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Dynamics of a fermion in the Kondo-lattice model for strongly correlated systems
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The motion of a single fermion coupled to the planar antiferromagnetic spin background is
examined within the Kondo-lattice model, including the local spin-fermion coupling and the
spin-dependent hopping. The perturbation theory using lowest-order magnon processes and the
self-consistent calculation of the quasiparticle spectra, yields several features obtained by an
analogous treatment of the t Jm-odel by Kane et al. Qualitative differences are, however, found

II
in low excited states with the self-energy showing a nonanalytical behavior Z (u ) 0) oc ur

e & 1, due to the local Kondo-like coupling. Within the perturbation theory we get n=l, while
the self-consistent treatment yields e = z. The modified self-consistent equations lead also to
better results for the quasiparticle mass.

I. INTRODUCTION

In order to understand the character of quasiparti-
cles (QP's) in strongly correlated systems, with super-
conducting copper oxides as a prominent representa-
tive, a number of authors have so far considered the
problem of a single charge carrier introduced by dop-
ing the planar antiferromagnetic (AFM) insulator. The
results obtained by the retraceable-path method, ~ by
self-consistent treatment of spectral functions 5 and by
the exact diagonalization of small systems 8 yield a rea-
sonable description of the overall behavior of the QP's
strongly coupled to the AFM spin system. Yet there are
several aspects that need further clarification. One of the
most important qualitative questions is the correct de-

scription of the low-frequency excited spectra, connected
with the existence of the QP peak and its dispersion.

Several models for the AFM insulator doped with a low

concentration of mobile holes have been studied. It has
been shown 'P that in the relevant parameter regime
the spin-hole (fermion) modelsiP i2 as well as the ef-
fective single-band t-J model represent the qualitative
features of more complete two-band Hubbard model for
the CuOz layers in superconducting oxides well. Most
theoretical work has been done so far on the prototype
t-J model. A simple and physically transparent ana-
lytical description of a single QP has been introduced
by the self-consistent approach. Using the represen-
tation of the t-J model in terms of the slave fermions
and Schwinger bosons, the problem of the hole dynam-
ics is effectively mapped on a more ordinary model of
a fermion linearly coupled with spin waves. The self-
consistent treatment of the latter system yields sensible
results for the QP dispersion, for the general structure
of excited states, etc. The main conceptual disadvantage
of this approach seems to be in the form of the effective

H = tP ) c.s—cps

(ij)s

+V) s; S; + tr ) ZO'ssl Sg(eiscssl + C Cis~)

(ij)ss'

The free fermion hopping tp part and the Heisenberg
model for localized spins S, are coupled via two types
of terms, i.e. , the local I&ondo-type (V) term and
the hopping-induced (ti) coupling. The Kondo-lattice
model, has been studied in connection with single QP
properties by several authors. 8 It has been also
shown that, taking into account the (ti) term, the model
represents a very good description of low-lying QP states
in the two-band Hubbard model. For realistic large val-
ues of V it maps onto the t-J model due to the formation
of local singlets, formed from a fermion and the local spin.
The model, Eq. (1.1), can be thus regarded as equivalent
to the t Jmodel (for larger -V). It has, however, a techni-
cal advantage by allowing a more straightforward deriva-
tion of the fermion-magnon interaction and the possibil-
ity of the perturbative treatment of the latter.

Since our main aim is the study of low-frequency dy-
namics, we shall, in the following, apply to Eq. (1.1) the

coupling between the fermion and the AFM magnons,
which appears only through the fermion hopping. On
the other hand, the strong on-site interaction due to lo-

cal constraint does not appear in this effective model,
since the constraint is treated in the mean-field manner.

In order to test the validity of the above-mentioned
results, we investigate the alternative model, which di-

rectly incorporates the local interaction. We start with
the generalized Kondo-lattice (spin-hole) modeliP i2 for
a fermion coupled to the AFM spin system,
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expansion of spin operators S; into spin waves, based on
the existence of the AFM long-range order at T=O. The
existence of the QP and the low excited states can then be
studied by the usual perturbation approach, as followed
recently for the Kondo-lattice model also by Furukawa
and Imada. The authors pointed out on the logarith-
mic singularities in the fermion self-energy Z(~), having
origin in nonlinear magnon-fermion coupling terms. We
shall argue that these terms sum up yielding a regular
QP band. On the other hand we would rather find a sin-
gular low-frequency behavior of E(~), which is governed
by the local Kondo-like (V term) coupling.

In Sec. II we derive the fermion-magnon (boson)
Hamiltonian corresponding to the model (1.1). Sec-
tion III is devoted to the perturbative calculation of the
self-energy Z(w), both for the localized and the mobile
fermion. The emphasis is on the low-u regime. In Sec. IV
we introduce self-consistent equations for Z(u). They are
solved analytically for the limiting cases of the Ising-type
interaction tc ~ 0 in Eq. (1.1) with a weak magnon dis-

persion. In the special case V=0 the set of equations
appears to be the same as obtained by Kane et al Our.
method for finite V can be thus interpreted as an im-

provement over their method. Results will be shown to
diH'er qualitatively in the small cu regime, but also quan-
titatively with respect to QP coherent masses, etc. More
general examples are examined by the numerical solution
of equations. The extension to finite temperatures T is
briefly mentioned in Sec. V. In the Appendix we discuss
the influence of nonlinear magnon terms via the varia-
tional approach.

spins in terms of bosonic operators a;, aJ,

S, = -(1 + c'q' ')a; + -(1 + e' ' ')a (2 1)

gs ~ lqo Rg( 1 ala, ) (2.2)

&nq) 0 "q "q )
(2.3)

where

bl = ~) e 'q' 'aJ, bq = ~) e'q' 'a;,

(2.4)
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and
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Performing the Bogoliubov transformation of operators
a; we get

II. FERMION-MAGNON HAMILTONIANS
[a, , at] = 6;, -;:-[n„nt, ] = bqq (2 6)

Assuming the Neel AFM with the staggered wave vec-
tor qs —(z, z) as the reference spin state, we introduce
the usual truncated Holstein-Primakoff representation of

z representing the number of nearest neighbors. Taking
into account only interaction terms linear in magnon vari-
ables we get the basic fermion-magnon Hamiltonian

f z+I g skckg cks + g 4)qnqnq + 4 V[( g ck q &ckg a&&

ks g ka

+ ).—,'( + )[V + t (V. +V —,)]
N kq88

[c„,c„, (o'„,n + ia,",, n + ) + ck, ck q, (a„n —ia,",, nq+, )] (2 7)

with uq = 2zJ+I —uzi and sk ———ztcyk. In the fol-
lowing we assume z=4 as for the square two-dimensional

(2D) lattice. In Eq. (2.7) we have separated the Kondo
term into a longitudinal Vj~ contribution and the spin-flip
V~ contribution in order to enable later the expansion in
Vg.

In 'R~ (2.7) the free to hopping is diagonal, while the
spin-dependent hopping t1 term is off diagonal in spin
variables. Since t1 seems to be dominant even in the
relevant parameter regime for CuO~ layers, it is conve-

nient also to introduce the staggered fermionic operators
c ) c~~) e.g. )

c; = ) 2(1+ 4ase'q' ')cI, ,

(2.8)

.+ —2[(.++ .-) +( k+qo+ k+qo —)]
-t 1 t t t t

where we used + for s = +2 and cr = +2. So an alter-
native model 'M~I in terms of transformed ck appears to
be
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with
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, q 2' Vq
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Here the tl hopping is diagonal in new (o') spin variables.
Relative to the importance of to and tq hopping we shall
in the following use either W~ or W~~ models as the start-
ing model.

III. PERTURBATION EXPANSION

A. Self-energy of a mobile fermion

Let us first consider the T=O self-energy Z(k, ur) of a
fermion in the model (1.1) with the free hopping only, i.e. ,

to g 0, tl ——0. We perform the perturbation expansion for
'Rr assuming Vg « to, J. Here we omit Vj~, since it is not

essential for low-u behavior in this regime.
To the lowest order in V~ the Z(k, u) is determined by

the process, presented in Fig. 1(a),

E(k, ~) = V'(..+ .)'d
SO+ & —Sk q

—&q
(3.1)

Here we take co ——sI o, and hence we measure ~ from
the bottom of the unperturbed band. In all further cal-
culations we assume Im~ = g ~ 0+. The binding energy
I y of the spin polaron, having k = 0 ground state in the
tl ——0 model, is given by E(0, 0). It has been evalu-

ated in Ref. (11) and shown to be finite. On the other
hand, for k = qo, E(k, cu) has a singular behavior at the
low-frequency edge u 0,

(3 2)

k'-
q

k'-q k-q-q' k'-q

k'-q k-q-q' k'-q'

(b)

)c)

where ln( —u) = ln )u) —ilr8(u). The singularity in

Eq. (3.2) appears due to the coupling uq + vq )q-
qo) l'2, divergent at q ~ qo.

It can be shown that also higher-order processes, as in

Figs. 1(b) and l(c), do not yield a diverging sl, within
'M1. Let us therefore comment on the recent analysis by
Furukawa and Imada. ' They consider the effect of the
nonlinear term, originating from Eq. (2.2), which has in

our notation the form

(2) 1
'Hr ——

Vj(
— s(u u + v v )ct,c„

kqq' ~

x[n,'n, . + —,'(n,'n', + n, n, , )] .

(3.3)

k'-q k-q' k'-q"

FIG. 1. The second- (a) and fourth- (b) and (c) order
diagrams in V~ expansion. Diagram (d) is one of the repre-
sentatives for the nonlinear VII coupling.

It is argued that these terms cause divergencies in zg,
i.e. , an expansion of ct in Vj~ is singular due to graphs of
the type presented in Fig. 1(d). In the Appendix we per-
form the summation of the most divergent terms involv-

ing at most a single magnon excitation in the intermedi-
ate state. It yields merely a renormalization of the QP
parameters, leaving cy ~ 0 and finite. We are interested
mainly in u 0 behavior at fixed V~. In this respect
we expect that the ~ 0 regime will still be governed

by u~ 0 divergencies, which remain unrenormalized. In
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the following analysis we therefore neglect the nonlinear

term, Eq. (3.3).
Let us now evaluate higher-order contributions to the

Ci

QP excitation spectra, as determined by the K (k, u).
Due to the linear dispersion u~ ~2Jq = cpq for q ~ 0
and ~~ cp lq —qp l

for q ~ qp, long-wavelength magnons
will dominate the small u regime. The most important
part in Qp is thus at q ~ qp..

Ri- &g) ) c„',c„,,
lq —qol

" "
x[cr„,(at + n ~)

(3 4)

The lowest-order nontrivial terms in Z(k, u) correspond
to diagrams in Figs. 1(b) and 1(c),

E(k, ~) = „,V;(.+ .)'(., +., )' &J

sp + ~ sk —z
—~z (so + a —Ei,

1

~p + + Ek q —q 4)q Mq

&p+ ~ —E'k

(3.5)

We note from Eq. (3.5) that the noncrossing diagrams
(first term) and the crossing diagrams (second term) yield
the same contribution to the singular behavior at ~ & 0.
Both contributions add at k=0, and we get

Z(0, u)) V~ d q d q'4 2 2

ld —8t p ca) —4)q
—cJq I

dq dq', , (3 6)
y4 1

$p ~ —«(q+q') '

where we consider only the most singular part (3.4). We
assume also a large width Stp of the free particle band,
i.e. , 8tp )& J. We thus get at small frequencies l~l && J

I

til» +»-.I
= ti I» —»+g —g[

'il(q —qo) &»I tilq —qol . (3.9)

The t~ term does not contribute to E" at low ~ as does
the local V term, and consequently does not lead to the
singular behavior as in Eq. (3.7). The low excitation
spectrum of QP is thus dominated by the local Kondo
Vg term.

A direct consequence of the nonanalytical behavior of
Z(id) is the disappearance of the well-defined peak at the
bottom of the QP spectra, which should show up in the
form

4

E(0,~) - 2
~ u) ln( —(u jJ) .

4p

G(k, ~) = + G(k, ~),
4) —Mg

(3.7) while in our case

(3.10)

OE(k, ~)a„= 1— ~0 as k~0.

(3.11)

B. Localized fermion

The same perturbation treatment of Qg cannot be ap-
plied if the fermion is localized, i.e., for tp —tq ——0, since
the self-energy appears to be divergent even within the
lowest order in V, as in Eq. (3.1).

Fermion-magnon Hamiltonian 'Hyy, expressed in stag-
gered fermion basis, can still be treated perturbatively
if we take V~ and V~j as independent parameters. The
small parameter is then V~/Vj~ & 1. Low-order processes
still correspond to those in Fig. 1, where we replace ek
with either cp for o = —

&
or zp + 2Vjj for cr = +&. We

choose zp ——
4Vjj being the unperturbed fermion energy

in this case.
Within the lowest order, analogous to Eq. (3.1), the

energy of the localized singletlike o = —
2 state is given

by

V2
2 (0, ~ ) 0) -~ 1+ci In(~/J)

tpJ

( V2
+c2

l

~ In(cu/J)

(3.8)

where c; are numerical constants. Clearly, t, he consid-
eration of higher terms is essential for small frequencies
~ ( u), J exp( —tp J/V~2).

Spin-dependent hopping terms (ti) are not singular at
q ~ qp, since the coupling is of the gradient type for
q- qp

Hence, the low-excitation part of the QP spectra ap-
pears to be nonanalytical with Z (0, a ) 0) u It.
should be noted that in the analogous treatment of the
t Jmodel, s-'4 the local coupling (the local constraint)

is not taken into account and therefore the low-frequency
anomaly does not appear, i.e. , Z (0, u ) 0) & ~ .

We do not investigate here systematically higher-order
corrections to Eq. (3.7), leading mainly to energy shifts
of the QP band. We estimate only the most singular con-
tributions of higher-order diagrams yielding logarithmic

II
corrections to E
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V2

(4 )'
the lowest order the logarithmic divergence analogous to
Eq. (3.2),

J/Vii &( 1 . (3.12)

zy corresponding to the o. = —
2 state is thus nonsin-1

gular, while higher-state self-energy Z+ again shows in

(3.13)

As in Sec. III A we can calculate fourth-order corrections
corresponding to diagrams in Figs. 1(b) and 1(c),

T/'4 (,'(i2

r4 i (3.14)

The second term in Eq. (3.14)—corresponding to crossing
diagrams —vanishes identically due to symmetry of the
function u~v~, Eq. (2.5). From the noncrossing diagrams
(first term) we again get the nonanalytical behavior of
the form (3.7), Hii —) (sko' + Vino' )ci, ck (4.1)

fermion-magnon model. We choose the free part in 'Hyy,

Eq. ('2.9), as

(ur) -, z~ln( —~/J) .

li

(3.15)

with the corresponding Green's function
We can thus conclude that the anomalous behavior ap-
pears in both cases, i.e. , for the mobile fermion and for
the localized fermion. It has a common origin in the sin-

gular interaction term V~ ~ that couples ck, with ck+„,,
in 'Hi or ck with ck+ in 'Hii, respectively.

ly
Go(k ~) (~ Rt)- (

c
~+ ~ V)()

(4.2)

IV. SELF-CONSISTENT EQUATIONS

In this section we generalize the self-consistent (SC)
method, as followed by Kane et at. ,

~ to our coupled

SC equations for the fermion self-energy, which emerge
from a summation of noncrossing diagrams as in
Figs. 1(a) and 1(b) to all orders, can be written as

1E (k, ur) = )
7TI

d q LI, (k, q)G„(k —q, ~ —~~)M, , (k, q), (4 3)

where the fermion propagator G(k, u) is given by on k and simplifies to

G(k, ~) = [Go '(k, ~) —Z(k, ~)]

(4.4) with

1
Ey(~) = d'q ~My~~'G~(~ —~ ) (4 6)

Z(k~)=~( + +
~- )

1
Gp(cu) = (4.7)

It should be stressed that in our SC approach, as well

as in the approach by Kane et al. , all contributions from
crossing diagrams are neglected, although we cannot ex-
clude the possibility that these contributions would mod-
ify the low-frequency anomalies.

A. Localized fermion.

Let us investigate first SC Eqs. (4.3)—(4.5) for a local-
ized fermion coupled to the AFM background only via
the local V term. Eq. (4.3) is in this case independent

1. Ising limit

Equations (4.6) become trivial in the Ising limit, where

~=0 and thus u~=l, v~=0, and ~~ = 2J. Since the SC
equations make sense for arbitrary parameters V~, V~~ we

study in the following only the most interesting isotropic
case with V = V& = Vj~. From Eq. (4.6) it follows that
E+——0; hence the function G+ has a single pole at cu

= 4V. This pole thus corresponds approximately to the
triplet state. On the other hand we get for Z
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1 V2
E (~) =

4 V G+(~ —2J) =
~ —4V —2J

so that

(4 8)

OI

l/V =0.01

~
—1

G (~) =
~

~+ ~4V—
~ —-V —2J j4

a 1 —a
+

4) —4)& 4P —(d &

The meaning of both poles can be easily recognized from

the limit J/V ~ 0, where we get u~ ——+~4V, while

the strength of the lower pole is a = '+ 0.72. The
2 5

lower pole can be attributed to the local singlet, while
the upper pole belongs to the triplet state. Note that
the correct result for the local singlet and triplet should
be ~~ ———4V, ~& ——4V, and a = 2. Due to the
linearization of spin operators in Eq. (2.9) analysis thus
fails to reproduce all quantitative aspects of local singlets.
Still the description is qualitatively correct. In particular
we do not expect that these deviations would have any
eR'ect on singular low-~ behavior.

In the intermediate region between the Ising limit and
the isotropic Heisenberg case we can get a reasonable
approximation by neglecting the dispersion in ~u
= 2J(1—~za ), while retaining it in Iv~~ ~4K y . Equa-
tions (4.6) can be then written as

Z+(u)) = 4V'G (~ —u)y,

(4 9)

(4.10)

( ) =
~ V G (4 — )(1+y)

with

K
u = ~, f in, ~l'4 4 - — (4.44)

Note that Eqs. (4.10) are a valid approximation of (4.3)
only for a & 1. As a solution of coupled set (4.10) we get
a set of isolated poles,

G-(~) =). (4.12)

where

|'Ji ~

~;+, —~, —a; - V
~

—
~«) a;

V
(4.13)

for small i and fixed a & 1 in the limit J/V « 1. In
the limit K ~ 0 only two poles remain; see Eq. (4.9).
Finite z & 1 induces the coupling of neighboring spins
via S+S term in (1.1) what causes the spreading of
the strength a at ~ = u& and 1 —a at ~ = ~& into
two sets of isolated states centered around ~& and ~&,
respectively. In Fig. 2 we show the lower (singletlike) part
of the spectral function A (u) for J/V=0. 01 as a set of
lines, where the height of each represents the strength
a; and P, a;=0.72. Equations (4.10) were solved using

y(z = 1) = 0.196 and ~—:J.
It is interesting to investigate the limit J ~ 0+. In

this case the distances between the poles in Eq. (4.12)

I

-0.8 -07 -0.6
I

- 0.5 -0I
z/V

-03

FIG. 2. Spectral function A (u) vs ur/V presented as a
set of lines with the strength a; normalized to P, a, = 0.72.
The calculation was performed at J/V = 0.01 using y = 0.196
B.ll(i 4) = J.

approach zero and the result is a broad spectrum. The
exact solution for the self-energy is then

(4.14)

2 — — 1 )

(4.16)

A+(~) = A (—~)+ b(u) —4V) .
1 1

1+y 1+ y

Here, y and ~12 still depend on x. In the Ising limit ~
~ 0 the result (4.9) again reappears from Eq. (4.16). Ap-
proaching the isotropic case x=1 we get wq

——+0.808 V,
~z ——+0.410 V. In Fig. 3 we plot A (4d), consisting of
two separated areas centered around u +~4V. The
total weight of the lower ("singlet" ) part, I ' A (~)d4d,
is still equal to a=0.72.

The spectral function A+(~), also presented in Fig. 3,
consists of three areas, two centered around ~ ++V
and with one pole at ~ = 4V. For the orientation we

also present in Fig. 3 positions and the relative strength

( = ~' —(-,'V)', (, , = —,'V'(1+ 2y + gy2+ y)

(4.15)

with the spectral functions

A ( )
1I G ( )

2Q(~, —~)(~ —~z)
zyvz~~+ ~4V)
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Y4 {u))—

+2V'
Ey ~ 18vr2 ur p ~V —cpq —K~(~ —cpq)

(4.18)

Two Eqs. (4.18) can be now solved analytically for u
(( u„where we have denoted ~ = u —~0 as the energy
diA'erence from the bottom of the spectrum. The solution
can be obtained by inserting into Eq. (4.18) an ansatz
K+(~) by( u)—+. We observe that the only consistent
values for n are n = 1 —n+ ——z. So the behavior for
u ~ Q+ appears to be

0.0 0.5
1

Ay(~) =
rb~g~ '

1 V2
6+6

4x J (4.19)

FIG. 3. "Singlet" and "triplet" spectra, l functions
V Ay(u) vs u/V both for the limit j = 0+. Dash-dotted
lines show the Ising limit (K = 0) result.

of poles in (4.9) for J/V ~ 0. Using the result (4.16) one
can also qualitatively reproduce relations (4.13) by apply-
ing the isolated pole approximation to G(u) as Kane et
al.4

2. Heisenberg case

The behavior of the isotropic model K=1 is qualita-
tively diA'erent from the previous anisotropic cases due
to the disappearance of the magnon gap, i.e. , ~ cog.
A consequence of the divergent coupling of the fermion
with low-frequency magnons are anomalies observed al-

ready in the perturbative treatment, Sec. III. Equations
(4.6) now allow for a study of low-frequency behavior be-
yond the perturbative regime. It should be also noted
that the present problem of the localized fermion cou-
pled with magnons is identical to that of a pseudospin
(two-level system) interacting with a phonon bath via a
piezoelectrictype coupling.

For small V~/Vj~ Eqs. (4.6) reproduce perturbative re-
sults in the regime ~ ) u, J exp( —JV~~/V&). Novel
results are, however, obtained for ~ & ~, . In this regime
the most important is the long-wavelength part of 'H~~,

analogous to Eq. (3.4),

0.10—

0.08—

t/Y Z" &~j-

0.06—

Y/J = 50

Y/J =10

Note that the ratio A /A+ —b+/b is a constant for
small ~.

The SC Eqs. (4.3) can be solved numerically. From
their structure it is evident that Ey(aq) is easily obtained
if Z~(~) is known for all ~q —2J & ~ & ~q. From
Eq. (4.3) it is also clear that Ey ~ 0 for ~ ~ —oo.
Our numerical procedure thus consists of two parts: We
first calculate Ey(u) at ~ && 0 using in Eq. (4.3) Gp(4J)
instead of G(~). Then Zy(u) are subsequently evaluated
from previous values Ey(u —uq). It turns out that such a
procedure is very stable with enough energy mash points
in Eg(~).

In Fig. 4, Z (~) is presented for three different values

of V/J. For V/J=2. 5 we see a linear energy dependence
similar to Eq. (3.15) except at very low ~ where, ac-
cording to Eq. (4.19), Z (~) ~w. This square-root
dependence becomes more pronounced at V/J ) 10.

In Figs. 5 and 6 we show A+(u) and A (u) correspond-
ing to Z from Fig. 4. In both regimes, i.e. , of small and

large V/J, the lower edge of the spectrum is dominated

+II VJ ) ~ ) Ck —g ~ck~' . P~~g (n~ —~)
k,e o' Xq~o 0.02—

1+). Ck q ~Ck
0.2

I

0.4

I

0.6 0.8 1.0

x(nt + n ~) (4.17)

Hence, Eq. (4.6) reduces to FIG. 4. 2 (ur)/V vs u/J for three values of V/J.
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B. Mobile quasiparticle

15—

VA t~)

10-

0
- 0.6 - 0.5 - 0.4

V/j = 2.5

V4, Iu) j

—03

—0.2

—01

Although the properties of a mobile fermion with
ta, tq g 0 are, in general, quite different from the lo-
calized fermion studied in Sec. IV A, the low-frequency
anomalies are still governed by the same local coupling
and remain qualitatively the same.

Let us first discuss here results for the case tq g 0,
to ——0, and V=O, which is of interest due to its relation
with the analysis in Refs. 3 and 4. Off-diagonal terms in
Eq. (4.3) vanish, so that we get two decoupled equations

1
Eg (k, ~) = d'q ~Llg (k, q) ~'Gy (k —q, ~ —~~) .

FIG. 5. Spectral functions V Ay(~) vs ~/V for V/ J=2.5.
Note different scales for A+ and A

by a QP peak, which is not a b function. This is evi-
dent from the asymmetry due to E (~ & 0) ~. A+(cu)
shows in both cases a I/~~shape. At V/J = 2.5, A+(~)
is nearly constant for larger ~. For large V/J = 50 in

Fig. 6 both A+(a) and A (~) have the same qualitative
behavior with more structure, while the constant b+/b
is in agreement with Eq. (4.16). Analysis of the distance
between the peaks in the latter case shows again (J/V) j
dependence. In Fig. 6 we also present for comparison the
J/V ~ 0+ limit (4.16) for A (u). The agreement be-
tween this limiting shape and the calculated A (~) ap-
pears even more pronounced at higher V/J. Simplified
set of Eqs. (4.10) is thus a good approximation Eq. (4.3)
also in the Heisenberg case if only ~ is not too close to
the bottom of the spectrum.

We have in this section restricted ourselves to the
case of a localized fermion, but the result obtained in

Eq. (4.19) holds also for ta g 0. For the latter case we

obtain from Qr SC equations analogous to Eqs. (4.18),
but replacing z V with Sto in the denominator.

(4.20)

We observe that Eq. (4.20) for E is identical to the one
used by Schmitt-Rink et al sand . Insane et al , wh. ile a.
= +

&
excitations are not present in their approach. The

only diH'erence in Z is in the coupling constant. We get
for the latter 2ty, what would correspond in a t-J model
to Itq J, while Kane et al. have 4t, J. Equations (4.20)
are regular at q ~ 0, i.e. , Z (k, ~ & 0) & ~~ as shown
by Kane et al.4

In Fig. 7 we present some results for the QP spec-
tra Ay(k, ~) as obtained by the numerical solution of
Eqs. (4.20). The numerical method is identical to the one
used in the case of the localized fermion. The only differ-
ence is in the k dependence of the SC equations, which
puts more severe restrictions on the number of points in
the (k, ~) space. We present in Fig. 7 results at the I'

point, k =0, and at the 4 point, k = (x/2, s/2), for A+
and A . We note that the (—) band has a minimum
at A, 4 while for the (+) band the minimum is at the I'
point. It is interesting that for V=0 the lower appears
to be the tripletlike (+) band. We have to mention that

A, Ik, ~j
J/tg =0./

V/j = 50 —0.8

li
I I

I
ii

Ii

j I
l5I + I I I

;i I il
Il

Ii t I(
j I I I \

j hr !
r~ ~~( /

FIG. 6. Spectral functions V Ay(u) vs ~/V for V/J=50.
Dashed line represents J = 0+ limit for A (u).

FIG. 7. Spectral functions Ay(k, u), denoted with I'y for
k = (0, 0) and Ay for k = (s'/2, s./2) at J/tq =0.4 and V=O.
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A Ik&I !i
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'I

II
~ I
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j/ti =0.4
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I

II
II

II
II
II
II
IIII
I I

I

I
I
I

I
I

r' c)'e, l
2ti (c)kclk j (4.21)

Fig. 9 we show the corresponding energy (—) bands e(k)
as defined by the well-defined lower edge e„=E (k, ez),
throughout in the Brillouin zone. Note that the form of
the bands at V = 41~ is not much changed with respect
to the V=O case, the main diR'erence being the reduced
width.

The tensor of the QP (coherent) effective mass en-
hancement ts is defined by

-3 -2 -1

FIG. 8. The same as Fig. 7 for J/ti ——0.4 and V/tq=4.

the shape of the band is very similar to the perturbative
result As„= E' (k, 0), by using in Eq. (4.20) Go(k, 0)
instead of G(k, ~).

If we switch on the diagonal part of the l&ondo coupling

Vll, we shift Ay(k, u) by an energy 4Vll down and up,
respectively. The shape of the spectra remain the same.
So we obtain for larger Vll, but still V~ ——0, the result of
Kane et al.4 as the lowest singletlike (—) band (neglecting
already-mentioned differences in the width).

The transverse term Vj couples additionally the (+)
band with the (—) band, which causes the distortion and

the narrowing of A+ and A spectra. We present in

Fig. 8 spectra for V/ti ——4, again for b, and I' points.
The lower band is centered around v —

4 V, while the

upper is at u +4 V. The distribution of the strength
remains qualitatively analogous to the one in Fig. 3. In

I

,I 8

14 —, 0 —7
~-----~— p /p II

calculated in the minimum, which is at the 4 point in
the present case.

The eigenvalues of p are pll along the direction b. - I',
and pg is along the direction A-X, where X is the point
k = (z, 0). The anisotropy is defined as e = p~/pll. In
Fig. 10 we show the smaller mass p~~ and c as a function
of t i/ J for U=O and V = 4t i. The l&ondo coupling of the
fermion with magnons clearly increases the QP coherent
mass. For ti/J (& 1 we obtain the perturbation result

pll J/ti, while on the other side with ti/J )& 1 the SC
approach yields pll t, /' J

The results for pll are in a good agreement with the
numerical study not only qualitatively but also quanti-
tatively. In this respect our approach represents a quan-
titative improvement over the method by Kane et aL In
such quantitative comparisons one has to take into ac-
count the relation between the hopping parameter in our
model and in the t-J model, tq g ——4tq. Also the val-

ues for the anisotropy z &) 1 seem to correspond well to
exact numerical results on small systems.

As already pointed out in Sec. IIIB the interaction

-08

-28

k/tl

-30

4j. /P II

Y=0
Y=Lt1

12 —o —6

I

/
~~r ~~ —3

/o ~r
0

4 —2

-10—

0
0 2

I I

10 12
0

14 15

FIG. 9. o' = —
2 energy bands ek in units of tq. Left

scale corresponds to V=O case (~) and the right scale to the

V/ti ——4 (o). Contour plot represents lines of constant ek for

the V/ti ——4 case.

FIG. 10. ER'ective mass enhancement pj~ is plotted for
V = 0 (solid circles) and for V/ti =4 (open circles) vs ti/J
(left scale). With dashed lines we denote the anisotropy

pz/pll (right scale) for V=O (solid squares) and V/ti =4 (open
squares).
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V with long-wavelength magnons acts equally on mobile
and localized fermions. Hence the low-excitation spectra
are governed by V and not by ti terms in 'H~y. Numerical

II
results for E in fact show low-frequency behavior as in
the case of the localized particle (ti 0).

V. CONeI, USIONS

Let us first comment on the possible extension of our
results to finite temperatures T ) O. The most interest-

I

ing eA'ect comes from the additional broadening of the
QP peak due to the scattering on magnons excited at
T & 0. For this case we just estimate E (T,~ —0),
which can be related with QP inverse relaxation time
1ir. Due to observed universal behavior, we perform a
calculation for the localized case, 'RI~. Using the fourth-
order perturbation expansion in Vg, as in Sec. III, and
taking besides the emission processes in Figs. 1(b) and

l(c) also the absorption of magnons, we get

(T, 0) —
z

Im

V4 pm,
J

W2co

d q d q, [(1+n~)n~luq u~l-' —(1+ n~l)n~v~ v~l ]
cp q —

q +i'g

(1 + nq)nq q dq, (5.1)

where we use the identity u —v = u + v and

n = (e"&~"T —1) i, while leaving in Eq. (5.1) only the
most important part corresponding to long-wavelength
magnons q ( q . Here 6' is equal to the level splitting

z V, while in the analogous treatment of 'Rt it would be
W 8tp At T .& 0 the integral in Eq. (5.1) would loga-
rithmically diverge, if we do not take into account that at
the same time the AFM correlation length becomes finite,
i.e. , ( ( oo, cutting off the integral at q ( '. Restrict-
ing ourselves to the low doping regime (few holes in an

AFM), we can use for ( the T dependence ( e~~ "+, ob-
tained for Heisenberg antiferromagnet analytically as
well as experimentally in the undoped AFM. Inserting
this into Eq. (5.1) we obtain

4

W'J qJ) (5.2)

where higher-order terms in T are left out. Such T depen-
dence would be in agreement with the generic behavior
of the resistivity p oc T in copper oxides. However, our
treatment of the QP at finite T is too crude to allow any
more definite conclusions.

Our results for T=O as well as for T & 0 indicate
that the strong coupling of the fermion to the long-
wavelength AFM magnons, appearing mainly through
the local Ikondo-like interaction, leads to pronounced
low-frequency anomalies. We obtain either Z"(~ & 0)
oc ur within the perturbation calculation, or Z"(cu & 0)
oc at~2 within the SC approach. In both cases the QP
peak is not well defined in the strict sense even at T=O.

These anonialies are not present if only hopping-induced
interaction is taken into account. Plausibly one can at-
tribute these eA'ects to the strong influence of a fermion
(even a localized one), residing on one sublattice, on a
state with a broken continuous symmetry. There are
analogies with a two-level system, e.g. , coupled with a
piezoelectric-type coupling to acoustic phonons. The
nonanalytical self-energy and the vanishing a„~ 0 for
the QP shows similarity with the orthogonality catas-
trophe encountered in the x-ray problem. 8 It should be
noted that the most extensively studied t-J model repre-
sents just the opposite limit V ~ oo of the Kondo-lattice
model discussed in this paper. Still we believe that the
strong inhuence of the local coupling or constraint is more

generic, giving to the holes in an AFM their quite intrigu-

ing properties.

APPENDIX

In order to clarify the effect of the nonlinear term,
Eq. (3.3), we perform the summation of all processes,
containing at most a single magnon excitation in the
intermediate state. This includes, e.g. , diagrams in

Figs. 1(a) and 1(d). This summation, including all the
most divergent terms [as in Fig. 1(d)], can be formu-
lated by an equivalent variational approach, where a trial
wave function [ @k ) takes into account all states of the
fermion-magnon system that have at most a single ex-
cited magnon excitation:

I @k ) = ukck + nkc, +,. + ).(4,ck, ,++ Ik,c~+.. .,+)~, I 0)t — t - t
— t +i

q

(Al)

Minimizing the expectation value of the QP energy

(@.—I&i 14"-)
&&.-I@ -) (A2)
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we get a set of coupled equations for ak, ak, bkq, bkq, and Ak

(sk ~k)uk 4 Vjj &k ——,
' Vi ) (C,

+
bk + C bk ) (A3)

(&k+/0 ~k) k —4 VII uk 4 VJ. ) ((g bkg (g bkg) (A4)

(sk- + ~ ~k)bk 4 VJ (C rtk C &k) 4 Vjjbk + 2 Vjj ) f„'bk (A5)

(sk+,.—,+,—&k)bk, = ——,'Vi(C, ok+6, ok) —-„'Vjjbk, + —,Vjj ) .f„k. . (A6)

where

and

= tlcr + sq

ing to the diagram in Fig. 1(d). Not only the energy Ak

is divergent, but also the "number" of magnons involved

in the QP,

lukl'+ Iukl'+ ):(lbk.l'+ lbk. l') = 1 (AS) & .s, k - ).(Ibk, I'+ Ibk, I') ~ ~, (A11)

The perturbational treatment of Eqs. (A3)—(A6), i.e. , the
expansion in Vj~, V&, corresponds to first approximate
(zeroth-order) Ak sk and ak ——1 from Eq. (A3). This
Ak zk is used for the further iteration of the second set
of Eqs. (A5) and (A6). Within the first order this gives

bkq and bkq..

+

Ek q 4 q k + k —q &q

(A9)

so the perturbational approach is not applicable to higher
orders.

On the other hand, it is plausible that a proper (si-
multaneous) solution of Eqs. (A3)—(A6) does not contain
such divergencies. Solving equations at fixed Vjj, VJ ) 0
we get as the main qualitative effect the shift of the un-

perturbed energies, i.e. , Ak sk —sq, where sq ) 0 and
finite. Inserting this shift into Eqs. (A5) and (A6), we

now also get no divergencies in N +, etc. Nevertheless
coefBcients bkq still show the asymptotic form

Using Eq. (A9) for bk~ to iterate Eqs. (A5) and (A6)
yields among other terms also the second-order correction

1 VII &-,b(~)
—&k-q &q

1
2

(A10)

This approximation leads directly to the logarithmic di-

vergence of the corrections to Ak. The form of the diver-
gence is exactly the same as that of the term correspond-

as q ~ 0, (A12)

as in the perturbational form, Eq. (A9) or Eq. (3.1),
within the lowest order in V~. It is then plausible that
perturbational result (3.1) is at least qualitatively cor-
rect, and, moreover, nonlinear terms do not change es-
sentially the low-frequency behavior.
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