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We suggest a new field-theory treatment of the Heisenberg spin-1 chain with a single-ion anisotro-
py as a theory of three Majorana (real) fermions. We calculate the static and dynamic magnetic sus-
ceptibilities. We show that our results are in a good agreement with the experimental data for
NENP [Ni(C,H3gN,;)NO,ClO4] compound. In particular, we eliminate the reported contradiction
between excitation gaps deduced from high-field magnetization measurements and neutron scatter-

ing.

I. INTRODUCTION

According to Haldane’s prediction,1 the one-
dimensional Heisenberg antiferromagnetic with integer
spin S should have an excitation gap and finite correla-
tion length. This prediction has been confirmed both
theoretically (see Ref. 2 for a review) and experimentally.
The neutron-scattering data and measurements of mag-
netic susceptibility for several spin-1 systems (see Ref. 3
for a review) give evidence of an excitation gap. The
most studied compound is Ni(C,HgN,),NO,(ClO,)
(NENP) (Refs. 4-6) to which we shall refer throughout
the paper.

Explaining the experiments qualitatively, the theory
nevertheless cannot explain details. To discuss the
reasons for this, we should remind ourselves of some
basic ideas of Haldane’s approach. The main idea is to
deduce an effective field theory instead of the initial lat-
tice Hamiltonian and then apply to this theory all field-
theoretical machinery. This was done in the semiclassical
approximation S >>1 and the resulting theory is the O(3)
nonlinear 0 model which is known to be exactly solvable.
The quantity 1/S plays the role of a bare coupling con-
stant in this theory. At.S =1 the coupling constant is not
small and such a description seems to be too crude. It
does not mean, however, that one cannot find in this case
another continuous description. The Monte Carlo simu-
lations’ give, for the spin-1 Heisenberg spin chain, the
correlation length £=6.2. In such a case a continuous
description is still reasonable. The experimental data for
such materials as Ni(C;H,(N,),NO,ClO, and AgVP,S,
(see Ref. 3 for references) show that the ratio E/J (E is
the gap) may be smaller than in the Heisenberg chain,
which means that the correlation length in these com-
pounds is even larger than 6.2.

In any case, the nonlinear o model is actually difficult
to use for practical calculations. Such calculations are
needed, however, for a proper treatment of anisotropy,
which is always present in real systems. In particular,
NENP is found to have a significant single-ion anisotro-
py. It is well known that particles of the O(3) nonlinear o
model are triplets. According to general symmetry argu-
ments, this triplet should be split in the presence of pla-
nar anisotropy into a singlet and doublet. From the
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present knowledge of the nonlinear o model, one cannot
provide any more detailed information. But one actually
needs extra information to explain the high-field magneti-
zation* and the neutron-scattering measurements.>®
Both types of experiments demonstrate this splitting, but
there is an apparent contradiction in the values of gaps
deduced from these experiments. The authors of Ref. 4
define the excitation gaps as the critical magnetic fields
E{f'=g, upH}" for perpendicular and parallel direc-
tions to the chain axis. They find E{’=14.2 K,
E\®=19.5 K. In neutron-scattering experiments one
observes peaks in the differential scattering cross section
of neutrons moving in a given direction. The measure-
ments of scattering in the direction of the chain give
EM=30 K, and, for the perpendicular direction,
E HN '=14 K.°> To eliminate this apparent contradiction,
the authors of Ref. 4 have been forced to use some un-
controlled suggestions about the excitation spectrum.

Recently a semiquantitative theory of the anisotropic
spin-1 chain was proposed by Affleck.® Instead of the
O(3) nonlinear o model, he used the theory of three bo-
sons with @* interaction. Affleck succeeded in explaining
the small finite susceptibility at zero field, but the above-
mentioned paradox has been left unresolved.

In the present paper we suggest an alternative field
theory for the spin-1 Heisenberg model with the addition-
al quadratic exchange

N
H,=J 3 [(8,'8,:+1)=b(S,"S,, )’ +D(S;V] (1

n=1

in the vicinity of the integrable point b =1, D =0. The
ordinary Heisenberg model with the single-ion anisotropy
will be treated as a limiting case. Model (1) with D =0
has been extensively studied by many authors (see Ref. 9
and references therein). Therefore, our results may be in-
teresting independently of the practical reasons concern-
ing of analysis of the experimental data for spin-1 Heisen-
berg chains.

In the framework of our approach, we eliminate the
above contradiction in a self-consistent way. We show
that the neutron scattering in the perpendicular direction
and the high-field magnetization experiments in the
parallel direction measure the mass of the doublet:
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EM=E "' =m,. The neutron scattering in the parallel
direction measures the mass of the singlet m, and the
critical magnetic field in the perpendicular direction is
EH =v"m m,.

Rigorously speaking, the fields E'\*’ and E?,H) are not
critical fields because the finite magnetic susceptibility
survives until H =0, but up to the critical fields it is very
small (8—10 % and less than 3-4 % of a high-field sus-
ceptibility for the transverse and longitudinal susceptibili-
ties, respectively). The origin of this effect lies in the
presence of anisotropy. We succeed in getting estimates
for y (H =0) which agree with experimental data.

The paper is organized as follows. In Sec. II we de-
scribe the continuous limit of the model (1) in the integr-
able point b =1, D =0 which will be used as a reference
point. In Sec. IIT we derive a model describing a vicinity
of the integrable point. In Sec. IV this model is quan-
tized and the magnetization is calculated. The dynamical
spin susceptibility is calculated in Sec. V.

II. DESCRIPTION OF THE INTEGRABLE POINT

For D =0, model (1) is known to be integrable at b =1
(Ref. 10) and b =—1 (Ref. 11) where it possesses the
SU(3) symmetry. The excitation spectrum is gapless in
both points. At b= —%, the ground state is known ex-
actly; the correlation length is found to be very short,
A=1/In3.12 There is a general belief that the excitation
gap is present in the whole region —1<b <1.

The point b =0 is especially interesting because it
represents the Heisenberg chain. It seems to be closer to
the point b = —1 than to the point b =1 which we are
going to use as reference. However, for b = —1 only the
ground-state wave function is known which is not enough
to elaborate any kind of perturbation theory. In addi-
tion, as we have mentioned above, the correlation length
for the b =0 case is not so short as for b = — 1.

At b =1, D =0, model (1) has a gapless spectrum’ and
therefore possesses conformal symmetry (for more details
about this notion see Ref. 13). According to Ref. 14, its
central charge [a ratio of the number of degrees of free-
dom of the given theory and the number of degrees of
freedom of the free fermionic (bosonic) field theory; C
characterizes the universality class] is C =32. The pres-
ence of conformal symmetry has principal consequences
because it allows the classification of all operators
presented in the theory and the calculation of all their
scaling dimensions. The model possesses the SU(2) sym-
metry as well. To get a theory with C =1 one may con-
sider, instead of Dirac fermions, Majorana fermions
whose spectrum e(k)=|k| represents only the positive
part of the Dirac spectrum e(k)==tk.

The model possesses the SU(2) symmetry as well. To
satisfy this symmetry and to get the correct C, we consid-
er the model of three Majorana fermions belonging to the
adjoint representation of the SU(2) group. The corre-
sponding Lagrangian is

L=iX,v,9X., a=123, (2)

where
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X+,a

Xa= X o

is a real spinor, Y=x"y, and Y, (u=0,1) are one-
dimensional y matrices. We will explain the further de-
tails concerning the Majorana representation below when
we calculate the magnetic moment of our system.

III. CONTINUOUS DESCRIPTION
OF A REGION AROUND THE INTEGRABLE POINT

The conformal group theory provides us an operator
basis for each universality class. Any perturbation may
be expressed in terms of this basis. For model (1) we have

N N
H,=H,_+(1-b)J 3 (8,'S,,)*+JD 3 (S7)’.
n=0 n=0

(3)

In the continuous limit one should save only relevant
perturbations which break the conformal invariance. It
is very important that we are able to enumerate all possi-
ble relevant operators as long as we know the universality
class of the theory. This universality class is completely
specified by the symmetry group and the central charge.
The operator content for model (2) was described in Ref.
15. It includes, in our case, only two primary (relevant)
fields: the field

oL Y(z,7), a,f=1,2 4)

(z=x+vt, Z=x —vt, v is the velocity of magnons),

which transforms according to the fundamental represen-

tation of the SU(2) group and has the scaling dimension
=2 and the field

¢L};)(Z»Z):X+,G(E)X_’b(z) (5)

with the scaling dimension 1 transforming according to
the adjoint representation. The signs + and — corre-
spond to chiralities of fermions. There is also one mar-
ginal operator with dimension 1: J;J; where
T8 =€ X,

Therefore, treating model (1) perturbatively, one may
obtain, in the continuous limit, only the following La-
grangian:

L=i¥o¥.8.Xa = MaXaXa T8Iy - (6)

The anisotropy creates the difference between fermionic
masses and coupling constants: m;=m;<m,,
81=8:78,-

The field ®'"?’ which is nonlocal with respect to the y
field cannot be present because it breaks the time invari-
ance. It is clear because this field enters into the expres-
sion for the staggered magnetization of model (1) at b =1
(see, for example, Ref. 16):

(—1)"'S%x,)=Tr[o®"V D (x,0)]+ - - - , @)

where the ellipsis represents fields with higher dimen-
sions. At [1—b|<<1, m,~|1—b| at b~1 one should
consider the parameters of model (6) as phenomenologi-
cal.
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We have one additional argument in favor of model (6).
According to the Zamolodchikov theorem,!’ if we per-
turb the conformally invariant theory, then the specific-
heat curve of the perturbed theory would lie below the
curve of the original theory. In the integrable limit b =1,
D =0, model (1) exhibits a linear specific heat at
T <<J:1014

_- =3
T 6o ¢, C=3, (8)
which coincides with the specific heat of model (2). The
C,(T) curve for model (6) definitely lies below (8) which
satisfies the claim of the Zamolodchikov theorem.

Let us consider the O(3) nonlinear o model:

1 .
L=5 [ 1(3,6)*+5in?6(3,¥)*1dx . 9)

At temperatures higher than mass scale (T >>m), one
may substitute sin?6 in (9) by unity which gives us the La-
grangian of two free bosonic fields. Thus, the heat capa-
city at T >>m is given by expression (8), but with C =2,
which is higher than the upper bound C = 3.

IV. CALCULATION OF THE MAGNETIZATION

In this section we quantize model (6) and calculate its
magnetization. As we have already mentioned above, the
masses are not very small in comparison with the band-
width and therefore one can neglect the interaction giv-
ing only small corrections ~g,In(J/m). After omitting
the interaction, model (6) is easily quantized.

To add to the magnetic field acting in the a direction
means to add to the Lagrangian the integral of motion

hai [ dx €7, (x)yox.(x) . (10)
Let us introduce the Fourier-transformed fields
X+o(k,)= [dx e™y. ,(x,0), (11)

where the sign + (—) corresponds to the right (left)
movers. After this transformation the kinetic part of the
Lagrangian (6) becomes

Lo= 3 [iX.o(—kt)0,X, 4k t)] . (12)

k>0,r==+

To quantize the model one should introduce the com-
mutation relations between the Y field and the momen-
tum canonically conjugated to it:

Lo =ix(—k,t)
k) XTRE

[m(k),x(p)]+=id(k —p) .

m(k)=
(13)

From (13) it is clear that the creation and annihilation
operators are defined as follows:

at ,(k)=xs,(—k), as ,(k)=xi,(k) (k>0), (14)

and it follows from (6) and (10) that the corresponding
Hamiltonian is
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H= 3

k>0,r=%

{ (kstc+ihaeabc )a :,b(k)a‘r,b(k)

+mylay,(kla_,,(K)1}, (15)

where we choose yo=0,, v,=i0,.
Diagonalizing this quadratic Hamiltonian we obtain
the following energy spectrum:

Hoy+Hp,= I [e,(k)ef(k)e,(k)],
k,a=1,2,3
(16a)
c(k>0)=c, (k), clk<0)=c_(k),
where
€,(k)=(m2+k?)'2—(2—a)h for h|Z, (16b)
(k)= k> +h*+(mi+m3)/2
mz_mz 2 1/2
il ‘2 2‘+h2(m1+m2)2+4k2h2 ,
(16c)

e(k)=(m3+k?)!"? for h|X or §(1=23)

(remember that m,=m; and, therefore, the index 2
stands for z and the indices 1 and 3 for x and y).

The expression (16c) differs from the expression ob-
tained in Ref. 8. Therefore, we obtain a different answer
for the behavior of magnetization. Namely, we get
€_(k=0,h)=0 at h=1"m;m, instead of h =m, ac-
cording to Ref. 8.

The gaps for the case hlZ are equal to

(m?+m3)
(B2 =h?+ ————"£(m, +m,)
2 172
m,—m
X %] +h? ,

(N) —
El; —ml .

This almost hyperbolic dependence of the gaps from
magnetic field was observed by neutrons.$
The magnetic moment is equal to

. « dk
Ma=zhae,,,,cf_w—z;(a,f(k)ac(k)) : (18)
Using the results of diagonalization we obtain
M=-[h2=m")]'?2 for b|l2 (19)
m
and

_h ok —k?—mm,+h*+e, (ke_(k)
e fm e (ke_(k)[e, (k) +e_(k)]

for h1Zz . (20)

Rigorously speaking, in case hlZ the magnetization is
never equal to zero. At zero magnetic field there is still a
finite magnetic susceptibility:
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(o)=L = dk [(k24+m2)k*+mi)] 2=k —m m,
X v = 27 [(k2+mi)kP+m3)] 2[(K2+m) 2+ (k2 +m?) 2]
~yleo) 2 |2
3 im;+m,

The latter estimate is valid for [(m |, —m,)/m,| <2.

At m,/m;=2 we obtain, from (21), x(0)/y(x)
~0.077, which is in an excellent agreement with the ex-
perimental value 0.08-0.1.5

The analysis of the integral (21) shows that the sharp
increase in the magnetization happens if A XV m m,.
The latter quantity might be considered as the critical
field.

Thus, the previous analysis shows that the critical
magnetic fields are E|* =g Hl!=m, and E{® =g H}
=1/mm,. Using the values of E\f", Ef’m given in Ref.
4, we obtain

m,=E"=142 K
and
m,=(E\"/E{"'=26.7K ,

which are rather close to the masses observed in
neutron-scattering experiments.>®

V. CALCULATION OF THE DYNAMICAL
MAGNETIC SUSCEPTIBILITY

The differential cross section of inelastic neutron
scattering is directly proportional to the imaginary part
of ac magnetic susceptibility. Our approach provides us
an ability to calculate the ac magnetic susceptibility. It
follows from (7) that

x(x,0)=(S " (x,1)$ 7(0,0))
~(—1 )x/a< Tr[o_+¢(l/2)(x’t)]
XTrlo ~®!7%0,0)]) , (22)

where a is a lattice spacing.

It is well known that the two-dimensional (2D) Ising
model is equivalent to the model of free massive Majora-
na fermions with mass equal to m =a (T —T,) (see Ref.
13). Model (6), in the absence of interactions, may be
considered as a collection of three Ising models each at
its own temperature, relating with the masses of Majora-
na fermions. According to Ref. 15, the following relation
between the components of the matrix field ® and the or-
der and disorder fields o and p takes place at T=T,:

TI'(O'+¢(1/2)):01[1—2#3+iﬂ10'20'3 ,

(23)
Tr(a*d)‘]/2))=01,u2,u3——i,uloza3 .
In the absence of interactions, these relations are still val-
id beyond the critical point. To write down the expres-
sion for the spin-spin correlation function in the aniso-
tropic case one should specify the correspondence be-
tween the labels 1,2,3 in expressions (22) and the labels of

21n

—

the fermionic fields in (6). It is important because fer-
mions with different labels have different masses. Each
possible arrangement of labels corresponds to a spin sus-
ceptibility x along the appropriate direction of the ac
magnetic field. There are two arrangements giving the
same expression for y:

1

0 =X,
o?=y; (masses m,) , (24a)
o*= x,(mass m,)
and
ol=x,
o=y, (mass m,) , (24b)

o*=yx, (mass m,) .

(An arrow shows that fields belong to the same Ising
model.)
In these cases one gets, from (22) and (23),

X1(x,0)={S *(x,1)$ 7(0,0))
= (=1)*"*F . (m,r)F_(mr)

X[Fy(myr)+F_(m,r)]
. (25)
r=(x*+vi?)!?,

where ¢ is the Matsubara time. The correlation functions
F,(|x])=(0(x)0(0)) and F_(|x|)={u(x)u(0)) are cal-
culated in Ref. 18.

The third arrangement is

2

ol=X, o3=)(3, a'=)(2, (26)

which gives
X (6, 0=(=1)*"*[ F(m,r)F~ (mr),
+F_(myr)F% (m,r)] . 27)

For expression (23) there are two possible arrange-
ments (24a) and (24b) and for (27), only one, (26). There-
fore, it follows from the symmetry arguments that (23)
corresponds to the spin-spin correlation functions along
the directions transverse to the z axis and (27) gives the
longitudinal susceptibility.

Using the explicit expressions for the F functions from
Ref. 18 we get, for the imaginary parts of the ac suscepti-
bilities, the following:
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Imy\R(w,k)=f (s)= 8(s Z—m?)
+2[(s —m,)P—mi]~'"?
X[(s +my)P—mi]7 2+ -,
)=f,(s) 8(s2—m3)

+2|s| T s?—4mi] 724 -
(28)

Im)(H w,k

st=w?—v¥k —m/a)?,

From (27) one sees that the neutron-scattering mea-
surements along the z direction should exhibit the strong-
est singularity at the largest mass m,. One should
remember that the high-field magnetization measure-
ments along this axis give the critical field proportional to
the smallest mass m,. Thus, the above-mentioned con-
tradiction is removed.

The &-functional term in (28) gives the largest contri-
bution into the space dependence of spin-spin correlation
function at large distances. For the isotropic case we get,
from (28),

e —ikx

(S(1=0,x)-5(0,0)) = ;)2fdwdk ;

w*—v2kt—m?

~e—mix4|x|—1/2 , 29)

which is in a perfect agreement with the Monte Carlo re-
sults.’

Another quantity usually measured in neutron-
scattering experiments is the integrated intensity

k)= [doImy®(w,k) .

Usually in experiments only broadened &-functional
peaks are seen. According to (27) the integrated intensity
corresponding to them is

1
I (k)= . (30)
L tk)= (k2 +m 2

Instead of (30), experimentalists usually use the
Lorentzian function which leads to larger estimates for
mass gaps. Fitting the data for the integrated intensity
for the NENP exhibited in Ref. 3 to the expression (30),
we get the estimate m, ~20-30 K.
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VI. CONCLUSION

In summary, we have suggested the continuous field
theory (6) for the 1D spin-1 chain in the vicinity of the in-
tegrable point. This model is a simple theory of free fer-
mions. Using fermions for the description of spin sys-
tems is the usual trick in one dimension and therefore the
choice of description is a matter of convenience. Actual-
ly, we use some variant of the Jordan-Wiegner transfor-
mation. The equivalence of bosonic and fermionic
descriptions means that, for a given model, correlation
functions of bosonic fields may be rewritten via fermionic
ones and vice versa. Such expressions may be quite com-
plicated, such as the expression for the spin operator (22)
described in Sec. V.

In principle, the proposed model should work well if
the correlation length is large. But it seems that it de-
scribes the ordinary Heisenberg chain where £=6.2 be-
cause our results are in good agreement with all present
experimental data for the NENP compound including
the critical magnetic fields and dynamical magnetic sus-
ceptibility. We hope to have an even better agreement
for such substances as Ni(C;H,,N,),NO,(ClO,) (NINO),
and AgVP,S, where magnetization measurements show
larger correlation lengths. The correlation length may be
increased by an interchain coupling or by the (S, S, ;,)?
interaction. A realization of the latter variant would
abolish the monopoly of the ordinary Heisenberg model
on the theory of one-dimensional magnetism.

Returning to the theoretical aspects of the problem it is
worth it to notice that the present description of model
(3) forms a bridge between its gapless phase
(b=1) and the Affleck-Kennedy-Lieb-Tasaki (AKLT)
point (b =—1).!> The latter point has attracted a con-
siderable interest as an example of a valence-bond solid.
We think that our description is qualitatively valid near
the AKLT point.
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