Onset of valence and magnetic instabilities in the ferromagnetic semiconductor EuO at high pressures

M. M. Abd-Elmeguid* and R. D. Taylor

Physics Division, MS K764, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(Received 22 March 1990)

Hydrostatic high-pressure ¹⁵¹Eu Mössbauer measurements ($0 \le p \le 31$ GPa) on the ferromagnetic semiconductor EuO reveal, contrary to previous suggestions, no pronounced valence change of Eu (Eu²⁺ \rightarrow Eu³⁺) even at highest pressures (p = 31 GPa). The magnetic ground state becomes unstable above 23 GPa, where the pressure-induced variation of the Curie temperature is consistent with theoretical predictions based on the volume-dependent competition between *sf*-exchange interactions and *sf* hybridization.

A fundamental issue connected with magnetism in local 4f-moment systems is the question of the nature of the magnetic ground state when the electrons are able to fluctuate between the 4f level and the conduction band (intermediate valent I-V system). The search for a model system to study this problem has been the subject of much experimental and theoretical research. Among these systems the ferromagnetic (FM) semiconductor EuO is considered as a good 4f-model system to study isotropic magnetic exchange interactions in solids (Heisenberg ferromagnet). This is due to its simple cubic fcc lattice structure and the pure spin magnetism of the localized $Eu^{2+}4f^7$ with ${}^8S_{7/2}$ ground state. The optical gap E_g between the $4f^7$ level and the bottom of the empty 5d conduction band (1.14 eV or 13200 K at room temperature) is found to decrease by applying external pressure p(p < 1 GPa) at a rate of 50 meVGPa⁻¹ or 580 K GPa⁻¹.¹ It has thus been a challenge for experimentalists to reduce E_g towards zero by applying very high pressure (p > 20 GPa), thereby inducing both valence v and magnetic instabilities, possibly via a delocalization of the 4fconfiguration of the Eu²⁺ ground state.

From the theoretical point of view,² the reduction of E_g by increasing pressure not only causes a change of the transport properties of EuO but also strongly affects the magnetic properties: when E_g is reduced both the sf exchange interactions and the sf hybridization are enhanced. The competition between these two effects leads to a maximum of the Curie temperature T_C , followed by a breakdown of the magnetic order.²

Despite the fact that several high-pressure experiments have been performed on EuO,³⁻⁷ the situation is still far from being clear. Pressure-volume data of EuO revealed either a sharp volume collapse near 30 GPa (Ref. 3) or a continuous one near 14 GPa.⁴ Here the associated color change was taken as *evidence* for a semiconductor to metal transition which is driven by a valence transition $\Delta v(\text{Eu}^{2+} \rightarrow \text{Eu}^{3+})$ at high pressures.^{3,4} Also *L*-edge measurements at high pressures suggested a valence shift of about 0.35 between $0 \le p \le 31$ GPa.⁵ On the other hand, very recent high-pressure electrical resistivity data on EuO established the existence of the 14-GPa phase transition.⁶ However, the analysis of the data shows the existence of a narrow E_g up to 25 GPa, suggesting instead a semiconductor-to-semiconductor phase transition.⁶

Regarding the effect of pressure on the magnetic properties of EuO, several groups have reported changes of the Curie temperature T_C with pressure, $T_C(p)$.⁶⁻⁸ However, no experimental verification of the theoretical model² is yet available.

In the present work we have investigated the valence and magnetic instabilities in EuO at very high *hydrostatic* pressures ($0 \le p \le 31$ GPa) using the ¹⁵¹Eu Mössbauer effect (ME) spectroscopy. This technique allows one to detect simultaneously pressure-induced *changes* of both the magnetic ground state [via the effective hyperfine (hf) field B_{eff}] and of the Eu mean valence (via the ¹⁵¹Eu ME isomer shift S). $T_C(p)$ is obtained by measuring $B_{eff}(T)$ at different pressures.

Contrary to previous reports³⁻⁵ we find no pronounced valence change of the Eu ions (Eu²⁺ \rightarrow Eu³⁺) even at very high pressures (p=31 GPa). The ferromagnetic state of EuO is found to be unstable above 23 GPa, where the behavior of T_C and $B_{\text{eff}}(0)$ in the whole pressure range is in qualitative agreement with theoretical calculations based on the volume-dependent competition between sf exchange interaction and sf hybridization.²

The high-pressure ¹⁵¹Eu ME experiments were performed on a sample taken from a highly Ohmic stoichiometric EuO single crystal using a gasketed diamond-anvil cell (Merrill-Bassett type⁹) up to 31 GPa and at various temperatures between 300 and 4 K. The change of pressure between 300 and 20 K was typically about 5%.⁹

Some typical ME spectra of EuO are shown in Fig. 1 at (a) 300 K and (b) 4.2 K, respectively, at three different pressures. No Eu³⁺ impurities (e.g., Eu₂O₃) were detected. Spectra collected at low pressure at 300 K show a single line at a position corresponding to Eu²⁺. All ME spectra ($0 \le p \le 31$ GPa) at 4 K display magnetic hf splitting (hf field) which reflects the ordering of the Eu²⁺ moments at low temperatures ($T < T_C$). The values of $B_{\text{eff}}(0)$ and S at ambient pressure are in a good agreement with previous results.⁷

We first discuss the stability of the Eu valence state in EuO at high pressures, until now the most contested point in previous works.³⁻⁶ Here, the pressure- and temperature-induced change of the ¹⁵¹Eu isomer shifts allows

FIG. 1. Typical ¹⁵¹Eu ME spectra of EuO at different pressures: (a) at 300 K, and (b) at 4 K. The source is ¹⁵¹SmF₃ kept at the same temperature as the absorber.

us to detect any possible valence changes.^{10,11} Figure 2 shows the values of S, obtained at different pressures up to 3 GPa and at different temperatures between 300 and 4 K, versus the relative volume change V/V_0 using the experimental pressure-volume relationship of Ref. 4. As shown in Fig. 2, S increases linearly with decreasing volume but with two different positive slopes where S is enhanced around 15 GPa. This increase of S reflects an increase of the s-electron density $\rho_s(0)$ at the Eu nucleus with pressure.

The pressure-induced increase of $\rho_s(0)$ in Eu²⁺ systems can be mainly caused by the following mechanisms: 12 (i) a compression of s-like electron shells (mainly 6s); (ii) an increase of intra-atomic and interatomic 4f(5d,6s) exchange interactions; and (iii) a promotion of a 4f electron to the conduction band, i.e., a $Eu^{2+} \rightarrow Eu^{3+}$ valence change. In (iii) S is expected to be strongly temperature dependent, since the energy separation (excitation energy E_x) between the Eu²⁺ and Eu³⁺ configuration will be significantly reduced.¹³ In our case, we observe a total pressure-induced shift of S between 0 and 31 GPa of $\Delta S = 2.6 \text{ mm s}^{-1}$ at 4 K or 2.68 mm s⁻¹ at 300 K (see Fig. 2). However, such a shift of S cannot be fully attributed to a *real* valence shift towards Eu^{3+} unless: (a) the volume effect due isothermal volume compression is corrected, and (b) the temperature-induced change of Sat different pressures $(\partial S/\partial T)_p$ is carefully analyzed (see below).

Following this basis, we obtain in the pressure range $0 \le p \le 15$ GPa a value of $\partial S/\partial \ln V = -9 \pm 1$ mms⁻¹, typical for stable Eu²⁺ compounds.^{14,15} Consistent with this we find a very small negative value of $(\partial S/\partial T)_p$ between 300 and 4 K (see inset of Fig. 2): $(\partial S/\partial T)_p = -7 \times 10^{-4}$ mms⁻¹K⁻¹ at 9 GPa. The *negative* sign indicates that the electron density at the Eu nucleus decreases with increasing temperature. This must have originated from thermal lattice expansion since a thermal

admixture of the Eu³⁺ configuration to the Eu²⁺ ground state would lead to a *positive* sign of $\partial S/\partial T$. In other words, below 15 GPa the $4f^7$ (Eu²⁺) ground state is located well below the $4f^6$ (Eu³⁺) state ($k_BT < E_x < 0$), so that no thermal admixture of the Eu³⁺ state can be observed between 4 and 300 K.

On the other hand, we find at higher pressures $15 \le p \le 31$ GPa a higher value of $(\partial S/\partial T)_p$: $(\partial S/\partial T)_p = +2 \times 10^{-3} \text{ mm s}^{-1} \text{ K}^{-1}$ at 31 GPa. This has to be compared with the result at lower pressures (see above and inset of Fig. 2). The amount of deviation of the $\partial S/\partial \ln V$ values relative to the base line, which denotes the pure volume effect (extrapolated; dashed line in Fig. 2) allows us to determine the real pressure-induced valence changes.^{16,17} This leads only to a small valence shift towards Eu³⁺ of $\Delta v \approx 0.04$ or $v \approx 2.04$ (at 4 K) and $\Delta v \simeq 0.07$ or $v \simeq 2.07$ (at 300 K). We obtain rough values of $E_x \approx 510$ K (at 19 GPa) and 320 K (at 31 GPa). Consistent with these results, we obtain a positive value of $(\partial S/\partial T)_p$ in this pressure range (see inset of Fig. 2). The positive sign indicates a thermal admixture of the Eu³⁺ into the Eu²⁺ ground state. Thus, our analysis clearly proves an onset of a reduction of E_x above 15 GPa, at which the Eu ion begins to exhibit a weak *I-V* behavior.

This finding has to be compared with other macroscopic high-pressure results on EuO, e.g., optical reflectivity⁴ and electrical resistivity,⁶ where such an anomaly has been already observed around 14 GPa. However, the *interpretation* which has been presented in this former work⁴ is in sharp contradiction with our results. Here, the pressure-induced change of the optical reflectivity and the pressure-volume relationship have been taken as an evidence of a *continuous* Eu²⁺ \rightarrow Eu³⁺ valence change

FIG. 2. Volume dependence of the isomer shift (S) at 4 K. The extrapolated dashed line denotes the pure volume effect (see text). Inset: temperature-induced changes of the isomer shift (ΔS) at different pressures: (a) 9 GPa, (b) 19 GPa, and (c) 31 GPa. The values of S are relative to ¹⁵¹SmF₃. The error bars of all data points are the same as those shown for data points at 300 K.

which is driven by the onset of *ferromagnetic* ordering at 300 K. As mentioned above, we find neither a significant valence change of the Eu nor ferromagnetic order at 300 K [see Fig. 3(a) and the discussion below]. Thus, the ferromagnetic order cannot be the mechanism which triggers the phase transition at 14 GPa.⁴ In contrast to the interpretation of the experimental results of this previous work,⁴ recent high-pressure electrical resistivity ($p \le 25$ GPa) measurements on EuO suggested a quite different physical behavior:⁶ EuO exhibits a sudden but moderate drop in E_g at p > 14 GPa (300 K), with the persistence of a narrow hybridization gap up to 25 GPa, where the system is still *nonmetallic*.

Our high-pressure results on EuO are clearly consistent with those findings from electrical resistivity.⁶ Here, we attribute the anomalous increase of S above 15 GPa to an onset of a reduced excitation energy (E_x) between the Eu²⁺ and Eu³⁺ states, at which we find a *weak I-V* behavior of the Eu ion.¹⁸

We now discuss the effect of pressure on the ferromagnetic state of EuO, i.e., on $B_{eff}(0)$ and on T_C . In Figs. 3(a) and 3(b) we plot the values of (a) $B_{eff}(0)$ (extrapolated to $T \rightarrow 0$ K) and (b) of T_C , obtained at different pressures versus the relative volume change (V/V_0) using the experimental pressure-volume relationship in Ref. 4. As shown in Fig. 3(a), the magnitude of $B_{eff}(0)$ increases nonlinearly with decreasing volume $(0 \le p \le 23 \text{ GPa})$, showing an enhancement above 15 GPa and then levels off with further decreasing volume $(23 \le p \le 31 \text{ GPa})$. On the other hand, T_C increases rapidly from 69 to 195 ± 6 K with decreasing volume between $0 \le p \le 19$ GPa, passes a broad maximum of 200 ± 6 K at 23 GPa, and then falls rapidly between $23 \le p \le 31$ GPa to a value of 104 ± 4 K

FIG. 3. Volume dependence of (a) the effective hf field $B_{\text{eff}}(0)$ extrapolated to T=0 K and (b) of the Curie temperature T_C in EuO.

at 31 GPa.

To explain the increase of the magnitude of $B_{\rm eff}(0)$ with pressure, we describe $B_{\rm eff}$ at the Eu²⁺ nucleus in EuO by:¹⁴ $B_{\rm eff} = B_c + B_{\rm thf}$; where B_c and $B_{\rm thf}$ denote the hffield contributions from the spin polarization of the *s* shells by the Eu²⁺ ion itself and by Eu²⁺ neighboring atoms, respectively.¹⁴ The pressure-induced enhancement of $B_{\rm eff}(0)$ observed in EuO $[0 \le p \le 23$ GPa; see Fig. 3(a)] is *similar* to that observed in *stable* divalent Eu compounds.^{14,15} Here it has been shown that the magnitude of $B_{\rm eff}(0)$ increases with increasing pressure while B_c remains unchanged. The increase of $|B_{\rm thf}|$ with pressure is caused by the enhancement of *both* intra-atomic and interatomic 4f (5*d*,6*s*) exchange interactions. The enhancement of $B_{\rm eff}(0)$ above 15 GPa is similar to the behavior of *S* and originates from the onset of a reduced E_x as already discussed before (see above).

In agreement with the behavior of $B_{\rm eff}(0)$ with pressure, a similar enhancement of T_C in the same pressure range $0 \le p \le 23$ GPa is found [see Fig. 3(b)]. In fact, the enhancement of T_C with pressure is caused by the same mechanism responsible for the $B_{eff}(0)$ enhancement, namely the increase of the 4f(5d, 6s) exchange interactions. As mentioned before, at higher pressures $23 \le p \le 31$ GPa, T_C decreases sharply from 200 ± 6 to 104 ± 4 K and $B_{\text{eff}}(0)$ levels off [see Figs. 3(a) and 3(b)]. Such a pressure behavior of T_C and $B_{eff}(0)$ is consistent with that predicted from theoretical model calculations on EuO.² Accordingly, when the energy gap (E_g) is reduced with increasing pressure, both the 4f(5d,6s) exchange interactions and the 4f(5d, 6s) hybridization are enhanced. These effects are competitive. In the moderate range, p < 200 GPa, T_C is strongly enhanced, whereas the Eu²⁺ magnetic moment is almost unaffected.² However, upon further increasing the pressure, the competition between these two effects leads to a sharp decrease of T_C after passing a maximum. This breakdown of magnetic order is caused by the reduction of the magnetic 4f moment.² We observe exactly the theoretically predicted pressurebehavior of T_c . Also the saturation value of $B_{\text{eff}}(0)$ with pressure above 23 GPa is a consequence of the magnetic instability, which originates from the pressure-induced weak *I-V* state of the Eu ion ($v \approx 2.04$ at 4 K and 31 GPa): a 4% admixture of the Eu³⁺ into the Eu²⁺ ground state should result in a 4% reduction of the Eu²⁺ magnetic moment and of $B_{\text{eff}}(0)$. At the same time, $B_{\text{eff}}(0)$ is still enhanced due to enhanced 4f(5d,6s) exchange interactions. These two effects act in opposite ways and thereby lead to a minor increase of $B_{\rm eff}(0)$.

In conclusion, the present results shed new insight into the nature of the high-pressure state of EuO. Contrary to previous reports, $^{3-5}$ we find no dramatic valence change of the Eu²⁺ ions (Eu²⁺ \rightarrow Eu³⁺) even at very high pressures (p=31 GPa). We further show that the pressureinduced changes of T_C and $B_{\text{eff}}(0)$ verify theoretical calculations.

One of us (M.M.A.) wants to thank H. Micklitz, Ch. Sauer, and W. Zinn for helpful discussions. We thank J. G. Mullen for the loan of the 151 SmF₃ source. This work was supported by the U.S. Department of Energy.

- *Present address: Institute für Festkörperforschung der Kernforschungsanlage Jülich, D-5170 Jülich, Federal Republic of Germany.
- ¹P. Wachter, Solid State Commun. 7, 693 (1969); see also M. R. Oliver, J. A. Kafalas, J. O. Dimmock, and T. P. Reed, Phys. Rev. Lett. **19**, 1064 (1970).
- ²M. Matlak and W. Nolting, Z. Phys. B 55, 103 (1984); V. Eyert and W. Nolting, Solid State Commun. 60, 905 (1986).
- ³A. Jayaraman, Phys. Rev. Lett. 29, 1674 (1972).
- ⁴H. G. Zimmer, K. Takemura, K. Syassen, and K. Fisher, Phys. Rev. B **29**, 2350 (1984).
- ⁵J. Röhler, E. Dartyge, A. Fontaine, A. Jucha, K. Keulerz, and D. Sayers, in *EXAFS and Near Edge Structure III*, edited by K. O. Hodgson, B. Hedman, and J. E. Penner-Hahn (Springer-Verlag, Berlin, 1984), p. 385.
- ⁶D. DiMarzio, M. Croft, N. Sakai, and M. W. Shafer, Phys. Rev. B 35, 8891 (1987).
- ⁷J. Moser, G. M. Kalvius, and W. Zinn, Hyperfine Interact. **41**, 499 (1988).
- ⁸R. D. Taylor and J. N. Farrell, J. Appl. Phys. 63, 4108 (1988);
 R. D. Taylor, Hyperfine Interact. 47-48, 502 (1989).
- ⁹M. Pasternak and R. D. Taylor, Hyperfine Interact. **47-48**, 415 (1989).
- ¹⁰J. Röhler and G. Kaindl, Solid State Commun. 37, 737

(1981).

- ¹¹E. R. Bauminger, D. Froindlich, I. Nowik, S. Ofer, I. Felner, and I. Mayer, Phys. Rev. Lett. **30**, 1053 (1973).
- ¹²R. T. Bauminger, G. M. Kalvius, and I. Nowik, in *Mössbauer Isomer Shifts*, edited by G. K. Shenoy and F. W. Wagner (North-Holland, Amsterdam, 1978), p. 166.
- ¹³D. Wohlleben, in Valence Fluctuations in Solids, edited by L. M. Falcov, R. D. Handke, and M. B. Maple (North-Holland, Amsterdam, 1981), p. 1.
- ¹⁴U. F. Klein, G. Wortmann, and G. M. Kalvius, J. Magn. Magn. Mater. 3, 50 (1976).
- ¹⁵M. M. Abd-Elmeguid, H. Micklitz, and G. Kaindl, Phys. Rev. B 23, 75 (1981).
- ¹⁶M. M. Abd-Elmeguid, Ch. Sauer, and W. Zinn, Phys. Rev. Lett. 55, 2467 (1985).
- ¹⁷D. Stöber, Ch. Sauer, W. Zinn, and M. M. Abd-Elmeguid, J. Magn. Magn. Mater. 69, 144 (1987).
- ¹⁸The energy separation E_g between the local $4f^7$ level (Eu²⁺) and the bottom of the 5*d* conduction band (Ref. 6) should be related to the excitation energy E_λ between the Eu²⁺ and Eu³⁺ configurations derived from the Mössbauer data. A direct observation of E_λ is reported in E. Zirngiebl *et al.*, Phys. Rev. Lett. **54**, 213 (1985).