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First-principles calculation of phase equilibria in the aluminum lithium system
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Volume-dependent total energies of Al, Li, and various intermetallic Al-Li compounds have been
calculated by the first-principles full-potential linearized augmented-plane-wave (FLAPW) method.
These values have been used to calculate Al-Li phase diagrams according to the cluster variation
method in the tetrahedron approximation. Methods for performing lattice-parameter optimization
and for including relaxation efl'ects are presented. Truly first-principles-based phase diagrams for
solid phases computed without any fitting parameters or empirical formulas are shown to exhibit a
remarkable agreement with experimental data. Subsequently, some empirical equations for the free

energy of the liquid and the vibrational entropy have been added to the first-principles results and
striking similarities with experimental phase diagrams were obtained. Special attention has been

paid to the metastable Al, Li phase and to the mechanical properties of Al-rich Al-Li alloys. Furth-
ermore, the influence of relaxation and vibrational entropy are discussed.

I. INTRODUCTION

The calculation of (metastable) equilibria in the
aluminum-lithium system has attracted considerable at-
tention' because of the technical importance of A13Li
precipitation hardening in Al-rich Al-Li alloys. First-
principles approaches for the study of phase transforma-
tions are of special interest in the case of the Al-Li system
because of the difficulties encountered with experimental
determinations of the metastable phase boundaries.
Furthermore, first-principles approaches have the advan-
tage of providing a deeper understanding of the underly-
ing physics. In this paper the term "first-principles" will
be used for results that do not in any fashion rely on ex-
perimentally determined quantities. The most interesting
solid part of the phase diagram, up to the melting tem-
peratures, is obtained from first-principles electronic-
structure calculations without any experimental data.
However, in order to get a complete phase diagram,
which includes the liquid phase and accounts for vibra-
tiona1 entropy effects, we have to rely on empirical data.
In the last decade the prediction of structural stabilities
of phases at 0 K has become possible through accurate
electronic-band-structure computations based on local
density functional theory. Only recently have first-
principles approaches become feasible for computation of
phase stability away from 0 K,and various schemes, such
as outlined in Refs. 9 and 10, are yielding increasingly
realistic results. In this paper an approach involving
highly precise full-potential linearized augmented-plane-
wave (FLAPW)" total-energy computations will be ap-
plied and discussed.

The basic problem of all these approaches (including
our own) is to derive parameters for a proper statistical

treatment. In this paper we follow the concept of Con-
nolly and Williams"- to obtain many-body cluster interac-
tions from volume-dependent total energies of a series of
ordered compounds. The Connolly-Williams method has
gained notable importance. ' ' We refer to Ref. 14 for a
preliminary discussion of its underlying assumptions.
Here the cluster interactions are introduced in a statisti-
cal model, in this case in the tetrahedron cluster variation
method (CVM), for calculating configurational free ener-
gies. The configurational free energies of various phases
can be complemented with free-energy contributions
from other sources' ' such as vibrational or relaxation
effects to yield total free energies, which in turn are then
used to obtain a phase diagram. In addition, a straight-
forward method for lattice-parameter optimization
within the formulation of the CVM and an approximate
treatment of relaxation effects will be presented.

II. GENERAL METHOD

In the Al-Li phase diagram (Fig. l), as in many other
systems, one may distinguish (a) terminal solid solutions,
here designated as a (fcc) and p (bcc); (b) ordered super-
structures, designated e„a2, . . . , if they are superstruc-
tures of the fcc lattice, and p, ,pz, . . . , if they are super-
structures of the bcc lattice; and (c) additional intermetal-
lic phases which are neither superstructures of fcc nor
bcc, but which have very narrow ranges of stability. Two
such "interloper" phases exist in the Al-Li system (see
Ref. 16): A14Li9 (mC26 Pearson symbol, B2/m space
group), and A12Li3 (hR5 Pearson symbol, R3m space
group). In this study only the parent fcc and bcc lattices
and their superstructures will be considered. Ignoring
the two interloper phases has no consequences for the
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FIG. 1. Experimental Al-Li phase diagram, from Ref. 4.

technologically important Al-rich side of the phase dia-
gram.

Volume-dependent total energies of fcc and bcc super-
structures were computed with the FLAPW method.
These total energies were used to obtain effective cluster
interactions, by means of the Connolly-Williams method.
In this method it is assumed that the cohesive energies
can be expressed as the sum of the products of cluster in-
teractions and cluster correlation functions. ' Because
the cluster correlation functions of perfectly ordered
compounds are solely determined by the crystal structure
in question, cluster interactions can be obtained provided
that total energies for a set of ordered compounds are
known. The cluster interactions are given by the product
of the inverse cluster correlation matrix and the total-
energy vector. The interactions, in turn, were employed
in a statistical method so as to provide insight into phase
stability at nonzero temperatures. The statistical method
used in the present calculation is the CVM, whereby the
free energy is expressed as a function of cluster correla-
tions. Only the simplest tetrahedron cluster approxima-
tion will be used ' In the fcc lattice, the basic cluster
is thus the regular tetrahedron made up of nearest-
neighbor distances only; in the bcc it is the irregular
tetrahedron containing both first- and second-neighbor
distances. The ordered structures to be considered are
thus limited to those which can be stabilized, for fcc su-

perstructures, by first-neighbor pair interactions only,
and for bcc, by first and second pair interactions. For the
former we have, explicitly, the L 12 (a ~,A13Li), L 10

(az, A1Li), and L lz (a3,A1Li3) structures; for the latter,
D03 (p~,A13Li), B2 (p2,A1Li), B32 (p3,A1Li), and D03
(p„,A1Li3). Fortunately, in the Al-Li system, ordered su-

perstructures of more complicated type are not found, so
that the tetrahedron approximation, in both fcc and bcc,
should be suitable. As very recently shown, the combina-
tion of first-principles electronic-structure calculations
and the CVM via the Connolly-Williams method appears
to be rather promising also for other systems. ' ' ' A
detailed examination of the validity of the tetrahedron
approximation and of the Connolly-Williams method it-
self in the Al-Li system is currently under way. ' In that
study 16 superstructures on the fcc lattice will be em-
ployed for computation of all interactions included in the
tetrahedron-octahedron cluster. The applicability of the
CWM mill be verified by studying a hierarchy of CWM
approximations, rather than by showing that within a
certain approximation the cluster interactions decrease
with increasing cluster size. ' This latter procedure was
shown to be an invalid criterion. '

In a previous study' an attempt was made to derive
phase stabilities or related quantities directly from the
Schrodinger equation without any additional assumptions
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such as the breaking up of the total energy in terms of
cluster interactions as used in the present study. In the
work of Podloucky et al. ,

' 8-atom fcc supercells (or 256
configurations) were used to study the Al-rich side of the
phase diagram by calculating phase stabilities defining

phases as a particular mixture of supercells. Because of
this rather small number of configurations, one cannot
expect this approach to yield quantitatively useful results.

The study presented in this paper differs radically from
a previous study' in that here we are not interested in
relative occurrences of fcc supercell configurations, but
rather in the equilibrium thermodynamic properties and
the complete phase diagram pertaining to fcc- and bcc-
based superstructures. A comparison of Fig. 3 in Ref. 18
and the phase diagrams in this paper is therefore not pos-
sible.

sufficient for the desired accuracy.
The most sensitive parameter for the calculation of the

absolute total energy is the number of k points in an irre-
ducible wedge of the Brillouin zone (IBZ) used for in-
tegrations in the reciprocal space. This is because we use
the analytic linearized tetrahedron method in the con-
struction of the charge density and total energy, which
depends critically on the Fermi-surface topology. How-
ever, note that the error in the total energy in the linear-
ized energy tetrahedron method scales as N&

~ (Nk is
the number of k points). " Thus, for each structure of the
intermetallic compound, we calculated the total energy
for a series of k points, say, 30, 60, 90, 150, 200, and 250,
depending on the structure concerned, and we obtained
the total energies for an infinite number of k points by ex-
trapolation.

A. Total-energy computations

Calculation of the phase diagram of a binary alloy with
the Connolly-Williams method' requires volume-
dependent total energies of a set of compounds, that is,
superstructures of a given lattice (as will be discussed in
Sec. II D). Sometimes the energy difference between the
different crystal structures of a given compound is very
small. Especially in the Al-Li system, because of the
presence of the metastable A13Li-L lz phase, the total en-

ergy must be computed very accurately. Therefore, to
get the correct result, the first-principles total-energy cal-
culation should be done as accurately as possible. For
this reason we use the highly precise all-electron FLAPW
method" in which one makes no approximations to the
shape of the one-electron potential or the charge density.

The total energy can be calculated within the frame-
work of the local-density approximation in which Hedin
and Lundqvist's exchange and correlation potential is
chosen. ' The total energy per unit cell is then given by

where c, is the eigenvalue obtained by solving the Kohn-
Sham equation, Z„and n(r) are nuclear charge and
charge density, and V, (r), V„,(r), and V~(r) are
Coulomb, exchange-correlation, and Madelung poten-
tia1s, and c, is the exchange-correlation energy.

It needs to be emphasized that in the FLAPW method,
there are no uncontrolled numerical parameters in the
calculation. The only approximation in this method is
the local-density approximation. In our computation the
potential and charge density are expanded in spherical
harmonics up to 1=8 inside the spheres and the plane
waves go up to

~
G~ =7.5 a.u. in the interstitial. The num-

ber of basis functions is about 50 per atom in a11 cases.
To check the accuracy we also increased the values of the
expansion parameters and found that the difference due
to the change of these parameters is very small ((0.1

mRy), which means that our choice of the parameters is

B. Relative energies and free energies

i3 E,„,B=VA
a V-' V= Vo

(2)

The cohesive energy E„„ofa given phase is commonly
defined as the total energy of that particular phase minus
the total energy of the constituent atoms at infinite sepa-
ration. The cohesive energy is thus a measure of the
cohesion of the atoms and should therefore be compara-
ble to the sublimation energy. For the study of phase
equilibria, the cohesive energy is more descriptive than
the total energy, since the latter includes a large contribu-
tion from electronic states that do not play a role in
bonding. One can use the cohesive energy instead of the
total energy because these energies only differ by a linear
function of composition. In the following we will, there-
fore, use the cohesive energy where applicable.

In this paper the formation energy Ef„of a given
phase g, is given by the energy which would be generated
if that phase were formed from the pure elements with
the fcc structure, formally,

where c =cL; is the lithium concentration in the g; phase
(the aluminum concentration is given by c~~ = 1 —c). The
formation energy is introduced in order to facilitate a
comparison of the stability of phases, as the cohesive and
total energies contain large contributions that are ir-
relevant for the study of phase equilibria.

For each phase i and parent lattice g, the Helmholtz
free energy F can be expressed as a sum of two terms:

F '
( V) =F~~„+F ',„(V),

where F;„is the free energy of mixing, and where

(4)

The FLAPW method provides total energies as a func-
tion of molar volume. By minimizing the total energy of
a given phase with respect to volume, the equilibrium to-
tal energy E„,and the equilibrium volume Vo of a given
phase are found. Moreover, the curvature of the total en-

ergy with volume is related to the bulk modulus:
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C. Cluster variation approach

Let site occupation be denoted by the pseudospin vari-
able o.

P equal to +1 if site p is occupied by an Li, —1 if
occupied by a Al atom. A configuration is specified if the
set Io I of occupation variables is given for all X sites of
the crystal lattice. The density function

p(o. ) =Z 'exp E(o)—
k, T

allows suitable macroscopic averages to be taken. In Eq.
(7), Z is the partition function, E(o ) is the energy of
configuration o. , and k~ is Boltzmann's constant. The ex-
pectation value of the energy is thus

Fg ( 1 )FAl, r/r+ FLi, g
lin

where F ', F"' are free energies of the pure components
with fcc or bcc structure, at their respective equilibrium
volumes. Each pure component free energy (F ) is as-
sumed to contain a cohesive and a vibrational contribu-
tion:

F'~=F' +F'~'
coh ~jb

where F,',( is the cohesive free energy, and F,';b is the vi-

brational free energy. Since the temperatures of interest
for alloying are much lower than the Fermi temperature,
the cohesive free energy is virtually temperature indepen-
dent. Hence F,',f, can be replaced by the cohesive energy
at 0 K, E,,~h. The vibrational free energy vanishes at 0 K
except for a minute fraction due to the zero point motion.
In this paper we ignore the zero point motion and assume
that the vibrational entropy S,';b~ is temperature indepen-
dent. Hence the pure component free energy can be ex-
pressed as

F'~=E' ~ —TS"~
coh vjb

A comparison of the stability of the bcc and fcc lattices is
now possible provided that the energy difference

MLS yjp Syjb Syjb are known. Vibrational entroPy
will be included by subtracting the term TS~b(c) from
the configurational free energy. Note that we assume
that the vibrational entropy is a function of composition
and parent lattice type g, but not dependent on the type
of order.

The free energy of mixing, F~;„=E~,„—TS~;„, will

depend on configuration, i.e., on the state of long- and
short-range order in the phase considered, the state of or-
der being determined by minimizing the CVM free-
energy functional with respect to cluster correlations.

Computation of a coherent phase diagram, that is, a
phase diagram composed of phases that are based on one
lattice only, requires knowledge of F;„only, F,n being a
linear function of the composition. Thus the free energy
of mixing is computed with the CVM. The incoherent
Al-Li phase diagram requires Fl,'„' and Fl,'„' as well, or
rather, it requires the difference of these two linear terms,
gF fcc-bcc Ffcc Fbcc

lin lin lin '

(E)= g p(o )E(a),
I

a-
I

(8)

4r p(0) —0 +,0 +~ o

where n ~ is the number of points in the cluster of type y.
The summation in Eq. (9) is extended to clusters of all
types y, including the "empty" cluster, located at all
points p in the lattice. The cluster product of the "emp-
ty" cluster is equal to unity. The cluster correlations are
given by

k, =(~t X+, .,~~I
P

where the average is defined as in Eq. (8). The multisite
correlations g are the independent variables of the prob-
lem, those with respect to which minimization of the
CVM free-energy functional is performed. The set of
multisite correlations is determined by the symmetry of
the phase being considered.

When expression (9) for p is inserted in (8), an expres-
sion for the energy of a given ordered superstructure g, is
obtained (henceforth, brackets are not used in average
values, for simplicity):

E '= g J~g~',

where the summation includes the "empty" cluster,
designated by the index y =0. The parameters J
represent the effective cluster interactions which will be
discussed in more detail below. The CVM free energy is

obtained by adding to the energy E ' the term —TS„'„f,
where the CVM configuration entropy is given by Refs.
21-23:

S„' f kg Q I z'a& P pr(()input(P), (12)

where k& is Boltzmann's constant, I ' is the number of
clusters of type y per lattice point in the g; structure, a~
are the Kikuchi-Barker coefficients whose algebra is
defined in Ref. 21; the summations are over all types of
clusters } and over all configurations (g) of the p rtial
density matrices. The CVM approximation consists of
limiting the sum to clusters contained within a (small}
maximal cluster.

D. Connolly-Williams with volume dependence

The Connolly and Williams method' for obtaining
effective cluster interactions from cohesive energies is in-
timately linked to the CVM. Combining (8) and (9) yields
expressions for the effective cluster interactions for each
lattice:

the sum being carried out over all configurations. The
basic idea of the CVM is to express the density function
p(0 } as a linear function of cluster variables; ' thus

) (~)=AX~', ,(~C,
XP

where p&
=2, and 4 are the cluster products:
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or in matrix form,

J(V)=g ' E„h(V) . (14)

E. Volume-dependent cluster interactions

By expanding the cohesive energy as function of
volume ( V) around the equilibrium volume ( Vo) and re-
taining only terms up to second order, one obtains

(15)

Jr =p)v g @,, (0 )E(o ) .
0') P

This formula is exact, provided that the summation is
extended over the infinite crystal. The CVM approxima-
tion, which consists of limiting cluster interactions to just
a maximal cluster, provides a much more practical ver-
sion of these formulas: The derivation starts with a clus-
ter expansion, analogous to (11):

~max

E~,), ( V) = g g~~Jr ( V), (13)
y

where J ( V) and fr~ are the configuration-independent
cluster interactions and the multisite correlation func-
tions, respectively, associated with cluster y, V is the mo-
lar volume of the alloy, and the sum runs, in principle,
over all clusters in the crystal up to a maximum cluster
which covers the entire macroscopic crystal. For brevity,
the subscript of g will be considered implicit when deal-
ing with superstructures. In practice, the expansion is as-
sumed to be rapidly convergent, compatible with trunca-
tion of the sum at some small maximal cluster y,„
(CVM approximation). The system of linear equations
(13) can be inverted to yield effective cluster interactions
provided that the cohesive energies of a number of or-
dered structures are known, as mentioned above. Inver-
sion is possible only if the number of cluster variables,
that is, effective cluster interactions, is less than or equal
to the number of cohesive energies. It is easy to show
that the cluster variables required for a given approxima-
tion are those of the maximal cluster and all its subclus-
ters. In the present case the cluster correlation for the
fcc lattice are the tetrahedron, the triangle, the pair, the
point, and the "empty" cluster. For the bcc lattice these
are the tetrahedron, the triangle, the nearest-neighbor
pair and next-nearest-neighbor pair, the point, and the
"empty" cluster. Therefore, five Jz parameters must be
determined for the fcc case and six for the bcc. To obtain
solutions of the linear system (13), it follows that at least
five energy-versus-volume calculations must be per-
formed for the fcc case, six for the bcc case, pertaining to
the pure elements in both fcc and bcc structures and to
stoichiometric ordered superstructures. By formally in-
verting (13) one arrives at the following explicit equation
for the volume-dependent cluster interactions:

Jr(V)= g(g~~) 'E~,„(V),

where E,» ( Vo ) is the cohesive energy at the equilibrium
volume ( Vo) and where B represents the bulk modulus,
the superscript 1t denoting the phase in question.
Different phases are expanded about different equilibrium
volumes. In order to allow a straightforward description
in matrix notation, Eq. (15) is rewritten as an expansion
around V=O:

where

( V) —E)o)@+E(1)g+E)2)rli V2 (16)

E' '~=E~ ( Vo )+ 'B~V—$

E

This means that the vector E„h( V), with index f, can
simply be rewritten as the product of a matrix E and a
volume-dependent vector:

(0)$] (1)lt)] (2)1t)]

«O)62 (1)$2 (2)f2

V

V2

(17)

Using expression (13),
volume dependence for

J(0) J(1)
7]

J«0) J(1)
y2 )'2

J( V) = J(0) J() )

3 3

one obtains a simple parabolic
the cluster interactions:

J(2)
7]

J(2)
'V2

J(2)
y3

V

V2

(18)

where the interaction matrix J is given by the product of
the matrices g

' and E.

F. Introduction of volume-dependent interactions in the CVM

In the cluster variation method (CVM), a free-energy
expression is minimized with respect to a set of correla-
tion functions. The minimization takes the form of
finding the roots of the set of first derivatives of the free
energy with respect to the correlation functions. Two
techniques are used to solve the systems of nonlinear
equations: the natural iteration method ' and the
Newton-Raphson method (NR). ' The latter will be
used in this work.

The set of correlation functions can be denoted by a
vector (g). The set of first derivatives of the Helmholtz
free energy with respect to the correlation functions can
be represented by a vector (F'), and the set of second
derivatives can be represented by a Hessian matrix (F").
In the NR method the minimum value of the free energy
F and the corresponding vector (g) are found by itera-
tively improving on an approximate solution ((, ), accord-
ing to
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E= g(J (V).
y=O

(19)

Because of the parabolic volume dependence of J, one
can easily compute the first- and second-order partial
derivatives of the energy (or Helmholtz free energy for
that matter) with respect to volume. By increasing the
dimension of the cluster correlation function space by
one, so as to include the volume, one can accomplish a
joint-minimization of F with respect to both the correla-
tion functions and volume. The Hessian of the
Helmholtz free energy then has the form

FI c

a2F

ag, ag,

BF
ag, av

r) F
avag,

BF
BV

Starting with an initial guess go, new approximations

g;+, are computed until the norm of the vector F' van-
ishes. The NR method exhibits rapid quadratic conver-
gence and is especially advantageous because simple

analytical expressions for F' and F" are available.
The fact that in the present investigation the cluster in-

teractions are volume dependent adds an extra degree of
freedom. In this case the free-energy expression is not
only to be minimized with respect to the correlation func-
tions, but with respect to the volume as well. It will be
shown that the Newton-Raphson technique is very well
suited to include this additional minimization. Optimiz-
ing the Helmholtz free energy (F) with respect to volume
can be performed conveniently with volume-dependent
interactions of the form of (18). In the CVM expression
for F( =E —TS), only the energy (E) is an explicit func-
tion of the volume via the cluster interactions. The ener-

gy is of the following form:

~max

sidered: Although cumbersome and impractical, the in-
teractions J,, could have been calculated at each possible
volume V' by computing the energy of cohesion of the set
of ordered compounds at that given volume V', followed
by direct inversion to extract the interactions. The
compression of both elements (and all ordered com-
pounds in question) to the same molar volume V' means
that the A and 8 atoms are forced to occupy the same
volume as is illustrated in Fig. 2. Next, in the CVM, the
3 and 8 atoms are allowed to form different config-
urations, but no relaxation, i.e., redistribution of volume
between 3 and 8 atoms, is allowed. In short, the model
of alloying is the following: (1) An amount (1 —c) of ele-
ment 3 is compressed or expanded to such an extent that
its molar volume becomes equal to the volume of 1 mol of
the alloy ( V,, s,„) to be prepared. A similar compression
or expansion is performed on an amount e of element 8
(step 1 in Fig. 3). The amount of work required to
change the molar volumes of element A and 8 from their
respective equilibrium values V„and Vz to the alloy
volume usually is called the elastic energy (E""). (2)
Next, the two pieces of compressed pure A and 8 are
brought together, and while keeping the volume constant,
the 3 and 8 atoms are mixed until an equilibrium state of
(dis)order is attained (step 2 in Fig. 3). The energy in-
volved in isochoric mixing is called the chemical energy
(E'"' ). It is clear that in this process the molar volumes
of element 3 and 8 in an alloy will always end up here
being the same. This restriction has not been considered
in previous Connolly-Williams-type phase equilibrium
studies.

From various theories of alloying, such as the
Hume-Rothery rules, it is known that size effects, i.e.,
differences in molar volume, are significant with regard to
phase stability. The problem of size effects or relaxation
is a very complicated one, and here only a most simple

An alternative to a joint minimization is to perform the
minimizations over the correlations and volume separate-
ly, as in the study by Terakura and co-workers. ' The
advantages of a joint minimization over two separate
minimizations are twofold: (i) instabilities due to volume
effects or due to the interplay of volume and correlation
functions are easily determined by checking for negative
eigenvalues of the Hessian. Instabilities which have cor-
responding eigenvectors that have at the same time both
a nonzero volume component and nonzero cluster corre-
lation function components can only be detected in a
joint minimization; and (ii) the joint minimization is com-
putationally much faster and leads to less complicated
computer codes.

G. Relaxation

V
A38 "

VAB

CB (at. %)

VB "

"VAB
3

In the previous treatment the implicit assumption was
made that element 3 will occupy the same molar volume
in the alloy as element B. This statement becomes clear
when a schematic outline of the computation is con-

FIG. 2. Schematic representation of a step performed in

computing cluster interactions. In order to calculate the cluster
interactions for an alloy with concentration c and volume V', all
ordered compounds are compressed from their equilibrium
volumes V" to the volume of the alloy under consideration V'.
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V8::

'. :VA

V
alloy

model is used to estimate its effect on phase equilibria.
To relax the assumption that both elements have the

same molar volume in the alloy, an additional step in the
previous mentioned model of alloying is suggested. After
isochoric mixing has occurred, (3) the molar volumes of
elements A and 8 are redistributed as is symbolically in-

dicated by step 3 in Fig. 3. The molar volume of A in the
alloy 0'„ is not necessarily equal (any more) to the molar
volume of 8 in the alloy V~ or the molar volume of the
alloy V,~],„. The two unknown variables Vz and Vz are
determined by using two constraining assumptions: (a)
the volume of the alloy remains constant during molar
volume redistribution (relaxation); that is,

V,a,„=(1—c) V„+cf'~, (21)

and (b) the energy associated with this relaxation step
E"'"" can be approximated by the energy required to
form a segregated alloy with an amount (1—c) of element
A and an amount c of element 8 at the volume of the al-

loy Vg]]Qy from the pure elements, each at the volume of
the alloy V,~&,„~ The relaxation energy is minimized with
respect to the molar volumes V~ and V~:

CB (at 4
FIG. 3. Schematic outline of the model of alloying that in-

cludes relaxation effects. (1) The pure elements are compressed
from their respective equilibrium molar volumes V„z to the
molar volume of the alloy V,~],„. (2) While keeping the total
volume of the alloy constant (at V,~~,„), the originally separated
A and B atoms are mixed until a new equilibrium state of
(dis)order is attained. (3) While keeping the volume of the alloy
and the state of order constant, the molar volumes of element A

and 8 ( f „z) are rearranged.

E relax g W2 (23)

where 8' is the difference of the alloy volume and the
ideal volume: W= V,, ~„„—(1—c)V„—cV~, and where Q
is a concentration-dependent elastic constant of the alloy
given by

Bw8~

2[(1 c)B&V„—+cB„V&]
(24)

An important aspect of relaxation is that the redistri-
bution of molar volumes implies that the atomic volumes
of A and 8 atoms are different, which results in a de-
formed lattice. In such a distorted lattice all lattice sites
are no longer equivalent. True fcc and bcc Ising models,
which the CVM solves in an approximate fashion, require
equivalency of lattice sites. For that reason the
configurational part of the free energy is dealt with by the
CVM before relaxation is taken into account.

Introducing relaxation as previously described in the
formalism of the CVM requires two steps: The first one
is calculating the cluster interactions by applying the
direct inversion scheme on the "unrelaxed" cohesive en-
ergies of a set of ordered phases. The unrelaxed cohesive
energies are obtained by subtracting the relaxation ener-
gies from the cohesive energies as computed by total-
energy methods. The volume dependence of the relaxa-
tion energy has some subtle effects. For example, the
bulk modulus of an unrelaxed ordered compound is not
the same as the bulk modulus computed for the relaxed
compound. Because relaxation energies are second-order
polynomial functions of volume, the cluster interactions
J still have the same algebraic form as put forward in
Sec. II F. The second step is calculating the con-
figurational free energy with the CVM and adding the re-
laxation (free) energy to obtain the cohesive free energy.
Last, the cohesive free energy is minimized with respect
to the cluster correlation functions and volume.

(iii) the energy involved in this relaxation step E"""can
be approximated by Eq. (22). Assumptions (1) and (2) are
justified to some extent because the relaxation energy
tends to be much smaller than the chemical and elastic
energies, so that changes in alloy volume and chemical
order are expected to be minor. Note that a theory re-
cently proposed by Ferreira, Mbaye, and Zunger' is
based on a much more stringent premise: The chemical
order and the volume of the alloy, and therefore the elas-
tic energy, are assumed to be independent of each other.
The third assumption is not easy to justify. Equation (22)
is rigorously correct if the atom in the alloy could be
thought of as jellium soft spheres with elastic properties
of the (bulk) pure elements.

Minimizing E"""with respect to the relaxed molar
volumes and using (21), the following equation is ob-
tained:

B~ 2 2+c [(V~ —V~) —(V~ —V,n,„) ] .
2 V~

The assumptions made are that (i) redistribution of mo-
lar volumes leaves the volume of the alloy unafFected, (ii)
the redistribution does not affect the chemical order, and

H. Vibrational entropy

Lithium has an allotropic transformation from bcc to a
close-packed hexagonal (CPH) structure [9R (Ref. 30)]
when the temperature drops below 78 K. ' When bcc
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lithium is deformed while cooling, however, an fcc phase
is formed at temperatures below about 110 K. ' It ap-
pears that although the 9R CPH structure is the stable
one at low temperatures, the energy difference with the
fcc structure is very small. For that reason we will as-
sume that the CPH structure can be represented by the
fcc structure. This can be justified also on the grounds
that the interatomic distances in 9R CPH lithium and fcc
lithium are the same and that 9R CPH and fcc structures
differ only in the stacking of the [111) planes. The fact
that lithium has an allotropic transformation at 78 K
from CPH to bcc indicates that differences in vibrational
entropy cannot be neglected. Table I shows fcc lithium
as the more stable form at 0 K, although the difference
with the bcc modification is only slight, as required. Un-
less a vibrational entropy difference for the fcc and bcc
forms is invoked, the fcc structure will remain the stable
structure for lithium at all temperatures in the phase dia-
gram computation. The theories concerning vibrational
entropy require a detailed knowledge of elastic con-
stants, ' which are not available for unstable structures
and lead to very extensive computations in the context of
an intricate theory like the CVM. In the absence of
applicable theories concerning vibrational entropy, we as-
sume a simple empirical form, namely, that the difference
in the vibrational entropy between fcc and bcc lattices is
a linear function of alloy composition and is independent
of temperature. The vibrational entropy difference
ASylb Sy b Sy]b for elemental lithium can then be com-
puted from the cohesive energy difference of fcc and bcc
allotropes at 0 K and from the experimental observation
that the transition occurs at 78 K. ' This yields a AS„'&
of 1.01R, where R is the universal gas constant.

For aluminum the situation is more difficult since no
bcc modification has been observed at ordinary pressures.
Therefore, we resort to the fictitious fcc-bcc transition at
2080 K as predicted from (sub)regular solution model
type phase diagram computations by Kaufman and Bern-
stein. This results in a AS„b of 0.346R. Assuming a

TABLE I. FLAPW results for fcc- and bcc-based structures.
The cohesive energy E,,„h is defined as the difference of the ener-

gy of 1 mol of atoms in the solid state and the energy of 1 mol of
atoms in the infinitely diluted gas state (infinite interatomic dis-
tances). The equilibrium molar volume and bulk modulus are
represented by V and B, respectively.

linear concentration dependence of ES„b,one obtains

AS, tb(c) =0.346+0.664c,
R

(25)

where c denotes the atomic concentration of lithium.
Note that our empirical estimate for the vibrational en-
tropy difference is in excellent agreement with a theoreti-
cal calculation by Friedel, ' which results in a value of
0.6R.

I. Liquid free energy

+Rt [c inc+(1 —c)ln(1 —c)], (26)

where L is a fitting parameter, in this case used to fit the
melting point of B32 A1Li at its experimental value of
990 K and where F„'"'are given by

gE tt ~)Iq
F . T) =E~'+DER~' ""—T (27)

where the index I refers to either Al or Li, the superscript
t( denotes the bcc structure for Li and the fcc structure
for Al, and EI' refers to the cohesive energy of element I
with structure

hatt
at 0 K. Tz~' is the experimentally ob-

served melting temperature, and AE&~' "" represents the
latent heat of melting. ' The latent heat divided by the
melting temperature is used as an estimate for the entro-
py of melting. The values of the melting points and la-
tent heats are listed in Table II. It follows that three
melting points are fitted: the melting points of the pure
elements plus the melting point of stoichiometric B32
A1Li.

III. RESULTS AND DISCUSSION

A. FLAPW results

Although techniques such as the density functional
theory have made significant progress in the modeling
of liquids, application in a first-principles method does
not yet appear possible. Therefore, a regular solution for-
mula for the free energy of the liquid phase is assumed
here:

F„„(c,T) =cF„' ( T)+ (1—c)F„'(T)+Lc (1 —c)

Structure
~coh

(kJ/mol)
~O

(cm '/mol)
B

(r.Pa)

Table I and Fig. 4 show results from the total-energy
FLAP% calculation. As mentioned above, first-

Al (fcc)
Al, Li (L1,)

A1Li (L10)
AlLi, (L1, )

Li (fcc)
Al (bcc)
Al)Li (DO))
A1Li (B2)
A1Li (B32)
A1Li, (DO, )

Li (bcc)

387.164
342.297
288.765
225.911
164.108
381.125
329.299
289.027
297.167
230.244
163.452

9.5533
9.4518
9.2805
9.7403

11.4031
9.6068
9.6518
8.8921
9.2148
9.6829

11.4387

82. 198
70.305
50.409
28.370
13.642
84. 184
55.844
42.091
57.750
29.640
15.246

Phase
AE „l,

(kJ/mol)
Tmelt ASmeit

(J/mol K)

Al-fcc
Li-bcc

10.753
2.887

933.35
452. 15

11.521
6.385

TABLE II. Properties of melting for bcc lithium and fcc
aluminum. E,lt and T „l, are the experimentally observed la-
tent heat of melting and the melting temperature, respectively
(Ref. 39). The entropy of melting S,lt is calculated as the ratio
of the latent heat over the melting temperature.
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principles cohesive energies, equilibrium volumes, and
bulk moduli are obtained for a number of fcc and bcc su-
perstructures. Note that the calculated properties all
pertain to a temperature of 0 K. The practical usefulness
of first-principles calculations is very evident here, for not
only do these computations greatly increase our under-
standing of the solid state, but accurately computed first-
principles results also provide an alternative where exper-
imental data is insufficient or completely lacking. Many
of the properties listed in Table I are only very approxi-
mately or not at all known from experiment. Cohesive
energies, for example, can be compared to experimental
data in only two cases. We will compare the calculated
cohesive energies with sublimation energies at 0 K.
Reference 40 gives the values 321.9 and 161.6 kJ/mol for
the sublimation energies of fcc aluminum and bcc lithium
at 298 K. The sublimation energy at 0 K (E,&, ) can be
obtained from the sublimation energy at 298 K (Eg, )

with the following expression:

EO E298 + sol d dT apo298 298

sbl sbl p
O

P

Unfortunately, no accurate values for the isobaric
specific heat c for the pure elements between 0 and 298
K are available. Therefore, the specific heat of the pure
elements for temperatures above 298 K has been extrapo-
lated to the temperature range 0—298 K. The tempera-
ture dependence of c for the pure elements is given by
the following expressions:

c (Al) =4. 186(4.94+0.002 96T),
cz(Li) =4. 186(3.33+0.008 21T) .

The units are K for temperature and J/mol K for the
specific heat. The c of the vapor phase is approximated
by the value for the ideal monoatomic gas ' of —,'R. Using
these expressions for c, values for the sublimation energy
E,bl at 0 K are obtained. The sublimation energy for Al-
fcc is 322.4 kJ/mol, to be compared with a cohesive ener-

gy of 387.2 kJ/mol. The corresponding numbers for Li-
bcc are 161.1 and 164.1 kJ/mol. These values for both
Al-fcc and Li-bcc are seen to compare reasonably well
with 17% and 2% difference, respectively. Note that the
temperature correction for the sublimation energy is of
little significance.

The energy difference between the fcc and bcc struc-
tures, defined as hE "' "=E,",h

—E„'h, is given in Table
III. The b,E"" " value for Li (0.656 kJ/mol) is small
and positive, in accordance with the fact that in actuality
the bcc form of Li is not the ground state, and that the
bcc becomes only stable at elevated temperatures by mer-
it of its large vibrational entropy. The smallness of
AE" " is to be expected; upon cooling (below 110 K)
the fcc allotrope forms when the bcc modification is de-
formed. The structural energy difference predicted with
phase diagram fitting, ' —1.214 kJ/mol, does not de-
scribe the behavior of Li: The negative sign would indi-
cate that the bcc form is always more stable than the fcc

10

0
5E

bcc

I= 003
bcc
fcc /

TABLE III. Comparison of various physical properties com-
puted with the FLAPW method (this work) with available ex-
perimental data (sources listed in references). Units are kJ/mol
for the structural energy difference hE"' "and for the ener-
gies of sublimation, cohesion, and formation, Esb] Ecoh and

Ef„, respectively, and cm'/mol and GPa for the equilibrium
volume Vo and the bulk modulus B. The bulk moduli are fol-
lowed by the temperature in brackets. For the structural ener-
gies and formation energy, no experimental data were available;
instead a comparison is made with results obtained from phase
diagram fitting (listed under "fitting").

o L1
Property Phase FLAPW Experiment Reference

0--i0E

—20—

p Dos
Llo

B2

B32

—25
0
AI

0.2 0.4 0.6
cL, (at. %)

0.8

FIG. 4. Formation energy Ef,„as a function of composition.
This plot shows the phase equilibria at 0 K. The circles and
squares correspond to structures based on the fcc and bcc lat-
tices, respectively. The Al, Li-L1z phase is just below the (solid)
line connecting the Al-fcc and B32 phases, an indication that
the L1, phase is just stable at 0 K. The A1Li3-L12 phase is far
above the (dashed) line connecting the Li-fcc and B32 phases,
indicating that this L1, phase is not stable at 0 K (nor at any
other temperature).

~ ~

coh " sblrn

Vo (298 K)

Al-fcc
Li-bcc
Al-fcc
B32

Li-bcc
Li-fcc

A13Li-L 12

Al-fcc

Property phase FLAPW fitting

gE fcc —bcc

Eform

Al-bcc
Li-bcc
B32

6.039
0.656

—21.531

10.086
—1.214

—15.633
—23.685

387.2 322.4
164.1 161.1

9.5533 9.7861
9.2148 9.3849

11.4387 12.391
11.4031 12.288
9.4518 9.439

82.2 (0 K) 83.3 (0 K)
75.2 (295 K)
76.6 (295 K)
77.3 (295 K)

A13Li-L12 70.3 (0 K) 66.0 (295 K)
Li-bcc 15.2 (0 K) 12.0 (295 K)

40
40
40
40
40
40
15
38
38
44
40
44
40

1,35
1,35

4
1
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form, in contradiction with the fcc-bcc transformation of
Li at low temperatures, just mentioned.

The large positive value of the structural energy
difference predicted by the FLAPW calculations for Al
(6.039 kJ/mol) indicates that the fcc modification is the
more stable form at all temperatures (below the melting
point). The value predicted by phase diagram fitting' is
again significantly different (10.086 kJ/mol). However, a
recent study of Miodownik has shown that phase dia-
grarn fitting is not always able to predict structural ener-

gy differences accurately.
The calculated formation energies, defined in (3) (Table

III), of the competing phases at equiatomic composition
strongly favor the B32 phase, as is observed in actual Al-
Li alloys. The computed value for Ef„of —21.531
kJ/mol for the B32 phase compares well with phase dia-
gram fitting results: —15.633 kJ/mol (Ref. 4) and
—23.685 kJ/mol. ' Note that the two phase diagram
fitting results differ significantly from each other. Our
faith in the first-principles formation energies is further
strengthened by the fact that the A13Li-L12 phase is pre-
dicted to be only just stable with regard to a mixture of
the Al-fcc and AlLi-B32 phases. Figure 4 shows that at 0
K the A13Li-L12 phase is virtually on (but just below) the
line connecting the formation energies of Al-fcc and
A1Li-B32. This means that the L12 is likely to become a
metastable phase at temperatures only just above 0 K, in
agreement with experimental observations in Al-rich al-
loys. This is an important point because the formation of
L 12 precipitates is of great significance for the technolog-
ical application of Al-Li alloys. The stability of the L12
phase will be discussed in more detail below.

The first-principles values of the equilibrium molar
volumes Vo differ by less than 10% from those obtained
from lattice-parameter measurements' (see Table III).
Note that the error in the molar volume is 3 times larger
than the error in the lattice parameter. Since lattice pa-
rameters are measured at 298 K and total-energy compu-
tations yield values for the molar volume at 0 K, the
effect of thermal expansion must be taken into account.
In the absence of experimentally determined linear
thermal expansion coefficients for the intermediate phases
in the Al-Li system, it has been assumed that the thermal
expansion of an intermediate phase is given by the con-
centration (in at. %) weighted average of the thermal ex-
pansions of the pure elements. The linear thermal expan-
sion coefficients of Al-fcc and of Li-bcc are 23.5X10
and 56.0X 10 K ', respectively. Correcting in this
fashion for thermal expansion yields the following experi-
mental molar volumes: For Al-fcc the experimental Vo is
9.7861 crn /mol, from which the calculated value devi-
ates by less than 2.5 k. For the B32, Li-bcc, and Li-fec
phases, the experimental values are 9.3849, 12.391, and
12.288 cm /mol, which differ by 2%, 9%, and 8% from
the computed values. The molar volume for A13Li-L12
precipitates in a 4.5 at. %%uoLi allo yha sbee ndetermined'
at 9.439 cm /mol, from which the computed value differs
by only 0.14%. With the exception of the last phase, the
FLAPW consistently (but slightly) underestimates the
equilibrium molar volume. A recent study has shown
that this underestimation of lattice parameters by total-

energy methods can be significantly diminished by taking
the zero-temperature vibration of the ions into account.

Only in a few eases can first-principles and measured
bulk moduli be compared due to the scarcity of experi-
mental data. Mondolfo reports the observed bulk
modulus of pure fcc aluminum at two temperatures: 83.3
GPa at 0 K and 75.2 GPa at 295 K. More recently,
Mueller, Bubeck, and Gerold measured a bulk modulus
of 76.6 GPa for fcc aluminum at room temperature.
Another experimental value for the bulk modulus for Al-
fcc can be obtained from the elastic constants given in the
literature. Under hydrostatic stress the bulk modulus
equals —', ( C» +2C, 2 ), which results in a value of 77.3
GPa for Al-fcc at room temperature. Taking into ac-
count that the experimental room-temperature values of
the bulk modulus should be multiplied by a factor of 1.04
to obtain the 0-K value, an average experimental bulk
modulus of 80.4 GPa is found. The first-principles bulk
modulus of 82.2 GPa is in very close agreement with this
value.

The bulk modulus of the A13Li-L lz phase cannot be
measured directly because that phase exists only in the
form of precipitates. Mueller, Bubeck, and Gerold" in-
ferred from their measurements a bulk modulus of 66
GPa at room temperature. The first-principles value of
70.3 GPa at 0 K is in good agreement with experiment.

The bulk modulus of lithium can be calculated from
(experimental) elastic constants using the expression
mentioned above. At room temperature a modulus of
12.0 GPa is obtained which compares favorably to the
first-principles result of 15.2 GPa, which applies to a tem-
perature of 0 K. Considering that Li is an element with a
low melting point, and that therefore considerable soften-
ing will occur upon raising the temperature to 298 K, the
first-principles value is in excellent agreement.

B. Phase diagrams

In this section Al-Li phase diagrams, the main results
of this study, will be presented and discussed. The as-
sessed Al-Li phase diagram, based on experimental data,
is shown in Fig. 1. Its main features include a very stable
equiatomic B32 phase, an fcc Al-rich solid solution which
has a significant solubility for lithium, a bcc Li-rich solid
solution which contains almost no dissolved Al, and a
metastable A13Li-L12 phase. Determination of the pre-
cise location of the phase boundaries concerning the L12
phase has proved to be an elusive problem due to experi-
mental difficulties. We will show that the first-principles
approach can be an extremely useful tool for a qualitative
and quantitative description of both stable and metasta-
ble phase equilibria. Through a succession of first-
principles phase diagrams, in which more and more
phases and effects are taken into account, it will be shown
that all the main features of the experimental phase dia-
gram can be understood and even predicted.

An fce Al-Li phase diagram can be obtained by com-
paring only the free energies of fcc and fcc-based super-
structures (like L lo and L lz). Figure 5 shows the first-
principles fee Al-Li diagram in which no relaxation has
been taken into account. The dashed line indicates the
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FIG. 5. Al-Li phase diagram calculated with only fcc-based
structures taken into account. Relaxation effects, as described
in Sec. II G, have not been included. The dotted line represents
the [000] phase separation spinodal, and the dashed curve indi-
cates the [100]ordering spinodal (Refs. 27 and 46).

FIG. 6. bcc Al-Li phase diagram without relaxation. The
dotted line indicates the metastable miscibility gap in the disor-
dered bcc solid solution.

[100] ordering spinodal, ' the meaning of which is as
follows: If an alloy is cooled rapidly from the (metasta-
ble) fcc disordered state to a temperature situated below
this spinodal, (100) ordering waves are expected to grow
spontaneously in amplitude producing a microstructure
more reminiscent of continuous ordering than of discrete
nucleation and growth. High-resolution transmission
electron micrographs obtained on Al-rich Al-Li alloys by
Radmilovic and Thomas appear to confirm that spino-
dal ordering is a viable transformation mechanism in this
system. The main features of the diagram are a miscibili-
ty gap (MG) with a maximum temperature of 775 K and
two ordered phases L 12 and L 1O with transition tempera-
ture of 520 and 515 K, respectively. The MG is caused
by an elastic instability. This is evident from the fact that
the eigenvector corresponding to the negative eigenvalue
of the Hessian matrix has nonzero components only with
respect to volume (all cluster correlation function com-
ponents of these eigenvectors are zero). Another way to
come to this same conclusion is to compute the phase di-
agram ignoring volume effects altogether. In that case a
diagram is obtained that strongly resembles Fig. 5 except
for one feature, the miscibility gap on the Li-rich side.

When relaxation (according to Sec. IIG) is taken into
account, only minute changes in the fcc phase diagram
occur, the most significant of which is a lowering of the
maximum temperature of the MG by some 25 K. The
tendency toward phase separation is diminished because
relaxation reduces elastic energies which caused the MG.

Figure 6 shows the phase equilibria between bcc and
bcc-based superstructures (like D03 and 832), without re-
laxation. The diagram exhibits a very stable B32 phase
with a transition temperature of 2230 K, a much less pro-
nounced AlLi3-D03 phase and a metastable MG for Al-
rich alloys. When the bcc phase diagram is computed

with relaxation taken into account, only insignificant
differences with Fig. 6 are found. The origin of the negli-
gible inhuence of relaxation in both the fcc and bcc Al-Li
system is twofold: The bulk moduli of both elements are
small, leading to small relaxation energies. Calculations
show that relaxation energies in the Al-Li system are typ-
ically less than 2% of the total energy of alloying. (ii)
The alloy molar volumes of ordered and disordered
phases at the same composition differ only very slightly,
resulting in only small differences in the relaxation ener-
gies for ordered and disordered phases. The competition
between ordered and disordered phases is therefore virtu-
ally unaffected by relaxation effects. In other alloys, with
larger bulk moduli, like Cu-Au, relaxation might have a
much more pronounced effect. Because of its negligible
contribution, relaxation has been neglected in all phase
diagrams which are discussed in the remainder of this pa-
per.

By combining the free energies of fcc- and bcc-based
phases, a first-principles fcc-bcc Al-Li phase diagram was
computed (see Fig. 7). This phase diagram is to be re-
garded as the main result of this study. Elemental Li
remains fcc at all temperatures because no vibrational en-
tropy has been included. Note, however, that the Li-rich
side of the diagram is dominated by bcc-based B32 and
D03 structures. Especially, the B32 phase is remarkably
stable. It will be shown below that including a liquid
phase causes the B32 phase to melt before disordering
takes place. The D03 phase occurs quite far away from
its stoichiometric composition due to the stronger order-
ing tendencies closer to equiatomic concentrations and
the competition with fcc-Li. The bcc-based superstruc-
tures are much more stable than the fcc-based superstruc-
tures; A13Li-L lz is the only fcc ordered phase that is al-
most stable. The metastable fcc phase equilibria are
shown in dashed lines.

This calculated phase diagram exhibits a striking
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FIG. 7. Solid-state part of the Al-Li phase diagram. Both
fcc- and bcc-based phases have been included. The fcc-based
ordered phases have been repressed because of the greater sta-
bility of the bcc-based superstructures. The metastable fcc-
based equilibria are indicated with dashed lines. The [100] fcc
ordering spinodal is denoted with a dotted line. Note that at
this stage no experimental data have centered the computation.

resemblance with the solid-state part of the experimental-
ly observed diagram. A detailed comparison of the com-
puted and actually observed phase diagrams will make
clear that all the main features of the Al-Li system are
correctly described. The fcc solid solution at the Al-rich
side of the diagram is correctly predicted, and moreover,
the solid solution also exhibits a marked solubility for Li
which decreases when the temperature is lowered.

The metastable A13Li-L 1z phase, which can precipitate
from oversaturated solid solutions, is correctly calculated
to be metastable. This is not in contradiction with the
fact that, at 0 K, the formation energy of the L lz phase
was located just below the line connecting the 832 and
Al-fcc points in Fig. 4. At slightly higher temperature,
the free energies of the two ordered phases can be con-
sidered to remain constant because the degree of order
remains virtually perfect; the free energy of the Al-fcc
solid solution, on the other hand, will decrease rapidly
due to the increasing solubility of lithium and the corre-
sponding increase in configurational entropy. This causes
the line connecting the free energies of the 832 and Al-
fcc solid solution (common tangent) to drop with increas-
ing temperature, so that the free energy of the L 1z phase
ends up above the line (common tangent).

The order-disorder temperature of the L 1z is predicted
to be 520 K, which at the very 1east can be said to be of
the right order of magnitude. Differential thermal
analysis has indicated an effect at 800 K, which has been
interpreted as an L1~ order-disorder transition. This
interpretation appears questionable, as the highest tern-
perature at which L lz has been directly observed is 616
K. Computations show that the metastable two-phase re-
gion between the fcc solid solution and the L lz phase is

narrower than is observed in actual alloys, but the phase
boundary at the L 1z side of the two-phase region appears
to be accurately reproduced at about 20 at. % Li.

The metastable miscibility gap (MG) at the Al-rich side
of the phase diagram conjectured by Sigli and Sanchez
was not found in the present work. Unfortunately, com-
parison with experimental observation is not possible. A
metastable clustering spinodal is unlikely to be observed
when there is the slightest tendency toward ordering, as
in the Al-Li system, because clustering requires diffusion
over macroscopic distances, whereas ordering can occur
by means of diffusion on an atomic scale. ' According-
ly, there is no sound experimental evidence for a cluster-
ing spinodal. Recent in situ atomic resolution electron
microscopy studies ' have revealed, however, that order-
ing occurs before and during the initial stages of precipi-
tation, in agreement with our results.

Our computations show that the center of the phase di-
agram is dominated by a very stable 832 phase, in com-
plete agreement with observations in actual Al-Li al-
loys. '4

This study, as outlined in Sec. II, does not include a
description of the complex interloper phases AlzLi3 and
A14Li9. However, a phase with D03 structure can be de-
scribed in our present model and appears to have charac-
teristics which resemble the complex phase. The AlLi3-
D03 phase is calculated to be stable only over a narrow
range of composition, just as in the two complex phases
which appear in the experimental phase diagram as line
compounds. Furthermore, computations show that the
AlLi, -DO, phase does not occur at stoichiometry, but
rather at compositions around cL; =0.70, where the
A14Li9 phase is observed.

The solid solubility of Al in Li is computed to be virtu-
ally nil (of the order of 10 ), in good agreement with
other studies ' which are based on experimental data.
Li remains fcc right up to the melting point because vi-
brational entropy has not been included (in Fig. 9 we will
include vibrational entropy). The fcc Li melting point is
above the observed fcc Li melting point because, in the
absence of vibrational entropy, the fcc structure remains
more stable than the bcc structure at all temperatures.
First-principles computation of the solid-state part of the
Al-Li phase diagram has been remarkably successful; all
the main features of the experimental phase diagram
have, at least qualitatively, been reproduced. The quanti-
tative agreement is not as good. Two relatively minor
differences are that (i) the computed two-phase region be-
tween Al-rich solid solution and L lz is narrow, barely 5

at. % at ambient temperatures, whereas the observed
two-phase region has a width of some 20 at. %; (ii) our
calculations show a slower decrease of the solid solubility
of Li in Al than is observed experimentally, ' so that at
low temperature the solid solubility of Li in A1 is
significantly overestimated. The predicted solid solubility
at higher temperatures is slightly too large also, but in
better agreement with experimental observations.

More features of the experimental phase diagram can
be reproduced when an empirical liquid free energy is in-
cluded (see Sec. II I). The resulting computed phase dia-
gram is shown in Fig. 8. The 832 phase is found to melt
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FIG. 8. Al-Li phase diagram in which a liquid phase,
modeled with a regular solid solution model free energy, has
been included. The vibrational entropy difference of the bcc-
and fcc-based phases was not considered in this computation.
The metastable fcc phase equilibria are indicated with dashed
lines (superposition of Fig. 5). The [000] and [100] fcc spinodal
curves are shown as dotted lines.

congruently before undergoing a disordering reaction as
is observed experimentally. ' the computed phase dia-
gram exhibits two eutectics, one at the Al-rich side and
another at the Li-rich side, just like the experimental
phase diagram. The calculated eutectic temperatures are
much lower than the experimental values, some 150 K at
the Al-rich side and about 50 K at the Li-rich side. The
peritectic at about 70 at. % Li is another feature that is
correctly predicted although the peritectic temperature is
some 90 K lower than experiment indicates.

The consistent underestimation of eutectic and peritec-
tic temperatures is caused by the particular form of the
free-energy expression used for the liquid. As described
in Sec. II I, the liquid free energy, given by a regular solu-
tion expression, contains an adjustable enthalpy term,
which is used to fit the melting point of the B32 phase.
The remarkable stability of the B32 phase requires a very
negative enthalpy. This enthalpy is not a function of
temperature, so that at temperatures below the 832 melt-
ing point the liquid free energy remains very low. Thus
the liquid is stabilized at the expense of the solid, so that
too low eutectic temperatures are computed. If, on the
other hand, the B32 melting point were fitted with an ex-
cess entropy term, the liquid free energy would become
less negative as the temperature decreased. The liquid
would not be stabilized unjustly with respect to the solid
phases, and higher eutectic temperatures would be found.
In that case the Al-A1Li eutectic is computed at 84S K,
just 25 K below the experimental eutectic temperature.
Because both of these liquid free-energy expressions are
fits and in no way related to first principles, we will not
delve into this any further.

Figure 9 shows an Al-Li phase diagram in which vibra-
tional entropy, as described in Sec. II H, has been includ-

FIG. 9. As in Fig. 8, but now including the empirical vibra-
tional entropy difference between fcc- and bcc-based phases.

ed. Vibrational entropy significantly influences the phase
diagram at higher temperatures, as can be seen by com-
paring Figs. 8 and 9. The solid solubility of Li in fcc Al
has been decreased as compared with Fig. 8, so that now
a better agreement with the experimental values (Fig. 4)
is found. The occurrence of bcc Li above 78 K is now
correctly described, as is the melting temperature. The
stability of the D03 phase is somewhat reduced by vibra-
tional entropy. Because the D03 phase does not occur in
Al-Li alloys, this is neither an improvement nor a detri-
ment.

Including the empirical vibrational entropy also slight-
ly deteriorates some features of the diagram, namely, that
the eutectic temperatures on both the Al- and Li-rich
sides have further departed from their experimental
values. The eutectics can be made more "agreeable" by
using another fitting quantity in the regular-solution-type
free-energy formula for the liquid as discussed above.

C. Prediction of lattice parameters
and the enhanced modulus erat'ect

Minimizing the Gibbs free energy with respect to alloy
molar volume in the CVM allows the determination of
the equilibrium volume (or lattice parameter) of alloys as
a function of composition. The equilibrium volume also
varies slightly with the state of order, although this effect
is much less pronounced. The computations predict, for
example, that the A13Li-L12 order-disorder transforma-
tion is accompanied by a volume change of about 0.14%%uo.

Figure 10 illustrates how remarkably accurately this
first-principles method can predict changes of lattice pa-
rameter with composition. The temperature of the exper-
imental measurements is extrapolated to 0 K by the same
method as used in Sec. III A. The predicted influence of
Li on the lattice parameter of the B32 phase agrees well
with experimental determinations ' except for a con-50, 51

stant factor. The difference between the experimental
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solution, This linear decrease of the lattice parameter has
been observed in actual Al-Li alloys, although the report-
ed rates of decrease vary considerably. A least-squares
analysis of the data in Refs. 50, 52, and 53 yields rates of
29X10, 44X10, and 69X10 nm per at. % Li, re-
spectively. It is clear that the experimental determina-
tions differ as much among each other as they differ from
the first-principles result. Comparison of these values
may give the impression that none of these numbers are
very accurate; however, when the deviations from
Vegard's law are compared, the relative errors are found
to be very small. Including relaxation in the calculations
does not improve the correspondence between experi-
ment and computation.

The misfit parameter, defined as the ratio of the lattice
parameter of the precipitate (L lz phase) over the lattice
parameter of the matrix (Al-rich solid solution) minus
unity times 100%,

FIG. 10. Lattice parameter of the B32 phase a»2 as a func-
tion of the lithium concentration cL, at 0 K. The solid points
represent the theoretically predicted lattice parameters (Sec.
IIC), the open circles and squares indicate experimental mea-
surements from Refs. 50 and 51 as quoted by Ref. 4. The exper-
imental data have been extrapolated from 298 to 0 K as de-
scribed in the text.

lattice-parameter measurements and the calculated re-
sults can be explained by the fact that the total energy
computations typically predict the molar volumes of
stoichiometric compounds with an accuracy of the order
of a few percent. The predicted and experimentally
determined lattice-parameter variations Gas 3p sac „„ in

both cases computed by linear regression, are given in
Table IV. The inAuence of the lithium content is surpris-
ingly well predicted, especially when the variation be-
tween the two experimentally determined slopes is con-
sidered.

Computations of the inAuence of Li on the lattice pa-
rameter of Al-rich solid solutions show that the lattice
parameter decreases 51X 10 nm per at. % Li in solid

~ prec —1 X 100%,
matr

(28)

can be computed when the compositions of the coexisting
phases are known. The compositions of Al-rich solid
solutions (matrix) in equilibrium with A13Li-L lz (precipi-
tate) have been taken from the experimental phase dia-
gram (Fig. 4). At 300 K the matrix and precipitate con-
tain 5 and 24 at. % Li, respectively; at 500 K the compo-
sitions are 8 and 21 at. %%uoLi . A t thes ecomposition s the
lattice parameters have been computed so that the misfit

parameter could be evaluated; results are listed in Table
IV. Our computations predict that the misfit parameter
is small and negative (see Table IV), the absolute value of
which decreases with temperature. All three of these
findings are in agreement with experiment. ' Although
the quantitative agreement between theoretical and ex-
perimental results may appear poor because there seems
to be a large relative error, note that the difference (abso-
lute error) is extremely small.

Many experiments ' have conclusively shown
that the Young's modulus of Al-rich solid solutions in-

TABLE IV. Comparison of theoretical CVM predictions and experimental measurements. The
change of the lattice parameter per atomic percent lithium (Ba/Bc&, ) in nm units in the aluminum-rich
fcc solid solution (fcc-Al) and the B32 phase and the change of the bulk modulus per atomic percent
lithium (BB/BcL, ) in GPa units in the fcc-Al phase from CVM computations (this work) and as report-
ed in Refs. 50—53. The misfit parameter 6, in percent, given by Eq. (28), between the fcc-Al phase and
the A13Li-L12 precipitates, from lattice parameters computed with the CVM (no relaxation) at 300 and
500 K., and as observed (Refs. 49 and 54).

Property

Ba /&)Cl,

da /dcL,

6 {300 K)

5 {500 K)
dB /Bc,

Phase

fcc-Al

B32

fcc-Al/A13Li-L 1&

fcc-Al/A13Li-L 1z
fcc-Al

This work

—0.000051

—0.000 22

—0.28

—0.19
—0.48

Experiment

—0.000 029
—0.000 044
—0.000 069
—0.000 25
—0.000 34
—0.08
—0.09

—0.576

Reference

50
52
53
50
51
49
54
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crease with increasing lithium content. Assuming isotro-
pic elastic behavior and a constant Poisson ratio, one
would expect that the bulk modulus would follow a simi-
lar trend, but this is not the case. Recent measurements
indicate that the bulk modulus decreases about 0.576
GPa per atomic percent lithium in solid solution, which
corresponds remarkably well with our first-principles cal-
culations which yield a decline of 0.48 GPa per atomic
percent Li (Table IV). In addition, our calculations show
that the bulk modulus reduction is virtually temperature
independent. An interesting observation is that in order
to account for an increase of the Young's modulus of 1.24
GPa per atomic percent Li, and a decrease of the bulk
modulus of 0.576 GPa per atomic percent Li, the Poisson
ratio has to decrease rapidly from about 0.346 for pure
aluminum to about 0.285 for an alloy with 14 at. % Li
(maximum solubility), assuming isotropy. Glazer and
Morris observed such a decrease of the Poisson ratio
with Li content, although their results have some quanti-
tative ambiguity. The strong variation of the Poisson ra-
tio suggests that Al-Li alloys will become increasingly an-
isotropic when the lithium content is raised. Contrary to
results of our computations and experimental evidence, "
Masuda-Jindo and Terakura report an increase of the
bulk modulus with lithium content in a recent augmented
spherical wave (ASW) study of aluminum-rich Al-Li al-
loys. From a theoretical point of view, the ASW is less
accurate than the FLAPW because the former assumes
spherically averaged crystal potentials and charge densi-
ties. Also, within the ASW approach the volume of the
crystal has to be filled by overlapping spheres. The radii
of these atomic spheres for cases of more than one atom
are adjustable parameters which have to be chosen.
Furthermore, the number of four basis functions for the
Li sphere corresponding to a maximum one-quantum
number of 1 is quite small. We suspect that parameters
chosen by Ref. 58 were not the most suitable ones for
describing properly the anisotropy of the Al-Li interac-
tions to get correct results for the bulk modulus. Finally,
the ASW results would predict a hypothetical A17Li
phase to be stable between the fcc Al-rich solid solution
and the Al&Li-L12 phases, a situation that has never been
observed in experiment. We suspect that the listed ASW
formation energy of A17Li is too low by a factor of 2
(Table 1 in Ref. 58). By contrast, the FLAPW results
correctly describe the A17Li phase to be unstable with
respect to the fcc-AL and L12-Al&Li phases. The hy-
pothetical A17Li phase has never been observed in actual
Al-Li alloys.

Our first-principles method also enables us to predict
whether Al&Li-L 12 precipitation will alter the bulk
modulus. Assuming that an originally homogeneous Al-
Li alloy with 9 at. % Li will form precipitates with 24
at. %%uoLi an d asoli dsolutio nwit h 5at. %Li, w epredict
that the bulk modulus will increase upon ordering by
about 0.23 GPa assuming uniform strain, and by about
0.08 GPa assuming uniform stress (see Ref. 59 for equa-
tions). A study by Broussard and Thomas suggests that
the Young's modulus increases by 0.6—1.3 GPa upon pre-
cipitation in alloys with 9 at. % Li. Another study re-
ports an increase of 0.1 GPa per volume percent of pre-

cipitate formed in alloys with low fractions of precipitate.
The 9 at. % alloy could attain (in principle) a precipitate
fraction of 21%, which would correspond to an increase
of 2.1 GPa. Extrapolating the experimental results as is
done here is likely to lead to inaccurate numbers, but at
any rate it appears that our calculations can predict the
fact that precipitation increases the bulk modulus of the
alloy.

IV. SUMMARY AND CONCLUSION

A convenient way to introduce volume-dependent clus-
ter interactions in the CVM has been presented and ap-
plied. A simple model for relaxation has been described
that does not contain any fitting parameters and has the
molar volumes and bulk moduli as sole input. Relaxation
energy contributions thus calculated were shown to have
a mild influence at the Li-rich side of the phase diagram
and were virtually absent at the Al-rich side of the dia-
gram.

The first-principles-based computation of the solid-
state equilibria in the Al-Li system is, on many salient
points, in agreement with experimental findings, such as
(1) the correct prediction that fcc Al is much more stable
than bcc Al; (2) the fcc structure is more stable than the
bcc structure for Li at absolute zero temperature, and the
small difference in the lattice stability of those two struc-
tures; (3) the 832 structure is much more stable than the
B2 and L lo structures for the equiatomic alloy; (4) the
fact that the free energy of the Al&Li-L l~ phase is only

just above the common tangent between the Al-rich solid
solution and the B32 phase at ambient temperatures,
which indicates the metastability of the Al&Li-L 12 phase;
(5) the prediction of the correct order of magnitude of the
transition temperature of the metastable Al&Li-L 12

phase; (6) the relatively high solubility of Li in fcc Al,
which increases with temperature, and the very small
solubility of Al in both fcc and bcc Li; (7) the A1Li phase
(832) being so stable that it melts before disordering
takes place; (8) the prediction that excess lithium causes
an increase of the B32 lattice parameter and that lithium
slightly decreases the lattice parameter of the Al-rich
solid solution; (9) the decrease of the bulk modulus of the
Al-rich solid solution with increasing Li content; and (10)
the small negative value of the misfit between the Al-rich
solid solution and the AljLi-L 12 phase.

When empirical data was added, such as a simple
concentration-dependent vibrational entropy and a regu-
lar solution free energy for the liquid, more correspon-
dences with the experimental phase diagram were ob-
served, such as (11) the prediction of eutectics at both the
Al- and Li-rich sides of the phase diagram; the difference
between the theoretical and experimental eutectic tem-
peratures was attributed to the form of the free-energy
expression for the liquid; (12) the B32 phase was comput-
ed to melt congruently, and a peritectic was calculated at
about 70 at. %%uoLi, betwee n th eeutecti cat th eLi-ric hside
and the melting point of the B32 phase.

A minor shortcoming was that the solid solubility of Li
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in the Al-rich solid solution was computed to be larger
than experimentally observed. Because of our choice to
treat phase equilibria in the Al-Li system as a competi-
tion of ordering on fcc and bcc lattices (with first-, and
first- and second-neighbor interactions only), the complex
A14Li9 (mC26, 82/m) and AlzLi, (hR5, R3m) phases
(see Ref. 15) could not be included in this study. It must
be noted, however, that all phases that were included in
this study, that is, fcc and bcc plus superstructures, had
lattice stabilities that agreed with experimental observa-
tions. Furthermore, each phase appeared, at least quali-
tatively, to be correctly located in the phase diagram.

Although a practical first-principles formalism of the
vibrational entropy is still lacking, first-principles studies
of phase equilibria in the solid state have been shown to
be feasible and useful.
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