies Eq. (24), does not exist. To
obtain the renormalization transformation, high-order
fields (multipolar fields) should be included in the renor-
malization transformation.

In Sec. IV we have only determined ferromagnetic crit-
ical temperatures. We do not expect that b =2 will give
correct antiferromagnetic critical temperatures Tz be-
cause the staggered ordering of spins at low temperatures
is not preserved when the lattice is rescaled by a factor of
2. But we point out one interesting result that by using
the simple MK method with b =2, we obtain
}kT~/Ji=kT, /J=3. 00203 for S~~. This is in agree-
ment with the fact that T, = T~ for classical spin models
on open lattices.

where S,, is the z component of the spin S, , and y is a pa-
rameter used to describe the method which we adopted in
handling the magnetic field terms' in the bond-moving
step. In the standard MK method, if the magnetic field
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