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Spin-wave singularities: Free energy and equation of state in O(n) spin models near T,
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We give a detailed derivation of the thermodynamics of O(n) spin models, correct to
O(a=4 —d), using a generalization of the renormalization-group trajectory integral and noncritical
matching technique first introduced by Rudnick and Nelson. The results are valid throughout the
critical region, both with and without external magnetic field. We especially emphasize the
coexistence-curve behavior for spins with a continuous symmetry (n ~ 2), deriving detailed expres-
sions for the renormalized spin-wave stiffness (superfluid density) and longitudinal susceptibility.
We generalize the parametric representation for the equation of state to include spin-wave singulari-

ties, yielding corrections to the so-called "linear model. " Our expression for the free energy differs
in some details from that given previously by Nicoll and Chang, necessitating minor corrections to
previous applications to the weakly interacting Bose gas at a constant density.

I. INTRODUCTION

h =0, lrl~~, (1.2)

where s(r) is the spin at site r. The fact that
yL(h =0)= Oo for d (4 follows directly from the spatial
integral of (1.2).

The coexistence curve divergence [Eq. (1.1)] should be
contrasted with that occurring at T= T, :

(1.3)

where 5) 1 is the critical exponent which describes the
vanishing of M —h ' at T, . Accompanying (1.3) is the
analogous power-law decay of critical correlations

GL (r)- 1 llrl '+", h =0, T = T„ lrl ~~,
(1.4)

which defines the critical exponent g.
In this paper we reexamine the connection between

coexistence-curve singularities, such as (1.1) and (1.2),
and their critical-point counterparts, such as (1.3) and
(1.4). Using straightforward renormalization-group

The low-temperature, ordered phase of ferromagnets
with a continuous symmetry (spin dimensionality n & 1)
exhibits coexistence curve singularities in various ther-
modynamic functions. For example, the longitudinal sus-
ceptibility yL =t)M/Bh, where M is the magnetization
and h the external magnetic field, diverges as h —+0:

A~O, T&T,

where a=4 —d, and d, which we henceforth take to be in
the range 2&d &4, is the spatial dimensionality. This
divergence is a direct consequence of the slow, power-law
decay of correlations in the ordered phase. In particular,
the longitudinal pair-correlation function decays as (see,
e.g., Ref. 9)

GL(r)=(s(r) Ms(0) M) —lrl

recursion-relation techniques, we rederive various ther-
modynamic functions, valid throughout the critical re-
gime, both above and below T„with and without an ap-
plied field. These functions properly exhibit each set of
singularities in the appropriate limit. We also exhibit the
full free-energy function, which, to our knowledge, has
not been fully analyzed previously.

We will use the original trajectory integral and noncrit-
ical matching technique of Rudnick and Nelson, '

circumventing —by means of simple spin-wave theory-
the difficulties these authors encountered near the coex-
istence curve. Some of the results presented here have
been derived to various levels of completeness by other
authors. In our eyes, however, their derivations, which
often involve very sophisticated field-theoretic tech-
niques, seem enormously complicated. ' The most com-
plete discussion has been given by Nicoll and Chang.
They used a more involved version of the trajectory in-
tegral technique; many of their intermediate expressions
bear a strong (presumably noncoincidental) resemblance
to our own, but we have not attempted a detailed com-
parison. We find precisely their result for the equation of
state, but our result for the free energy (which we believe
to be correct) diff'ers in some details.

We view our work as a final demonstration of the sim-
plicity and utility of the Rudnick and Nelson' technique.
Our main claim to originality is in supplying the one in-
gredient missing from the original discussion, namely, the
present understanding of spin waves in the ordered phase
of vector ferromagnets.

The outline of the rest of this paper is as follows: In
Sec. II we recapitulate the model, its recursion relations,
and their solutions. In Sec. III we derive the equation of
state by combining the results of spin-wave theory with
those of Sec. II. Asymptotic scaling equations are de-
rived and the corresponding parametric forms are exhib-
ited for general n —these contain spin-wave singularities
in the angular variable 8. In Sec. IV we calculate the free
energy and demonstrate consistency by deriving from it
the correct equation of state. Finally, in Sec. V we give a

42 10 505 QC 1990 The American Physical Society



10 506 PETER B. %'EICHMAN AND KIHONG KIM 42

short rederivation of the helicity modulus (or superfluid
density), as well as explore various quantities derived
from the free energy such as the entropy (or density, de-

pending on how the variable r is interpreted) and specific
heat. Appendix A contains some details of the recursion
relation solutions; Appendix B gives some insight into the
linear spin-wave approximation; in Appendix C some
spin-wave integrals are evaluated.

II. MODEL AND RECURSION RELATIONS

We work with the Landau-Ginzburg-Wilson
continuous-spin Hamiltonian

R
HLow = fd'x ' IVsl'+ —'r lsl'+u lsl' —h s

2 2

(2.1)

where —~ (s & (x), and 1 ~a n, where n is the spin
dimensionality. An underlying lattice, with lattice spac-
ing a or, equivalently, a momentum space cutoff
k„-m./a, must be assumed in order for the partition
function

for small t =r —r, (0. In mean-field theory we have

MMF =( r /4—u)' pMF
=

2
(2.5)

When M & 0 (i.e., when r ( r, or h )0), it is convenient to
expand the Auctuations in the spin variable around the
uniform magnetization M. If we define

o(x)=[s(x)—M] M, M—=M/M,

s (x)=s(x)—o(x)M,

then (2.1) can be rewritten in the form

HL~w =Hp+H)+H2+H3+H4

where

(2.7)

Ho = ( ,
' rM + uM -hM ) V, —

H, = —f d"x ho,

Hz=-,' f d"x(ROIVs
I +RolVo I

+rrls'I'+rLo'),

(2.8)

becomes nonzero below r„ increasing with a characteris-
tic exponent P:

(2.4)

Zr.ow = DSe (2.2)

H, =f d"
x( w,

ols'I' +w, o'),

H4= f d "x(u, o +2u2ls o +uils ),

M—:— "xsx = sx1

V
(2.3)

defined as a functional integral over all spin
configurations, to be well defined.

The model (2.1) undergoes a ferromagnetic phase tran-
sition as the temperaturelike variable r decreases through
a critical value r, (u) in zero external field h =0. In
mean-field theory, defined here as the limit in which the
coefficient Ro of IVsl tends to infinity (so that fluctua-
tions are effectively suppressed), one has r, (u)—=0. The
spontaneous magnetization

in which we have defined

h =h —rM —4uM

rL =r+12uM, rT =r +4uM

LU) W2 4ukf u ] u2 u3 Q

(2.9)

The first term Hp should be recognized as the Landau
mean-field free energy, which yields (2.5) when h =0.

Rudnick and Nelson' have derived differential recur-
sion relations to one-loop order for the Hamiltonian (2.7),
with R p

= 1 and k A
= 1. We reproduce them here in

more detail and with minor misprints corrected:

w, K4(n —1)
3 ——e h-

dl 2 1+r
W2K4

+O(uw, w ),1+rL
(2.10)

dry 12K4u i 4(n —1)u2K4
=2rL + +

dl 1+r 1+r,
18K4w z 2(n —1)K4w i +O(u, uw, w ),
(1+rL ) (1+rT)

(2.11)

drT 4(n + 1)u 3K4 4K4u 2=2rT+ +
dl 1+rT 1+rL

4K4w )
2

+O(u', uw, w'),
(1+rL )(1+rT )

(2.12)

dw, 1 4(n + 1)w, u3K4 16wi u21+ E' w) (1+rr) (1+ri )(1+rT)

4w )K4
3

+
2

+O(wu, w u, w ),
(1+rT) (1+rL)

12w2u 2K4 12w, w2K4
2

(1+re ) (1+rL ) (1+rT)

(2.13)
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dwz 1 4(n —1)w&uzK4
1+—E N2

dt 2 (1+rr}
36w~u, K4 36K4w2 '3K—4w, (n —1)

+O(wu, w u, w ),
( I + rt ) ( I + rL ) ( I + rT )

(2.14)

du, 36u )K4
=Eu]

di (1+rL )

4(n —1)u 2K4 216K4u & w2 8K4uqw ~
(n

(1+rr )' (1+r, )' (1+rr )'
54N 2K4

(1+rt )

,'(—n —1)w,E4

(1+rT)

+O(u, u w, uw, w ),
du 2 16K4u 2

dl (1+rL )(1+rr)
12u]u2K4

(I+rt )

4(n+1)u2u3K4 4K4u3w&(n+1) 36K4u2w2

(I+r )' (I+r )' (I+r )'

(2.15)

12u] N 1E4 4K4u2N1 48EC4u2N 1 N2 16K4u2N1 4N 1K4

(I+rL) (I+rr) (I+rr) (I+rt ) (1+rt ) (I+rr) (I+rr)(1+rL ) (I+rr) (I+rt )

36K4W 1w2 12N 1N2k4 +O(u, u w, uw, w ),(I+rr)(I+rt ) (I+rL) (1+rT) (2.16)

du, 4(n +7)u3K4

(1+rT)

4u 2E4 24E4u 3 w
& 8K4u2N, 4w, K4

(I+rL) (I+rT) (I+rt ) (I+rL) (I+rr) (I+rL) (I+rr)
+O(u', u'w', uw", w') . (2.17)

All terms in these recursion relations are evaluated at re-
scaling parameter l, with l =0 corresponding to the un-
renormalized parameters. Rudnick and Nelson did not
distinguish between u &, u 2, and u 3, and ignored a number
of the terms on the right-hand sides (RHS's) of
(2.13)—(2.17). In addition, the recursion relations for Ro,
which we do not display, turn out to contain terms of
O(w ) which could violate the assumption that Ro:—1 to
O(e) when M )0. It transpires that these differences do
not affect the solutions to the recursion relations to 0 (e).
The reason for this is quite simple: Initially, at l =0, we
have M & O(1) and r, u & O(e), implying that
w &O(u) &O(e). Hence, initially, terms of order w in
(2.13) and (2. 14) and terms of order w u and w in
(2.15)—(2.17) are much smaller —by relative factors of u

or u —than the other terms in (2.13)—(2.17). However,
the recursion relations will be integrated out to a value
1 =1*, defined in such a way that rt (l")=O(1). It will
be shown below that at I =t* we will still have u & O(e),
but that M =O(1/&u ) ~ O(1/v'e), and hence
w =O(v'u ) O&(v'e) Thus, ne.ar 1 =1', one will have
u —N . The terms with higher powers of N will therefore
be of the same order as the others and thus nominally
should be kept. In fact, when I ~ l* it is readily apparent
that only the first terms on the right-hand sides of (2.11),
(2.14), and (2. 15) need be kept; the rest are smaller by rel-
ative order u. Initially, it would seem that the first term
always dominates. However, since we are dealing with
exponential growth, this turns out not to be the case. To
complete the argument one must show that the neglected
terms give small contributions on a logarithmE'c scale. It
will turn out that in the regime in which w =O(u), the
next-to-leading terms are important, while the rest can
indeed be neglected: In the regime N »u, as stated
above, only the leading term is important.

To see this, the interval [0,1*] is divided into two

parts: One, [O, le], in which rt &O(e ), and the other,
[le, l*], in which rz ~ O(e ), where 0 &8& 1 is an arbi-
trary exponent (we require only that e ))e). Let us esti-
mate 1' —le. Assuming that in the range I ~ le only the
leading terms need to be kept, we find,

2(1 —lg)
rL (I ) rL(le-)e '1) 1

[1—(1/2)e](1 —lg) ' —' g ~

w, (1)—w, (le }e i =1,2
(2.18)

which implies [using w;(l" ) =0(+u (I')}]

e e O(e
—e~2)

(1*—I )

w;(le)=O(+u(1*}e ), i =1,2 . (2.19)

Substituting these estimates back into the higher-order
terms in the recursion relations, we find, self-consistently,
that the relative corrections to (2.18) are
O(u(1*)/e, u(l*)/e' ) for rL, and O(u(l"), u(l")e }
for w;. Since u(l")&O(e), these corrections are indeed
much smaller than unity as long as e((1. Finally, we
note that

u (I)—u(le)=O(eu(1*), u(l') )(I —le), (2.20)

so that

u (I*}= u (le)[1+0(e ln(e), u (I ' }ln(e))], (2.21)

implying that u (I) is essentially constant in the interval
[Ie, I*].

The above considerations imply that to leading non-
trivial order in e, and for rL &O(1), we need only work
with the following reduced recursion relations:
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wK4(n —1)
3 ——e

dl 2 1+re
3NE4

1+rL
(2.22)

present order we have g=0, so that

M ( I ) M(() )
(1/2)(d —2)l M (())e [)—() /2)E']( (2.27)

1m4&
=2rI + +

dl 1+ri

4(n —1)K4u

1+r&
which then yields

w(l)=4u(l)M(1) . (2.28)

18E~w

(1+rL )

2(n —1)K»w

(1+rr)
The solution to (2.26) is straightforward and yields

u ( I)= u (0)e"/Q (I),
dry 4(n +1)uK~ 4K4u

dl
'+

1+r

dw 1

l 2
1+—e w 4(n—+ 8)wuK 4

4K4m

(1+rL )( [+rr )

(2.24)

(2.25)

where

Q(l):—1 —u+ue",
and

u = u (0)/u ' =4(n + 8)K4u (0)/e, (2.29)

dQ 2

dl
=eu 4(n+—8)u K4 (2.26)

where, to this order, we have 80=1, m&=wz=w, and

u~ =u2=u3=u. A further simplification is achieved
when we note that the solution to (2.25), recalling (2.9), is
w (I)=4M(0)e ' " " 'u (I). Since the renormalization-
group transformation used here is quasilinear, the renor-
malization of the magnetization is given precisely by the
spin-rescaling factor exp ,' f [—go(I')+d 2]dl' —To t.he

where u'=e/4(n +8)K4 is the nontrivial fixed-point
solution for u. The solutions for h, rI, and rz. are more
complicated. We will illustrate the general methodology
in Appendix A, but quote only the answers here. (Rud-
nick and Nelson' have done most of their explicit calcula-
tions only when M =h =0. We feel it worthwhile to out-
line the M & 0 calculation in more detail, as some
subtleties do appear. ) One finds, to lowest nontrivial or-
der in e,

rL(1) = Tt (I)—2(n +2)K&u (I)+6K4u(I)Tt (l)in[1+ TL(I)]+2(n —1)K4u (l)Tr(1)in[1+ Tr(I)]

TL (I)
+144K4u(l) M(l) in[1+ TL(I)]+ +16(n —1)K&u(I) M(l) in[1+Tr(I)]+, (2.30)1+Tt ( I) 1+Tr I

rr(I ) = Tr(!) 2(n +2)—K4u (I)+6K4u (I)Tt (l)in[1+ TL (I)]+2(n —1)K4u (I)Tz(1)in[ 1+Tr(I)],

h (I)= h (I)—t (1)M(l) —4u (l)M (I) +2(n +2)K4u(1)M (I)

—2(n —1)K4u (1)M ( I ) Tr(l )in[1+ Tr( I ) ]—6K»u (1)M(1)T~ (1)in[1+Tt ( I)],
where

TL ( I ) = t ( I ) + 12u (1)M ( I )

Tr(I) =t (I)+4u (l)M(1)

t(1)=t(0)e /Q(1) "+ "+

t (0):—r(0)+2(n +2)K~u (0)+0 (eu, u ),
h (I):—I) (0)e

The variable t (0) is precisely r —r, (u).

(2.31)

(2.32)

(2.33)

III. SPIN WAVES AND THE EQUATION OF STATE

From Eq. (2.27) the magnetization is given by

M([)) M(I») —[(—()/2)e)l (3.1)

The calculation of the renormalized magnetization M(l') will be done within the linear spin-wave approximation,
which, as we shall demonstrate, is valid precisely in the limit u (I* ) « 1, rL (I ' ) =0( 1).

The linear spin-wave approximation is simply the quadratic fluctuation correction to the Landau mean-field solution.
The only inputs are therefore the two orthogonal curvatures of the Landau free-energy surface at the mean-field
minimum. Note that when the external field vanishes the transverse curvature must vanish due to the continuous glo-
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bal spherical symmetry of the spins. This requirement will provide a consistency check on the renormalization-group
calculation. From (2.8) (with Ro =1, u, =u2 =u3:—u, and tv, =tv2 =—u(), it is easy to see that the minimum occurs for
s =0 and o. =M(l) —M (I), where M satisfies

(h+rLM —8uM )=(rL —12uM )M+4uM (3.2)

It should be emphasized that M(l}WM(I), although when I =I' they differ only by terms of order tv; but even then
their externalgeld dependence (which comes from wave numbers k (e } is very different. This difference is crucial
to the derivation of the correct equation of state (see below). When expanded around this minimum the Hamiltonian
takes the form

H(I) = fd'x —,
'

I
vs'I'+-, '

I vs I'+-,'[r —4u(M' —M ')]Is'I'

+ ,'[rL ——12u(M —M )]o +4uM(cr +crIs I )+u(o +Is I )

+e '[ ,'r(0)M(0—) +u (0)M(0) —h (0)M(0)]V

+[—,'rL (M —M) +4uM(M M) —+u (M M)——h(M —M)]V, (3.3)

2 h(l) 1 1

M(1) M I M(l)

X [h ( I ) + rL (I)M (I ) Su ( l)M ( I—) ]

+ —1 [rL (I)—r&(I) —Su (l)M(1) ] .
h (I) M(l)
M(l) M(l)

(3.4)

The second term in both cases O(u (I) ) and hence is
beyond the resolution of the present calculation. There-
fore, to the order we are working we may take

IcT(I) =h (I)/M(1), (3.5)

which indeed vanishes in the ordered phase when
h (0)=0. It should be noted that, because of the spheri-
cal symmetry, the transuerse susceptibility gT is always
given exactly by M(l)/h(l), although (3.5), which is
essentially the mean-field inverse susceptibility, is only
approximate since fluctuations with k & e ' have not yet

where cr=cr+(M —M). The square of the transverse
and longitudinal curvatures are, respectively, ~T(1):—rT—4u(M M), and—~L(1) =rL —12u(M —M ). Using
(2.30)—(2.33) and (3.2), we find

been accounted for. The longitudinal curvature is given
by

KL =rL+3(KL rr), (3.6)

which is always nonzero and yields essentially the mean-
field inverse longitudinal susceptibility gL . The true in-
verse longitudinal susceptibility vanishes at h =0 due to
spin-wave effects (see below), though not as rapidly as

Again, this is an effect strictly of wave numbers
with k (e

We now proceed to calculate the equation of state.
Since the field cr(x) was defined to have zero mean,
( o (x) ) =0, we will have

(cr(x})=M(1) M(l) . — (3.7)

Ho= ,
' f d x(IVs—I+ VcrI +~TIs I +icLo ) . (3.8)

In Appendix B we give more insight into this form of per-
turbation theory. Combining (3.7) and (3.8), we find

But the left-hand side, to lowest order in the fluctuations
around the mean-field minimum, is just

&rr(x(&= (rr(x) Id y 4—uM[N(y('+cr(y(ls'(y)l'])o,

where ( )c indicates an average with respect to the quad-
ratic Hamiltonian

M(l}—M(1)= 4u(1)M—(l)fd y(cr(x)cr(y))0[3(cr(y) )o+(n —1)(s (y)I )o]

—4u (l)M(1) 3 n —1

KL (I) e q +let (I) q +icT(1)
(3.9)

where f = f d "q/(2m. ) . The integrals in (3.9) are straightforward and are evaluated in Appendix C. The result is
q
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M —M= — 6K4u[1 —aLln(1+@'L )+aLln(sL )]
KL

+2(n —1)K~u 1 —irTln(1+~T) ——I~T . (KT) ' —1
e sin(67r/2)

(3.10)

Now it is straightforward to show that to first order in
(M —M)/M, (3.2) can be written in the form

h =rL(M —M)=aL(M —M) . (3.11)

To the same order, M and M are interchangeable on the
RHS of (3.10); one must, however, be careful to use (3.5)
for a T in the last, singular term of (3.10). Using (2.32) for
h, (3.10) becomes, after a large number of cancellations,

1/S =(tog " '+12uoMQ)/Q,

where S =e ', which implies that

Q = 1+ u (S' —1)

The equation of state then reads

ho tog '"+"+4uoM

Mo P

(3.15)

(3.16)

(3.17)

h

M
= TT+6K4uTL ln(TL )

—e/2

+2(n —1)K4u
—2 h h

M

(3.12}

where all quantities are evaluated at l = I '. Note that we
have, correctly to the order we are working, used
(Tt, TT) and (ri, rT) interchangeably in the O(u) terms
on the right-hand side. We may substitute the solutions
from Sec. II into (3.12) to get the complete equation of
state:

Equations (3.14)—(3.17} constitute the full equation of
state, valid throughout the critical region. These expres-
sions agree precisely with those derived by Nicoll and
Chang (see their Sec. III, with the correspondences
I,=ho, Y=P ', Y2=Q ', I z=S ', X4=e, A2=2, and
u4=12K4u ). See also Ref. 5, Sec. VI, for some applica-
tions of these equations.

As an application of (3.17), let us derive the low-field
magnetization for to &0 (T & T, ) and identify the spin-
wave singularity in the susceptibility. If Mo remains pos-
itive when ho~0, we see from (3.14) that P is dominated

by

h t Q
'"+ '+4u M0 0 uo o

Mo

(n —1) "o 1

(n+8) Mo Q

' e/2
0

ho
—e el

so that the equation state reads

n —1 ho

n+8 Mo

' ] —e/2

Q6/(n +8)+4 M2

' e/2
n —1 ~oP=u ho~0, to &0,n+8 ho

(3.18)

(3.19)

6K4upe' " TLln(TL )
+ The zero-field magnetization is therefore given by

where the subscript zero denotes the unrenormalized ini-
tial values of the parameters, and Q and u were defined in
(2.29) and (2.33). In order to compare with results of Ref.
3, we define

Mo(ho=0)=( t, /4u )(/2Q3/(n+s( —t, &0,

while (3.15) and (3.16) yield

(3.20)

P =1+u
n+8

M e/2
0 —1 + (Q —1),9

ho n+8

(3.14)

g = 1 u + u( 2t )
«&n (E/2((n&+(/(n+(((

0

ho:0 to (0
(3.21)

and define the matching parameter l' by TL(l*)=1 [not
TT(l" ) =O(1), as assumed in Ref. 1], i.e.,

Writing, for small ho, MD=MD(ho=0)+6MD, and
denoting the solution to (3.21) by Q (u, to ), we find

n —1 1

n +8 8uoMo(0) Mo(0)

1 —e/2
n +11 1 —u

2 n+8 Q

n+2 1 —u

2 n+8 Q
(3.22)
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So that the small-field susceptibility g=86MO/Bho
diverges as

n —1 C(Q —) "o
y= u (1—6/2)

n + S Su M (0) M (0)

—e j2

60~0, to & 0 (3.23)

CtPg6—:(4u,M,') oQ, ~q ——

2 E

One then finds that 6 satisfies

6(e—2)/e —3+ g6/(n +8)

4—d
2

(3.24)

(3.25)

This represents the Griffiths scaling form for 6, valid for
all ~ ~ ~„,„, negative and positive, where
= —2 ' '"+ ' " represents the coexistence curve.
Proceeding now to the equation of state, we define the
scaling variable for hp:

4uoh—o/(4uoMO), 5=(6—e)/(2 —6) .

The relation between g and r then becomes

(3.26}

where C(Q ) is the expression in braces in (3.22). This
expression gives the precise 0 (e) amplitude of the spin-
wave singularity right up to T, . In Ref. 5 it is shown
how to cast such expressions into scaling form in order to
best illustrate the various crossovers involved. A simple
example will suffice here. For simplicity we take u =1
(i.e., u =u', see Ref. 5 for the method treating the gen-
eral case —which involves the introduction of a second
scaling variable -uo/to/ ). Define the scaling combina-
tions

to 1(1 I~)

(4u M )' i [1—
—,
'

6(n +2)/(n +S)]

parametric form. Here one uses a polar-coordinate-type
representation in the (to, ho) plane to siinplify expres-
sions. One writes

ho=R~ h(8), to=Rt(8), MO=R~m(8), (3.29)

where 8 ~0 is the radial variable and —1~0~ 1 is the
angular variable. Since the system is symmetric under
Ap ~ hp a convenient normalization is obtained by tak-
ing the positive tp axis as 0=0, the coexistence curve as
8=+1 (where ho~+0, respectively), and the positive
and negative hp axes as 0=+Op, respectively, where
0&00(1 is chosen for convenience. The utility of this
representation is apparent when one realizes that in the
Ising case n =1, Eqs. (3.14)—(3.17) (with u =1) corre-
spond exactly to the choices

h(8)=8(1 —8 )/+Su', t(8)=(1——', 8 ),
m (8)=8/+Su *, (3.30)

with 8O= —', and the exponents p, 5 displayed in (3.24) and

(3.26) and evaluated at n = 1. One also finds the
correspondence Q =R~" '. This is the so-called linear
model.

For n ) 1, life cannot be so simple. A spin-wave singu-
larity, roughly of the form (1—8 )" ', must appear in
either h(8) or m(8) when 8~+1. In fact, this is ap-
parent in Ref. 7 where this term appears as an unex-
ponentiated logarithm in their Eq. (25). The authors,
however, were unable to interpret this term unambigu-
ously. To see how (3.30) must be modified when n ) 1, it
is simplest to leave the functions t(8) and m(8) un-
touched [in fact, one may always choose m(8) linear ].
This yields (3.15) and (3.16) (when u =1) for general n,
with the same relation between Q and R. We now modify
h (8) to obtain the equation of state (3.14) and (3.17) for
general n. If we write

g
—

( 1+ 6/6( +n8) 9 @+ n —1(,/2
n+8 n+8 (3.27)

which represents the equation of state in Qriffiths scaled
form. This should be solved to yield (=Z (~), or

h (8)=8(1—8 )/(Su*)'/2h(8),

we find that consistency yields the equation

h(8)= (1—8 )
' h(8)'/ +(1—

)

(3.31)

(3.32)

ho =DM0Z (cto/Mo), uo = u *, (3.2S)

where D =(4u*) ' " and c =(4u*) ' ~ When
tp=~=0, this yields hp=DZpMp, the usual definition of
the exponent 5. The constant Zo =Z(0) satisfies

h ( 8 }
&1/(1 —e/2 1( 1 82) —e/2/(1 —e/21+ 0( 1 }, (3.33)

where v„=(n —1)/(n+S) vanishes when n =1. For
8 ~1 one finds

3 /[& —)+ Z
— /& —

1n+8 n+8

In the opposite limit r~r„,„,a careful analysis of (3.27)
yields precisely (3.22) and (3.23} with u =1. Thus (3.27)
and (3.2S) are a succinct way of representing the cross-
over between the spin-wave "fixed point" at ~=~„,„and
the critical fixed point at to =ho =0 [the value of r is not
specified in this limit, depending along which particular
path in the (to, ho) plane one approaches the critical
point].

Equations (3.24) —(3.27) may also be cast in so-called

and hence

h (8) 2
—1/2v —1/(1 —e/2)( 1 82)1/(1 —e/2)

n

g'~1 . (3.34)

It is apparent that the linear model misses all of the
essential physics of the coexistence-curve behavior when
n & 1. If the spin-wave singularities are expanded naively
in powers of e, as in Ref. 7, one encounters a term pro-
portional to 6(1—8 }ln(1—8 ), which drives ho unphysi-
cally negative as 0~1, yielding, for example, a negative-
going susceptibility.
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IV. FREE ENERGY

(4.1)

where

Go(l) =—Kd in[1+ rL (1)]+(n —1)in[1+r7 (1)]— n—1 2

(4.2)
I

In this section we compute the free energy. From Ref.
1 we have, to one-loop order,

F(ro, uo, ho)= f e "'G()(l')dl'
0

+e 'F( r (1),u ( 1), h (1)),

and we have dropped a trivial constant proportional to
ln(2n. ) from the total free energy. The trajectory integral
is a tedious, but straightforward application of the tech-
niques used in Appendix A. Most of the answer has al-
ready been given in Ref. 1. We begin by writing
In(1+r)=[ln(1+r) r+—,'r ]—+r ,'r—, —the idea being,
once again, to isolate the small r from the large r behav-
ior. The first (bracketed} term contains the large
r =O(1) dependence, the second contains the small r
dependence, and the last is slowly varying and must be
integrated exactly. One 6nds, then,

f e ' G 0(l')d/'= I)(l) +I~(l) Ii(l =—0), (4.3)

where

I, (l)= 4)Kd f—e '[rL(l') +(n —1)rr(1') ]dl',
r

I (1)= (n —1)e [r (1) —1]ln[1+r (1)]— r(1)—— r (1)+-It.d —dl 2 1 2 2 2
2 2d T T 2T d 2T d

(4.4)

+ e [r (1) —1]ln[1+r (1)]— r(l) —— r (1)+-1 —dl 2 1 2 2 2
2d

(4.5)

The expression (4.5) for I2(1) differs in some details from that given in Ref. 1 —the major difference being the ,r-—
terms, which are needed for later cancellation. All other di8'erences disappear when one takes, correct to order e, d =4
in the various coefficients on the right-hand side of (4.5). The remaining integral I, (1) is evaluated by using rL = TL and
rT= TT, substituting (2.27} and (2.33), then performing the integral exactly. (This is possible since the entire integrand
is then slowly varying, a function only of e".) The result is

t
(1)— [g (1)(4—n)/(n+s) 1]+ M2[g (1)

—(n 2+)/( +n()) 1]+ M4[g (1)
—) 1]

16u n —4 2 0 0
up pl

(4.6)

To complete the calculation, we require F(1). This is given by the first fiuctuation correction using the Hamiltonian
(3.3). We find e 'F(l)=FO+F, (l)+F2(l), where

Fp =
2 rpMp+ upMp hpMp

Fi(l)=e 't ) rL(l)[M(l) —M(l)] +4u(l)M(1)[M(l) —M(l)] +u (l)[M(1)—M(l)] —h(1)[M(l) —M(l)]I,
T

F2(1)=—e f ln +(n —1)ln
1 dl 1 1

2 q g ++L q +aT

(4.7)

(4.8)

(4.9)

Note that by (3.2), M(l) minimizes Fi(l), i.e., (}F)(1)/(}M(1)=0. The integral F2(l) can be evaluated to give
F2(l) =Fz(l)+Fsw(l), where (see Appendix C)

, (n —1)Kd 1 4 2 2 2F (1)= e-
2d

()~ —l)ln(1+)c )
——a — )r +—

2 d —2 d

—e (a —1)ln(1+a. )
——(( — a. +—1 4 2 2 2

2d
(4.10)

E E
Fsw(l}=(n —1} )cz. aT' . —1 e—+ e aL ln(~L )

———2 ' 4, 4 /re/2 —dl d —dl 4 2 1

2d d sin( n.e/2 2d 2
(4.11)

We have displayed the exact ar singularity in (4.11) for completeness. This is the spin-wave contribution to F. Note
the similarity between I2(1) and F2(1). We take advantage of this similarity by expanding I&+F2 in the small
differences )ri —rL = 12u (M M) and a T r—T =4u (M —Mz)—:

Iz+Fz = ——e '(M —M )[—2(n +2)K4u+6K4uTI ln(1+TI )+2(n —1)K4uTrln(1+ TT )]
2

= —M(M —M )e "'(rr Tr ), — (4.12)
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where we have used (rL, Tt, at } and (rT, TT, a T ) interchangeably inside the terms of order u, and set d =4 in the vari-

ous coefficients on the right-hand side. The last line follows from (2.31) and (2.33). We now combine (4.12) and (4.8),
and use (3.11) to evaluate M —M (correct to the order we are working):

I +F +F =e "' —h —h hM—(r —T )2 2 1 T T
L

= —e "'(M /2TL)[(h/M —TT) —(rT —TT) ], (4.13)

(4.14)

where

where we have used h = h rTM—[see (2.31) and (2.32)]. The expressions for Fp, I,(l), and I2(l =0) combine to yield

2 't, M-,'g'""+"+u, M4
F I (I—=0)+I (l)=A + (Q' "' '"+ ' —1) h—M +

16u n —4 0 0 gQ0 n

A
peg

nEd

2d
(1 r—)ln(1+r )+ r+ —r ——2 1 2 2 2

0 2 d —2 d
(4.15)

P= 1+ (Q —1)+ u
9 n —1 4 "0

n+8 (4.16}

is the regular part of the free energy.
It is tempting to replace i~r by h/M in (4.11},according to (3.4) and (3.5). Unfortunately, this leads to incorrect re-

sults: %e will ultimately be interested in deriving the correct equation of state from our free energy, and although
i~T=h/M, the equality breaks down under differentiation. The correct replacement is actually h/M (see below) or,
preferably, to preserve the exact value rT 4u (M ——M ) until after differentiation. One may then safely interchange
Mand M. Let us define Mo —=e " '~ "M, and [cf. (3.14)]

' -e/2

The total free energy then reads

2

W =F+h M = W + ' g"-"'""+"——"
0 0 reg 16 4 4

2

+ ~0

1690
(Q —P)+ R

16up 2TL Mo Q

SM0 h0 "T R
r

+ e "iiL 1n(~L ) ——

where S=e ' [see (3.16)], and we have defined, for convenience,

R =tpg '"+ '+4u M

(4.17)

(4.18)

Equation (4.17) deserves some coinment: Strictly speaking, F should depend only on hp, while A should depend only on
M0. Thus one should actually write

F =F(rp up hp Mp(hp)) A = A (rp up hp(Mp) Mo)

The function Mp(hp), or, equivalently, hp(Mp), is determined by minimization:

(4.19)

aF aA=0 or =0,
BM M(1 } Bh 1(M)

(4.20)

where the partials denote derivatives with respect to the fourth and third arguments of F and of A, respectively, in
(4.19). Alternatively, the usual thermodynamic relations imply

dF gF ()F dM

dh Bh BM dh

ax aa dho

dM BM Bh dM

(4.21)

However, by (4.20), the second terms vanish, yielding simply

BF BA
Mo(ho) or =ho(Mo) .

0 0
(4.22)
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Note that since A =F +hoMo, the second half of (4.20) is equivalent to the first half of (4.22), and vice versa. This still
leaves two entirely distinct ways of calculating the equation of state. The main test of the free energy (4.17) is that it
should yield the same result [Eqs. (3.14)—(3.17)] by either route. We begin by verifying the ho derivative. This is quite
simple since the only explicit ho dependence is in a.r and aL through M. From (3.2) we find (for fixed I)

and hence

2 7

KL

(4.23)

~KT 8uM
ah ~ '

ah

24uM
2

KL
(4.24)

It is now straightforward to derive

SMO ho0= =
2 (Q —P)—

Bh 0 Qir2L Mo

SMo

TL

ho

Mo

Kd 24uMo+
g 4 L Lx In(i~ ) (4.25)

Setting TL = I =aL [which yields (3.15)], the last term vanishes, and (4.25) can be manipulated into the form

ho/Mo =R /P, (4.26)

which, using (4.18), corresponds precisely to (3.17), the correct equation of state. The derivative with respect to M is
somewhat more tedious. Let us define

V=432K~u [In(1+ TL )+ TI /( I+ TL )]+48(n —1)K~u [ln(1+ TT )+Tr I( I + TT )]

+3456u M K&[I/(I+ TL)+ I/(I+ TL ) ]+128(n —1)K&u M [I/(I+ TT)+ I/(I+ TT) ]
(4.27)

W=144K~u [In(1+ TL )+ TL/( I+ TL )]+16(n —I )K~u [In(1+ Tz )+ Tz/(I+ TT)] .

Note that (3/BM( WM )= VM, and that both V and W
are 0 (u ). It is then straightforward to show that

BM M(M —M)V
aM

cancels, and we are left with

BA

aM,
(4.30)

'BrL

BM
=(24u + V)M,

24uM(M —M ) (4.28)

rT

aM
=(8u + W)M,

~Irr V8uM(M —M )

BM

BA

BMo

R
8uoMO

8uo

S R»oMo
TL, Q Q

RMo
(4.29)

Using TL =S(R +8uoMO)/Q, essentially everything

Thus (3M/8M=0(u ); i.e., M essentially does not de-
pend on M. This can be seen more directly from (3.2):
To the extent that rL —12uM and rT —4uM are ap-
proximately M independent, the coefficients in (3.2) are M
independent. Similarly, KL and KT are weakly M depen-
dent, while rI and rz- are dominated by the M depen-
dence of TL and TT. To lowest order, then, we have

o 4
Nc reg 16 4uo n

g (4 —n ) I( n + 8 )

4 16uoP
(4.31)

with (3.14), (3.15), (3.16), and (4.18) defining P, Q, R, and
S, respectively. They state that the equation of state
should be derived by differentiating only the explicit Mo
dependence in (4.31), i.e., that which appears in R. This
indeed yields (4.26). However, one should demonstrate
that derivatives, with respect to the implicit Mo depen-

which is the correct answer. It is apparent then that the
equation of state [Eq. (4.26)] can emerge from BA /BMo
only in higher order. However, keeping the higher-order
terms in (4.28) is not sufficient —many other terms of the
same order will arise from higher-order Feynman graphs
and from better approximate solutions to the recursion
relations. This problem seems to be a general feature of
loop expansions: Different paths leading to the same
physical quantity may require different orders in pertur-
bation theory to achieve equivalent results.

Having demonstrated satisfactory consistency of our
free energy, we compare it to that derived by Nicoll and
Chang. Their result can be written in the form (see Ref.
5, Sec. VI)
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d g (2 (1/2)e
16

R Q /+1 1

16u() P P Q (1+R /8u()M())

x Q '+'
Q

(4.32)

where we have dropped the term proportional to

(rT/S —R/Q) since it is apparently of higher order in u

and in any case approximately independent of both M0
and ho. The last term in (4.32) can be rewritten:

'2
R 1+ PR /P

16u()P R+8uoMo2 Q P
P —P

(4.33)

To the extent thatP =P [compare (3.14) and (4.16)] and
R ((I, (4.33) reproduces the last term in the Nicoll-
Chang result [Eq. (4.31)]. It is easy to check that
(P P)/P is al—ways 0(e), while P —

Q is roughly 0(e),
unless (ho/Mo)' is small —however, in this case the
prefactor R /P =ho/Mo is small, and so the whole term
is always small. A better approximation is to take P in
place of P in (4.31). This is so because, for complete con-
sistency, the equation of state should be derived not only
from the M0 dependence in R, but also from that in P.
One finds [recall that ho/Mo in (4.16) has been replaced
by R/P]

dence, do not contribute further terms. The simplest way
to compare (4.31) to (4.17) is to use the equation of state
to substitute for ho/Mo in (4.17) and use Mo and Mo in-

terchangeably. This yields

2

Q
(4—n ) I( n + 8 )

16u0 n —4 4

R

16u0P
g —[2—( 1/2) e]

16
(4.35)

with the equation of state to be derived by differentiation
with respect to the explicit Mo dependence in R [accord-
ing to (4.18)] and in P [according to (4.34)]. By construc-
tion [explicitly verified for the free energy (4.17)], all oth-
er implicit M0 dependence —embodied in the choice of
the matching scale 1=1' [i.e., Eq. (3.15)]—will cancel
out under differentiation. In Sec. V we explore the effects
of the extra S " "~ term on quantities derived from
the free energy. In particular, we reexamine the deriva-
tion of the helicity modulus Y at constant density in Ref.
5. We also give an enormously simplified rederivation of
the helicity modulus which agrees precisely with the ex-
pression calculated by Rudnick and Jasnow. Our ap-
proach relies on the identification of f with the small k
behavior of the Green's function, rather than the
method of comparing free energies for periodic and an-

tiperiodic boundary conditions.

V. HELICITY MODULUS, DENSITY,
AND SPECIFIC HEAT

A. Helicity modulus

In the ordered phase (in zero external field), the
Green's function

G(k }= & I sk I' &
=

& I sk Ml' &+ & I s), I' & (5.1)

definite discrepancy with our own expression. For the
reasons given above, we believe our expression to be the
correct one.

In summary, then, the correct form for the free energy,
closest in spirit to that of Nicoll and Chang, reads

g g — Q(4 —n)/(n +8)
t'

Nc reg 16u n 40 4

aP 4 ap
aM, d aM,

16u 0M0 (P P)P-
P —,'d(P P)——(4.34)

has the small-k behavior

G (k) = IM() I'fi(k)+ bT /Ik I'+ b, /Ikl'+0(1), (5.2)

so that neglecting the Mo dependence of P in (4.31) en-

tails errors of relative order (P P)/P=0(e) i—n the
equation of state. Alternatively, if one takes R /P in

(4.31), the extra factor of 4/d cancels the error term
linear in (P P) /P, leaving er—rors only of
0( [(P—P ) /P ]').

Finally, recall the )(I [ln(~t ) ——,'] term. This term is

constructed so as to vanish when differentiated at fixed I
and then evaluated at ~z =1. However, if ~~ =1 is im-
posed before differentiation, this term, which then takes
the value —,', KdS ~ " ', serves to maintain the identi-

ty BA/Bl*=O —canceling contributions from the now
Mo- and ho-dependent functions Q and S appearing else-
where in the free energy. This term is also crucial for
correct evaluation of other derivatives, such as the entro-

py (or density, depending on how thermodynamic vari-
able r is identified) —(aA /ato)8t . Therefore, the lack of

0

this term in the Nicoll-Chang free energy represents a

where bL is related to the amplitude of the divergence of
the longitudinal susceptibility [Eq. (1.1)], and br is the
amplitude of the transverse spin-wave singularity. One
has the exact correspondence

bT=(n —1)IM()l kt) T/Y, (5.3)

where Y is the helicity modulus, which is related to the
superAuid density via

p, =(m/()1) f, (5.4)

m being the mass of a He atom. One may also define Y
in terms of an integral over a current-current correlation
function ' (which involves an average over a four-spin
operator, rather than a two-spin operator). The latter is
more closely related to the definition of Y in terms of the
free-energy increment due to "twist" boundary condi-
tions. ' We concentrate on the former definition, which
may be restated as



10 516 PETER B. WEICHMAN AND KIHONG KIM 42

"r . 1= lim.-«'G, (k)
(5.5)

dG» = —[2—q(I)]G~ . (5.6)

To 0 (e) one has g(l}=0, which yields

G~(k, 1=0)=e ' Gj(ke', I'),
and hence

(5.7)

Y/keTMO= lim 1/k G~(k, l*)

where G~(k}=[1/(n —1)](~sj, ~
) is the transverse part

of the Green*s function. Since the renormalization-group
transformation used to generate the recursion relations in
Sec. II is quasilinear, the small-k part of the Green's
function transforms exactly as

in (5.13) yields a divergent result. This problem is solved
in the original physical model by imposing proper period-
icity at the boundaries of the Brillouin zone (i.e., Um-

klapp processes in the Fourier space representation of the
us interaction). The spherical Brillouin zone we use
here complicates matters since it cannot be repeated
periodically via translation by reciprocal lattice vectors.
We instead solve the problem by fiat: Since
Itr(k) —ILr(0) is well defined if the cutoff is allowed to
diverge to infinity, we define Y(l") from the leading k
dependence of this cutoNess expression. The result we
will then derive agrees with that of Rudnick and Jasnow
(who encountered precisely this problem and solved it in
this same way) and with a field-theoretic derivation of
universal amplitude ratios involving Y (see below}."

To the requisite order, (5.13) may be evaluated with
K&=0 on the right-hand side. We find

so that

=Y(I*)/ks TM(1" ) (5.&) lim —,[ILr(k) —ILr(0)]=f0 k-' ~ q2 (q2+~~g)2

(5.14)
Y —e

—(d —2)l Y(1 )

Thus we need only calculate Y(1'), which to 0(e) in-
volves only the lowest-order spin-wave corrections to Y.
From the Hamiltonian (3.3) we find, to 0(u (I*)),

Y(I*)/ktt T=M(I') +—'K +0(u(l")), (5.15)

where we have used the matching conditions xL(l')=1
and Su(l*}M(I')=1 in the second term on the right-
hand side. The final result is thenG~(k) '=k +sr+4(n +1)u(l")Ir+4u(I')IL

(5.9)
To 0 (e) we may also take d =4 in this integral so that

where

—
—,'w(l') [4(n —1)Ir+6IL]/aL

—4w(1') Itr(k)+0(u(1') ), (5.10)

1 1
IL=, Iq=2+ 2 2+ 2

KL zq

1 1
It r(k) =

e (k+ q) +~t q +~2r

(5.1 1)

On the coexistence curve the right-hand side of (5.10)
must vanish at k =0. This determines Kz. Setting k =0,
we find

(sr)„,„=[—4(n +1)u(l')+2(n —1)w(l') ]Ir
+[—4u(1")+3w(l') /sL ]IL

+4w(l') Itr(k =0) . (5.12)

Hence the only contribution to Y(l*) comes from the k
dependence of It r(k):

Y(l*)/ke T= 1 —lim 4w (I' } [ILr(k) —IL r(0)] .1

k~p k

(5.13)

At this point one encounters problems with the sharp
cutoff we have been using: The domain of integration for
Itr(k) in (5.11) is defined as the region of ~q~ & 1 such
that ~k+q~ &1 as well, i.e., the intersection between two
hyperspheres whose centers are separated by k. This
yields a contribution to ILr(k) ~ ~k~, and hence the limit

Y/k T=M +e ' " 'K +0(e ) (5.16)

which corresponds precisely to the result of Rudnick and
Jasnow.

A very similar calculation for the helicity modulus was
carried out in Appendix B of Ref. 11 in the context of
verifying two-scale-factor universality. There it was
shown that the ratio gr( —to)lg(to) tends to a universal
constant as to~0+ Here .g is the usual correlation
length defined by the exponential decay of the spin-
spin correlation function above T„while
fr=(Y/ke T) ' '" ' is the natural hydrodynamic
length which diverges as T, is approached from below.
Universality of this ratio is a consequence of hyperscaling
and is therefore valid for 2 & d (4.

B. Density

We define the density pp via

BA

~rp Mo

()F
()rp

ho

(5.17)

We call this a density since in the problem of
superAuidity in a dilute Bose gas, rp ~ —p is related to
the chemical potential, and pp is related via a multiplica-
tive temperature-dependent factor to the boson density
p. We carry out the above derivative on the free-energy
expression (4.17}[or (4.35)] at fixed I, then set I =I*. For
simplicity, we will take ho=0. At fixed I, Q is ro in-

dependent. For to &0, we also have R =0 (coexistence
curve). As mentioned earlier, the last term in (4.17) is
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Q
( 4 n) /( n—+8 )

t
Pp Pp, reg 8 4 4up n

h, =0, t, & 0, (5.18}

where Q satisfies (3.21), and

po „8=(nK4/4)[1 —rain(1+ra)] . (5.19)

designed to vanish under differentiation. The only to
(hence ro) dependence that contributes to po in the end
comes from the first two terins in {4.17). Hence

This should be compared to Eq. (6.35} in Ref. 5 which is
far more complicated. The extra complexity is a direct
result of the missing S " "l term in (4.31) which
would otherwise serve to cancel the extra terms. The nu-
merical difference is, however, probably very small.
Correcting the subsequent equations in Ref. 5 is very sim-

ple. In particular, the coefficient of Q
' "'/'"+ ' in Eq.

(6.48}and of Z(:-)' in Eq. (6.65}should simply be set to
unity.

For ip & 0 one needs an expression for the limit
xT=h/M when h~0, i.e., g(l) ', the inverse suscepti-
bility. From the equation of state, or by direct diagram-
matic evaluation, one finds

'(l =0)=e 'y(l) '=toQ '"+ )/("+"[1—2(n +2)K4u (l)ln[t(l)]I, ho=0, to &0 .

With the matching condition t ( I' ) = 1, one determines Q—:Q+ via

—+ -t —e/2m(e/2)(n +2)/(n +8)~+ = —u utp ~+

(5.20)

(5.21)

(5.22)

[cf. (3.21)), and only the first term in (5.20) survives. From these equations one finds that P =Q+ when ho=0 and

to & 0. Hence only the fourth term in (4.17}contributes any further to dependence, and one finds

tp
p p + ( Q(4 ) n( /+n8)

1 ) h =0, t & 00 oreg 8 4 + 0
up n-

The compressibility (more commonly interpreted as the specific heat) is then given by

p
at, '"8 2(4—n)u,

Q(4 —n)/(n +8)
1 —— [1—(1—u )Q ]

e 6
2 n+8 1 —— [1—(1—u)Q ]

n +2
2 n+8 4

n
)co «8+ {4

r

Q(4 —n)/(n+8)
1

e
[1 (1 u )Q

) ]2 n+8 1 —— [1—(1—u)Q+']n+2
2 n+8

60=0 tp &0
(5.23)

hp=0, tp)0,

ao «8=(nK4/4)[ln(1+ro)+rol( I+ra)] . (5.24)

e 4—n

2 n+8
E n+2
2 n+8

It is worth commenting that (5.23} yields the universal
specific-heat amplitude ratio" correct only to zeroth or-
der in e. This is because the exponent

where X represents some thermodynamic constraint, for
example, fixed density p. Evaluation of (5.25) requires
knowledge of the implicit T dependence of to, uo, etc.,
which depends on the particular path taken to arrive at
the effective S model, as well as the precise nature of the
constraint X. We shall exhibit the calculation for the
case of the dilute Bose gas where the constraint is that of
fixed density (Sec. V B) and the temperature dependence
enters via

is 0 (e). One needs the specific heat correct to 0{e } to
obtain the universal ratio correctly to 0 (e).

C. Specific heat

The specific heat at fixed X is given by

r() = —Rdpp, u() = Udpu()/AT, k/, = I g/AT

[see Eqs. (5.25), (5.27), and (6.4) in Ref. 5]. Here
1/(d —2)

d dr, 2~~ —,'(d —2)r—
2

(5.26)

asC=T
X

a ar
aT aT

{5.25)

Ad=4m/I d, and Ud=8m /I d are dimensionless con-
stants, p= I/kt) T, AT=h /(2irmki)T)'/2 is the thermal
de Broglie wavelength, and m, vp are He atomic parame-
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ters. Finally, the number density is

p=(8~/n I ~)k~pp, (5.27)

nKd

2d
(5.28)

where po=(BA/r)ro) was calculated in Sec. VB. The
free energy A—:A B„,which appears in (5.25) differs also
by a temperature-dependent factor and additive term
from A = 3,„;„calculated in Sec. IV due to spin and
space rescaling: One finds

For completeness we also exhibit the relation between the
Bose and spin order parameters and conjugate fields—
determined by the spin and volume rescaling factors [Eq.
(6.2) in Ref. 5]:

PHrj„, —k „Rd ho,
(5.29)

Setting hp=O, we calculate the specific heat C+ for
T~~T, . As mentioned earlier, only the first two terms in

(4.17) contribute for T & T„while only the first, second,
and fourth contribute for T ) T, . One finds

(d —2) /t()5+=k nka Po[to d(n +2)Kduo]+ „(Po Po,

(d —2)to g(4 —n)/(n+8)(1
Q

—)
)

d 2
A

8(n +8)uo 2

nKd
1n(R~ ) (5.30)

The constraint may be put in the form'
d/2

n C

d po po, reg~
—1, (5.31)

where T, (p)=T, (p) is the transition temperature at
given density p, and T, (p) is the ideal gas transition tem-
perature defined by PAr =g( ) d ). It is easy to see that

for to~0, (5.31) yields to-t '/" ', so long as a) 0 (to
order e, this requires n (4, which we henceforth assume).
One sees therefore that the most singular parts of the en-

S+,sing

Sreg
=

ndI t2 cx t2
0 0

k~Ptp+0 tpt y ~ ~ ~

16m Qp QP

d+2 d 2
k Aktt

—+In(Rd )+O(u() )

(5.32)

One finds then C+ C g+C+ g
with

I

tropy at constant density are the terms linear in t0:
S+ S eg +S+ g

with

C+, sing

[(nd) I dKd/8n(d —2)]k t)upo[l+O(t, t ' " ))

D+(Q+ )
(5.33)

C =—S=d
reg 2 reg

n(d —4)I d
kttp —+ln(Rd )+O(uo, t )

327T

and

(g )
n g(4 —n)/(n+8)

1
e

[1 (1 —)g
—) ]+ + 4 + 2 n+8

(g ) g(4 —n)/(n+8)
1

e
[1 (1 —)g

—) ]4 —n 2 n+8

1 ——E n+2
[1—(1 —u)Q+ ]

n

2 n+8 4

1 —— [1—(1—u)Q: ] —1
e n+2 —1

2 n+8

(5.34)

Note the resemblance to the inverse of the unconstrained specific heat (5.23). The functions Q+(t) are determined via
the constraint equation (5.3). It is easy to see that (5.33) yields the usual Fisher-renormalized' specific-heat exponent
a'= —a/(1 —a). Similarly, the universal amplitude ratio r, =C+ /C is renormalized via r, =r, '/"
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APPENDIX A: DETAILS OF RECURSION RELATION SOLUTIONS

We outline here in somewhat more detail the solutions to the recursion relations (2.22) —(2.26). The solution for u (I)
is elementary and is given by (2.29). The solution for u) (l) follows immediately via (2.27) and (2.28). The solutions for
rr(l) and rt (l) are more complicated. Following Rudnick and Nelson, we begin by analyzing the simplified recursion
relations, valid for r, u ~O(e):
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drL

dl
=(2—12K4u )rL —4(n —1 )Kd, urT+4(n +2)K&u,

rT

dl
= [2—4(n + 1)K4u ]rT 4K—4urL +4(n +2)K4u .

(Al)

(A2)

Diagonalization of the first two terms in each equation yields two eigencombinations r) =(1/n}[ri +(n —1}rr] and

r2=(1/n)(rL rT) —with solutions

r, (1)=r,(0)e '/'Q(/)("+ ' '"+8'

l (/)=r (0)e /Q(/)2/( +

(A3)

(A4)

These are now used to generate the full solutions. The first step involves converting the recursion relations to integral
equations. One finds, in a straightforward way,

(p)e 2l/g (/)(n +2)/(n +8)+ [e2l/g (/)(n + 2)/(n +8)]f d/ e
—2I'g (/ )(n +2)/(n + 8)

r& —
r&

0

X [4(n +2)K~u(/')+ [4(n +2)K& ln ]u (/')rz (I') /[1+rL (I')]

+ [4(n —1)(n +2)K~/n]u (I')rT( I') /[1+ rr(l') ]
—(18K4/n)w (I') /[1+rL (I')] —[2(n —1)K4/n]w(l') /[1+rr(/')]
—[4(n —1)K4/n]w (I') /[1+ rL (/') ][I + rT(/') ]],

(/) = r ((})e2(/Q(/)2/(n +8)+ [e2(/g (/)2/(n +8)]f d/'e 2('g (/')2/(n + 8)

0

X [(8K4/n)u (I')rT(l') /[1+rT(l')] —(8K4/n )u (I')rr (I') /[I+ri (I')]

(4K4/n)w— (l') /[1+rL (I')][1+re(l')]+(18K&/n)w(l')2/[1+ri (I')]

+[2(n —1)K~/n]w(/') /[1+rT(l')] I .

(A5)

(A6)

The basic technique used to evaluate the remaining integrals is to divide each term into a slowly varying piece, a func-
tion only of e", and a rapidly varying piece. An integration by parts is then performed, putting the derivative on the
slowly varying piece, which then becomes smaller by a factor of e. The remaining integral can then be dropped. One
also must take into consideration which region of integration contributes most to the integral. For example, rI (/) and
rT(/) are small, of order e, for most of the interval 0~ / ~ /', becoming large, of order unity, only over the last part of
the interval, during which slowly varying functions, such as u (/), change only by O(e ). It was precisely arguments
such as these that led to the reduced set of recursion relations (2.22) —(2.26} and must be used here again to further sim-

plify the analysis. Finally, if the entire integrand is slowly varying, the integral is performed exactly: Usually such
terms involve only rational functions of e".

To illustrate, the combinations e 'rL(1'), e 'rT(l'), and e w (I') are slowly varying, as are Q(1') and u(1 ).
Thus, for example,

I rL(1')f d/ [e u(/ )Q(/ )
"+ "+ rL(/ )]

0 1+rL(l')
' u(/')g(/')'"+ '/'"+ 'rL(/')

( rL(l )

I+rL (/") (A7)

where the integral remaining after the integration by parts, with the derivative on the slowly varying part, has been
dropped. The integral of the function rL /(1+ rL ) is performed by realizing that the important contribution comes from
the region rI »e. In this region we may approximate rL(/")=ri (/')e " ' ', I"& I'. This yields

rL ( I")f „d/" =—in[1+ rL ( I') ]+e,1+ri(1") 2

where c is an arbitrary constant of integration, which we take to be zero. The result of (A7) is then

e 'u(l)Q(/)'"+ '/'"+ 'rL(l)ln[1+rL(/)]+O(u, eu ) .

Similarly, we have

I
rT(l')

d/'[e —
2lu (/')Q(/')(n +2)/(n+8)r (/')] e

—
2lu(/)Q (/)(n +2)/(n +8)r (/)ln[ 1+r (/}]+O(u 2 &u )1+rT(1') T T

(A8)

(A9}

(A 10)

The w integrals are evaluated by first ignoring the 1/(1+r) denominators, yielding a slowly varying integrand which
can then be treated exactly. The remainder is then evaluated via integration by parts: Once again, the major contribu-
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tion comes from the region rL » e, and the same approximations are made that led to (A8). The result is

f l r~(2+rL )—2I'g (i }(n+2)/n+8)W (i~)2
0 (1+rL )

—2lg(i)(n+2)/(n+8)[ (i)M(i}2 2lg(i)
—(n+2)/(n+8)u M2]2

3EC.
'

(!)2 2lg(!)(n+2)/(n+8) ln(1+r )+1 rL

2 1+rL
+O(u, eu ) . (A 1 1)

Analysis of all other terms is essentially the same. We quote only the final results for r, (!)and r2(!):

(!) e2lg(!)
—(n+2)/(n+8) r ({))+4(n +2)

uoMO —2(n +2)K4uo+O(eu, u 2)
n

4(n +2) 2(n +2)K4
u (!}M(i) —2(n +2)K4u (i)+ u (!}rLln(1+ rL )+

n n

2(n —1)(n +2)K4
u (i)rTln(1+ rT )

n

9K4 rL
w (!) ln(1+rt )+

n 1+r,
(n —1)K4 fT

w (!) ln(1+ rT)+
n 1+rT

2(n —1)K4+ w (!)2
L rT

ln(1+rL )+ rT
ln(1+rT)

rL
(A12)

4K4
r2(!)=e 'Q(!) /'"+ ' r2(0)+ uoMO—+O(u, eu ) ——u(!)M(!) + u(l)[rTln( 1+rt. ) r&ln(1—+rz )]

2K4+ w(!)
rL rT

ln(1+rt )+ ln(1+rT)
rL fT rT fL

9K4 rL
w (!} ln(1+ rL )+

n 1+r,
(n —1 )K4+ ln(1+rT)+

n 1+rT
(A13)

These expressions are now used to calculate rL and rT via rt =r, +(n —1)r2 and rT =r, r2. After a—number of cancel-
lations, we find

[r +02( +n2}K4 +uoO(e ,uou)]o'e(n —1}O(euo,uo)e '
rL (!)=

g (!)(n+2)/(n+8) +
g ( i)2/(n +8)

+ 12u (!)M(i) —2(n + 2)K4u ( I)+6K4u (1)rz ln(1+ rL )+2(n —1)K4u ( i)rTln(1+ r T )

+9K4w(!) ]n(1+rL )+ 1+rL

fT
+(n —1)K w(i) ln(1+r )+4 1+rT

(A14)

[ro+2(n+2}K4uo+O(euo, uo)]e ' O(duo uo)e '
rz(l)=

g (i )(n +2)/(n +8) +
g (!)2/( n +8 )

+4u (!)M(!)—2(n +2)K4u (!)+2K4u (l)rL]n(1+rz )+2(n +1)K4u (!)rTln(1+rT)

De6ning

+2K4w(!)
fL rT

ln(1+rL )+
fT

ln(1+ rz. )
rL

(A15)

t(!)=[ra+2(n +2)K4uo+O{euo, uo)]e '/Q(!)'"+ ' '"+ ',
TL (!)=t (!)+12u(!)M(!),and TT(1}=t(!)+4u(!)M(!),then substituting Tt and TT for rt and rT in the terms of
0 (u, w ) on the right-hand sides of (A14), (A15) yields the final results {2.30) and (2.31) [note that w /( TL —TT ) =2u].

The solution for h {!)is now straightforward. The integral equation corresponding to (2.22) is

(n —1 }K4w (!') 3K4w ( i')
e[3—()/2) ]l e[n3 —()/2)n]l dite —[3—((/2)&]l' + (A16)

0 1+rT 1+rL



42 SPIN-WAVE SINGULARITIES: FREE ENERGY AND. . . 10 521

By writing 1/(1+r)=1 —r+r /(1+r), we again can isolate the various asymptotic regions. The term linear in r is
slowly varying and can be integrated exactly once T is substituted for r .The r /(1+r) term is handled in the same way
that (AS) was. The final results [Eq. (2.32}]then follow in a straightforward way.

APPENDIX B: VALIDITY
OF THE LINEAR SPIN-WAVE APPROXIMATION

By rescaling the spin via

s, =(4u /~r
~

)'"s, , (B6)

H, = ——g fs, —s, /

J 2

(ij )

(Bl)

At low temperatures, J/T)&1, it is appropriate to ex-
pand s; around the uniform state s,. =M for all i, where

M is a unit vector. One writes s;=Ql —~si
~

M+si,
where s~.M=O. Keeping terms to quadratic order, one
finds

Since there is some confusion in the early literature'
on how to handle the vanishing transverse "mass" Kz on
the ordered-phase coexistence curve, we feel it
worthwhile to indicate here the region of validity of
linear spin-wave theory.

Consider first a model with fixed-length spins ~s; ~

= 1 at
temperature T:

which serves only to add a constant to the free energy, we
find (for r &0)

R 2

g ~K;
—m'

~

— g(~I';~ —1) . (B7)
a~ 4u

&,
.)}

' J 16u

Comparing with (B4), we see that u) (x ) =x i,
5T=16u/r, and T/J=(a /Ro)(4u/~r~). By the above
arguments the linear spin-wave theory will be correct so
long as 4a u/Ro~r~ &&1 and 16u/r &&1. In particular,
if r =O(1) and a/RO=O(1), we require u «1, which is
obviously satisfied in our calculation so long as @&&1.
Alternatively, if we assume u =O(E), then we require
r, r »O(e), i.e., r &)O(E' ).

APPENDIX C: SPIN-WAVE INTEGRALS

H, = ——g ~s~ —s)
~

J 2
I I

&ij &

(B2)

For small T/J we may treat s; as extended (n —1)-
dimensional spins, so that (82) is just a Gaussian model.
The change in magnetization is then

In this appendix we consider the integral

f 2+r 2 0 w+x

Kdk A Iq—(x}, (C 1)

bM =1— 1 —s~ =— sj-
1

I 2 I

(n —1)T 1

2J 0& lql &] q

(B3)

where x = rk „. Of particular interest is the nature of the
singularity when x ~0. We assume, as usual, 2&d &4.
We write

(0) xid —2)12 ~ ~id —4)/2

0 1+w

which yields hM = [(n —1)Ed /2(d —2)](T/J). Self-
consistency requires hM «1, which is satisfied so long
as d & 2 and T/J « 1.

The above calculation demonstrates that fluctuations
are small, even though ~T=O, in the simplest case when
~L = ~. The only requirement is that the coefficient J/T
of the gradient-squared term be large.

Let us now include longitudinal fluctuations via a spin
weighting term 8'.

(B4}W T i j gT i
(ij)

We assume W'(0)=0 and —,
' W"(0)=1. We will mainly

be interested in the case W(x)=x . Apparently we re-
cover the case of fixed spins when 6~0. It seems clear
then that we may treat longitudinal fluctuations in the
quadratic approximation around the minimum at ~s, ~

=1
so long as 6T« 1.

Consider then the us model:

+X dw (d 4)/2wx+w
T

2 d —2 4—d (d —2)/2

d —2 2
'

2

dw (d 6)/2X X w
4 —d & x+w (C2)

Ising( )
2x ~/2 —s/2

e sin( en. /2 )
(C3)

which is valid for 2 & d & 6, and yields the correct x ln(x)
behavior in d =4. For small e we may evaluate the
remaining terms in d =4 and approximate
(em /2)/sin(em/2) = 1:

The last term now has a well-defined Taylor expansion
around x =0 for all d &6. B(x,y)=I (x)I (y)/I (x+y)
is the P function. This exhibits the exact x ~0
nonanalyticity:

H =—
4

R0
g /s,

—s, /' —g —res, /'+u /s, /' . (B5)
(ij)

Id(x) = 1 ——(x ' —1)—x ln(1+x ), e « 1 . (C4)

Furthermore when x =O(1) the singular term may be
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simplified to yield

Iz(x) = 1+x ln(x) —x ln(1+x), e « 1, x =O(1) . (C5)

Free-energy integrals involve the function

ln q +r = kAln kA +—KdkAId x, C6
where

——x' w" ""+I""'(x)
d I x+m

2 4 4Iz(x) = —ln(1+x) — + X
d d(d —2)

(C9)

Iz'"s(x ) = — x
E1

e~l2
x ' —1

sin(em /2)
(C 10)

Iz(x)= J w' ' ln(w+x)dw . (C7)

Obviously, I z(x)=I&(x). Using Iz(0)= 4ld—, we may
therefore simply integrate (C2) with respect to x to find
Iz(x). However, a simpler method is to integrate (C7) by
parts to obtain

The formulas analogous to (C4) and (C5) are

1 I 1Iz(x)= —(1—x )ln(1+x) ——+—x
2 4 2

——x (x 'i —1), e«1,
2 2I (x)= —ln(1+x) — I (—x)d d d+2

which yields

(C&) = —,'(1 —x )ln(1+x )
—

—,'+ —,'x

+x ln(x), e«1, x=0(1) .

(C11)
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