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Martensitic transformation of a Ni-Al alloy. II. Theoretical treatments
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The seven-layered martensite structure of the Ni-Al alloy reported in the preceding paper is in-

vestigated on a theoretical basis. We have developed a treatment of the martensite phase transfor-
mation within a site-independent scheme describing atomic fluctuations in a highly anharmonic lat-

tice. From a microscopic viewpoint a pseudospin variable is introduced which stands for the am-

plitude of the local vibrational mode called the embryonic mode, and the martensite transformation
is discussed as the ordering process of the pseudospins. Through a coarse-graining procedure, a

semimacroscopic view has also been developed within the Ginzburg-Landau formalism. The results

have been applied to analyze the observed neutron-diffraction spectra. In particular, the anomalous

incommensurability of the spectra is understood by considering that the order parameter takes on

two different values alternatively in space, which is interpreted in terms of the theoretically predict-
ed "crest-riding-periodon" phase.

I. INTRODUCTION

It has been well established that the thermoelastic mar-
tensite phase transformations of bcc-based alloys are as-
sociated with the inherent lattice instability of these al-
loys' manifested by the low-lying (soft) TA phonon
branches along the [110] and the [211] directions.
From this viewpoint, the martensite structure is expressi-
ble in terms of the displacement field of "soft"-phonon
modes, which is supplemented by some uniform bulk
strains.

The most commonly observed martensite structures
are the so-called 2H and 9R structures, which are under-
stood by the freezing of the TA phonon modes with the
wave vector q= —,

' [110], and q= —,
' [110], respectively.

Generally speaking, one may be able to expect the ex-
istence of other soft modes. In 1986, Shapiro et al. car-
ried out neutron inelastic scattering measurements on
Ni Al& „alloys with a Ni concentration of x-0.6.
They observed a remarkable softening of the TA phonon
branch around q= —,'[110], which suggests that, in this

particular case of Ni-Al alloys, the martensite structure
could be expressible in terms of the freezing of the TA
mode with q= —,'[110].

In fact, a structure analysis of this material was already
carried out by Martynov et al. They proposed the
structure characterized by the (5,2) stacking (using
Zhudanov's notation ) of the (110) atomic planes along
the [110] direction. This is consistent with the view de-
scribed above in that the periodicity of the proposed
structure is seven layers along the [110]direction as is ex-
pected by the freezing of the mode with q= —,'[110].
However, the atomic positions of the proposed structure
are not simply represented by the normal coordinate of
the TA soft mode.

Recently, Noda et al. carried out an extensive
neutron-diffraction measurement on the Ni-Al alloy. '

(Paper I of this series of papers, referred to as I hereaf-
ter. ) They provided a more complete set of intensity data
and revealed various new aspects in the characteristics of
the observed neutron spectra. The results are summa-
rized as follows.

(i) Lattice parameters. The lattice symmetry is
reconfirmed to be monoclinic with the lattice parameters

a =4. 172 A

b =2.690 A,
c =14.450 A

P =94.10' .

(ii) Anomalous incommensurability. The peak posi-
tions of Bragg reflections are not completely indexed by
the above monoclinic lattice. That is, the peak positions
of each Bragg reflection are slightly shifted from the com-
mensurate reciprocal-lattice points along the [001]
direction. The shift from the commensurate positions is
commonly observed in various kinds of incommensurate
structures. However, the amount of the shift in the
present case does not show any simple regularity, as it
should when the structure is expressed by some kind of
incommensurate long-period structure.

(iii) Line broadening and splitting. The spectra of the
Bragg reflections show appreciable line broadening. The
amount of the broadening depends on the index of the
reflection. Not only that, some of the peaks exhibit split-
tings into double-peak structure. The overall feature of
the splitting seems to suggest that there are two kinds of
monoclinic lattices with different monoclinic angles given
by
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P"'=94.37',

/3' '=93.82' .
(1.2)

(i) Mode-independent scheme. The energy of the sys-
tern is expanded by taking the harmonic phonon modes
as basis functions as follows:

[The P given in (1.1) is the "average" of these two
values. ]

These experimental results are certainly out of the
scope of the conventional interpretation of the martensite
structure in terms of the frozen soft-phonon mode. Re-
cently, Yamada and co-workers proposed an alternative
view to describe the martensitic transformation. "'

They took the local vibrational modes, rather than pho-
nons, as the basis functions to expand the energy of a
highly anharmonic lattice. The local coordinate is shown
to be represented by a three-state pseudospin variable,
whence they called the model a "pseudospin description"
of martensitic transformation.

They applied this model to investigate two kinds of
martensite structures. Besides the most popular case of
9R, they specifically investigated the case of the Ni-Al al-
loys. The preliminary results proved that the calculated
ordered phase of the pseudospins correctly gives the
atomic arrangements of the structure proposed by Mar-
tynov et al. This has been recently reconfirmed by
Noda et al. ' using the more extensive intensity data of
neutron diffraction. It would, therefore, be reasonable to
take this alternative view to discuss the new experimental
aspects which have not been understood by the conven-
tional soft-phonon concept.

The purpose of the present paper is to extend the
theoretical treatment of the pseudospin model and to dis-
cuss the newly obtained experimental features described
above. The paper is constructed as follows: In Sec. II,
the theoretical backgrounds based on the pseudospin
description of the highly anharmonic lattice have been es-
tablished from both microscopic and semimacroscopic
(thermodynamical) standpoints. In particular, the latter
is necessary to provide the basis of the discussions on
anomalous incommensurability, etc. In Sec. III, we rein-
vestigate the "averaged" martensite structure by identify-
ing the martensite phase to be the "ferro"-type ordered
phase of pseudospins. In Sec. IV, we discuss the details
of the observed neutron spectra, such as anomalous in-
commensurability, broadening, and splitting of the
diffraction spectra, based on the thermodynamical stand-
point developed in Sec. II. Section V is devoted to the
summary and discussions.

II. THEORETICAL BACKGROUND

A. Microscopic view: Pseudospin variable

The martensitic phase transformation of bcc-based al-
loys is associated with the inherent lattice instability of
these alloys which manifests itself as the low-lying TA
phonon branch along the [110]direction.

The problem of martensitic phase transformation may
be, in a broad sense, considered to be the problem con-
cerning the lattice dynamical properties of a highly
anharmonic lattice. Generally speaking, there are two al-
ternative standpoints from which to discuss the lattice
dynamics of an anharmonic lattice. '

H= —,
' g [P (q, s)+ai (q, s)Q (q, s)]

q, s

+ X A(qi i q2 2q3 3)
ql, qp, q)

&& Q(qi sl )Q(q2 sz)Q(q3 s3)

X 5(q, +q2+ q3)+ (2.1)

In this scheme, the anharmonicity is included in the
higher-order coupling terms between phonon modes.
The summation runs over the wave vector q and the
branch index s.

(ii) Site-independent scheme. The energy is (approxi-
mately) expressed as follows:

H= —,
' gP/' + g Vf„(Q/')+ g CP~'Q/'Q,

" .

p;v

(2.2)

Here, Q/' is the pth local vibrational mode of a cluster of
atoms located around the ith site. Vf„(Q,) is the single
cluster potential for the local mode Q/'. Vf„is con-
sidered to be highly anharmonic. C~' gives the intersite
interaction between Q/' and Q", which is assumed to be
harmonic. The summation runs over the site index i in-
stead of q.

The phonon-mode description is more conventionally
used. However, let us adopt the latter scheme as the
basis of the following discussions.

As was discussed in previous papers, "' we make the
following basic assumption: From the observed soft-
phonon mode, one can extract a specific local mode Q/'
which is particularly relevant to the martensitic phase
transformation. This mode is identified to be the mode
which locally simulates the ABC type (or fcc-ty-pe) stack-
ing of hexagonal basal planes. As was discussed in Ref.
11, in the specific case of Ni-Al [the —,'(110) soft phonon
mode], we can identify the local mode to be the "tilting"
mode of a cluster of atoms composed of six (110) layers.
(See Fig. 1.)

Let us call this specific local mode the "embryonic
mode, "

Q,™.The implication is that the local distortion
plays the role of the "embryo" of the low-temperature
martensite structure. Once Q,

' is defined as above, we
can extract, from the total Hamiltonian given in Eq. (2.2),
the terms which are particularly relevant to the phase
transition from the following considerations.

(i) Vf„(Q/'). Among the local single-cluster potentials,
we consider the term V&„(Q,' ). The local potential will
be characterized by a three-minimum structure as given
in Fig. 2. The side minima just correspond to the energy
of the "tilted" configuration which locally simulates
ABC-type stacking of hexagonal basal planes. In fact, a
recent theoretical calculation of V(Q ) by Wentzko-
vitch and Cohen' clearly shows the three-minimum
structure.

At this stage, let us simplify the system by assuming
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where we have taken into account only the nearest-
neighbor interaction and have used the following
simplified notation:

translational mode of the neighboring cluster as a whole,

Q,'+, . This situation is depicted in Fig. 3. When both of
the two neighboring clusters take on the same "tilted"
state, o =1, the atoms at the interface layers come too
close to each other, which is relaxed by the relative trans-
verse motion of the clusters into the opposite directions.
(See Fig. 3.)

Therefore, we only retain the intersite interaction term
between Q,

™and g +,

Cemb tr
ii+1 (2.6)

FIG. 1. The embryonic mode postulated from the soft pho-
non in NiAl. The mode is characterized by the "tilting" motion
of a cluster composed of six (110), layers.

that Q can only take on three discrete values: Q=0
and +Qo. (See Fig. 2.) It is convenient to introduce a
three-state pseudospin variable o., which takes the values
o =(0, +1,—I). The value of Q

" can be represented

by the pseudospin 0.;, where cr, =0, 1, —1 corresponds to

Q =0, +go, —Qo, respectively. V~„(g ) is then

simply given by

Based on these considerations, the Hamiltonian (2.2)
has been greatly simplified to give

0= e g o,'+a Q Q,'"'+a g o;(Q "—
Q + ) ) . (2.7)

As was discussed in a previous paper, " the above expres-

Vs (gemb) 2 (2.3)

where c. is the difference between the energy of the stable
state (Q =0) and the metastable states (g =+go). Since

Q =+go correspond to the local "embryo" states, the en-

ergy c may be called the embryo creation energy.
Other Vf„(gt')'s which are not directly relevant to the

phase transition may be taken to be harmonic:

Vf„(gt')=ir„gt' (2.4)

(ii) Cf~'"Q/'Q" As for the in. tersite interaction terms, we

note that Q will couple strongly to the transverse

S
loc

-Q, 0 &o @emb

FIG. 2. Assumed single-cluster potential for the embryonic

mode. At Q' =+Qo, there are side minima (metastable states)

corresponding to the stable ABC-type stacking configuration of
the basal planes.

FIG. 3. Origin of the coupling between Q' b and Q'". The
translation of the neighboring clusters in the opposite directions
as shown by the arrows is favorable for the same tilted
configuration (o.= 1) of the clusters (and vice versa) because the
atomic positions at the interface layers come too close to each
other without this translation.
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sion is further simplified to give the following effective
pseudospin Hamiltonian:

We expand tanh '(o ) in a power series of cr:

tanh 'g(o )=g, cr+g3o. +g~o', (2.14)
H=E+cr; J Qo';cr;+) (2.8)

where g s are explicitly given in terms of the microscopic
parameter c. as follows:

where c. and J are the effective embryo creation energy
and the effective embryo-embryo interaction energy, re-
spectively, and are given by

g, =
—,'(e++2),

( e PE 4 )( e /3E + 2 )
2

g =—'(3e +—40e @+240e@+256) .

(2.15)
a 2

E=C
2K

(2.9)
2

CXJ-
2K

When these expansion coefficients are actually evaluated,
one sees that the leading term in g3 is negative while g5 is

positive definite for T &0. We must, therefore, keep the
terms up to the fifth order in 0. in the expansion so as to
avoid the unphysical instability.

In order to go through coarse-graining procedure, we
introduce the Fourier transform of (o;), (o(q)),
through

(o(q))= —g(o )e'".1

N j
(2.16)

2sinh(J(o ) Ikii T)
c/0 r

e +2cosh(J(o') Ikir T)
(2.10)

The first term of Eq. (2.12) is then expressed by

as well as the transverse translation ( Q'"),

Once the eff'ective pseudospin Hamiltonian is established
as above, one can follow the conventional statistical-
mechanical treatment to discuss the phase-transition
scheme of Ni-Al. The mean-field approximation (MFA)
treatment describes the cooperative ordering process of
the spins. The ordered phase is given by the "ferro"-type
spin order with the averaged spin value ( o ) given by

(IQ'"I &= —(o &, (2.1 1)

B. Semimacroscopic aspects: Crest-riding periodon

As will be seen later, it is necessary to establish a ther-
modynamical view within the Ginzburg-Landau (GL)
scheme in order to discuss the details of the observed re-
sults beyond the averaged structure. In this subsection,
we deduce the GL-type free-energy functional, which
provides the basis of the discussions on the experimental
results such as shifts and broadenings of the Bragg peaks.
In the GL scheme, the order parameter g is allowed to be
spatially varied. In the present system, such a spatially
varying order parameter is defined by going through the
"coarse-graining" procedure of the pseudospin o.

, as fol-
lows. ' Within the MFA, the local free energy associated
with the local ordering ( o.

, ) is expressed by'

which is proportional to (cr). Physically, (Q'") gives
the bulk shear strain perpendicular to the [110], direc-
tion. In Sec. III, the above results will be utilized to con-
struct the structure of the martensite phase by identifying
the martensite phase to be the ferro-type ordered phase of
the pseudospin system.

where J(q) is the Fourier transform of the interaction
and is given explicitly by

J(q) = g Je'~J=2J cosq
j

=2J(1—
—,'q-) . (2.18)

g(x) = f (o (q) ) e'~"dq .
L
2K

(2.19)

By using (2.18) and (2.19), the total free energy is ex-
pressed in the standard GL formalism

F[«(x ) ]= f —(c)„g)+f(g) dx,

f(k) = 0'+ «'+— —
2 4 6

(2.20)

where the coefficients are given by

The last procedure is justified because higher q com-
ponents should be averaged out in the context of the
coarse graining of (cr; ). Through such a coarse-graining
procedure, a spatially continuous order parameter g(x ) is
defined by

(~, )
+ —g f '

tanh 'g(cr)dcr,p, . o

where g(o ) is given by

(2. 12)

Q =kg Tg) 2J

b =k~?g3,

c =k~?g~,

(2.21)

g(o)= oe++cr[o e++4(1—cr )]'r.
o' e++[cr e++4(1—o )]'

(2.13)
where A, &0, b (0, and c &0. The free energy (2.20) de-
scribes a first-order phase-transition process as the tern-

perature is varied. The transition temperature obtained
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0
](2&

the solution, in fact, is "riding" on the "crest" of the lo-
cal free-energy surface. This solution is definitely not the
most stable state, but it may exist as a metastable phase
when the boundary conditions (2.23) are appropriate. In
Sec. IV, this particular solution will be discussed in con-
nection with the shift and broadening of the diffraction
spectra.

FIG. 4. The spatial variation of g{x) in the CRP state. The
order parameter takes on two discrete values g" and g"' alter-
natively. The size of a single "domain" is considered to be of
semimacroscopic scale.

from (2.21) is, as it should be, consistent with that given
by the direct evaluation on a microscopic basis using Eq.
(2.10).' When the temperature dependences of the pa-
rameters b and c are neglected, Eq. (2.20) reduces to the
conventional phenomenological expression which has
been used in various problems including spinodal decom-
position process, etc.

The spatially varying order parameter g(x) is obtained
by solving the Euler equation

~'& - df =0 (2.22)
Bx'

under appropriate boundary conditions.
Recently, several authors' ' discussed the properties

of the spatial variation of the order parameter using the
phenomenologically postulated GL equation which has
the form as Eq. (2.20). Falk' pointed out that in the
one-dimensional (1D) systein, there is a possible solution
in which the order parameter g(x) takes on two difFerent
values, g'" and g' ', alternatively as the coordinate x is
varied. That is, the order parameter spatially oscillates
between g{"and g' '. (See Fig. 4.) This solution has been
obtained under the following boundary conditions:

III. AVERAGED STRUCTURE: FERRO-TYPE
ORDERED PHASE OF PSEUDOSPINS

r,k=(1+@)r, +rq+uk, k=0, 1, . . . , 6, (3.1)

where r; is the position vector of the origin of the ith unit
cell, rk is that of the atom in the kth layer in the original
bcc lattice, e is the strain tensor, and uk is the internal
displacement of the kth layer due to the embryo creation.
Referring to the discussions in the previous section, uk is

given in terms of the order parameter g ( = ( o ) ) by

u„=(eernb (3.2)

where ek is the eigenvector of the embryonic mode. As
is easily seen in Fig. 1, ek is expressed by

In this section, we investigate the averaged structure of
the martensite phase, neglecting the details of the ob-
served diffraction spectra much as anomalous incommen-
surability, broadening, and splitting. Based on the dis-
cussions in the preceding section, the martensite phase
should be characterized by the ferro-type ordered struc-
ture of the pseudospins. That is, all of the clusters are in
the same "tilted" configuration. At the same time, the
lattice is spontaneously strained because of the strong
coupling of the pseudospins to the strain components.
The positions of the atom in the martensite phase are
therefore given by

B,(=0,
f(k)=v (2.23)

&2/35(k —
—', )e, , k =1,2, . . . , 6,

0 k=o (3.3)

where p is a finite positive value. (See Fig. 5.)
Barsch and Krumhansl ' ' extended the discussions to

the 20 system and obtained essentially the same solution,
and specifically called it a crest-riding-periodon (CRP)
solution. As is shown schematically in Fig. 6 of Ref. 21,

where e, is the unit vector along the [110], direction.
The layer specified by k =0 is the interface layer which
does not belong to the embryo cluster.

Using Eqs. (3.2) and (3.3), we have the explicit expres-
sion of the internal displacement u& given by

u„=(k—
—,
' )u,„,e, (1—5O„), k =0, 1, . . . , 6, (3.4)

A
u int u lnt (3.5)

', !
P P&o

FIG. 5. The free-energy density just above the phase-
transition temperature. In the CRP state, the system has a
constant local energy given by the thin horizontal line

[f=f{(0)+p], which makes ({x)oscillate between g" ' and g' '.

k=0, 1, . . . , 6 . (3.6)

Here, e and u,„,are the parameters to be determined by

where u;„, is the relative internal displacement of the
neighboring layers in the ordered phase with an arbitrary
order-parameter value g, and u;„, corresponds to the
value in the perfectly ordered state of g= 1, which forms
the "ideal" (5, 2) stacking discussed later.

Thus, the position vector r;k in the martensite phase is
given by

r k =(1+@)r, +r~+(k —
—', )u;„,e, (1—

5ok ),
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the comparison with the experimental results.
In order to obtain the strain tensor components, it is

convenient to define a monoclinic lattice frame within the
undistorted bcc structure as follows:

0.0322 0
—0.0588

0

0.0744
0

0.0188
(3.10)

a =a, —b, ,

b' = —c, , (3.7)

The only remaining parameter u,„,should be deter-
mined by comparing the observed intensity I(K) with
the calculated structure factor

c =3a, +4b, . /K r ()(u t)
F(K)= g g b„,,e ' 5(K—Kh ),

K~ k, k'=P
(3.1 1)

The monoclinic unit cell defined as above is depicted in
Fig. 6(a). The actual values for the lattice constants are
given by

a =&2ao =4.042 A

where K& is a reciprocal-lattice point of the monoclinic
lattice (a„,,b, c ) and rk(u;„,) is given by

r„,,(u;„,)=r", +(k ——,')u;„,e, (1—5o„),
b =ap=2. 858 A

c =Sap =14.290 A

/3
= —tan '7=98. 13' .

(3.8)
p k

r = a + —ck 14 m 7 m

rk =rk+ —,'a„,+ —,'b

(3.12)

In I, it was shown that, in the martensite phase, these
values have been changed to

a =4. 172 A

6 =2.690 A,
c =14.450 A

P =94. 10' .

(3.9)

Using these values, the bulk deformation associated
with the cubic-monoclinic transition is expressed by the
following strain tensor referring to the orthogonal lat-
tice frame defined by e, ~~ [110]„e2~~[001]„e,

~~
[110],:

This procedure has already been carried out in I, and ex-
cellent agreement with the experimental results has been
obtained by taking

u;„,=0.0794 . (3.13)

In order to obtain the ideal (5, 2) structure, it is easily
shown that the following parameter values should be

As is depicted in Fig. 6, the obtained structure is char-
acterized by the so-called (5, 2) stacking
sequence. Notice, however, that this notation has not
been used in the strict sense of Zhdanov's formalism; the
ideal (5,2) stacking sequence should represent the se-

quence of
~

ABCABCB
~
ABCABCB

~
stacking of the hex-

agonal layers. [See Fig. 6(c).]

~ Q ~

"int

() ~ () ~ Q
Q &l Q ~

~ Q
Q ~

) ~ Q ~ Q
ii Q il

(W

Q
() ~

Q

~~ ~+~c
1) Q ~

= [~

) ~

Q
() ~

Q
() ~

( Q
0 ~ Q
Vo],

(a)

b" 6

(b) (c)

FICx. 6. Construction of the (5,2) structure. (a) The original bcc lattice where all clusters are in the o.=O state. The monoclinic
unit cell (a,b, c ) defined in the text is indicated on the right-hand corner (P =98.13 ). (b) The observed (5,2) structure. All
clusters are in the tilted configuration. At the same time, the lattice is uniformly distorted (P =94. 10'). (c) The ideal (5,2) structure
given by ABCABCB stacking of the hexagonal layers. The original monoclinic lattice is deformed to construct an orthorhombic lat-
tice (@=90').
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3

Ideal

0.1667
0.0607

—0.134
0
0.1428

Obs.

0.0794
0.0322

—0.0588
+0.0188

0.0744

Obs. /ideal

0.48
0.53
0.44

0.52

TABLE I. Parameter values to specify the atomic positions
in the ferro-type ordered phase given in Eq. (3.7} in text. The
observed parameter values are approximately —,

' of the ideal

(5,2} stacking structure. The value of u,„tis given in the unit of
am

I(K)=I(K+7c' ) . (4.1)

As is given in the Appendix, this characteristic is simply
due to the fact that the atomic layers are regularly spaced
along the [110], direction even in the inhomogeneous
structure.

Therefore, the spatial inhomogeneity of the structure is
associated with the parameter along the [110],direction,
or the x value in the monoclinic frame. Since the posi-
tion vector r, k is generally expressed by Eq. (3.6), we have

x,k =x;„+(er", ), +(k —
—,')u,„,(1 —50) ),

k =0, 1, . . . , 6 . (4.2)

realized:

—1 =0.0607,3
ll

Here, the parameter u;„,describes the internal displace-
ment which is proportional to the order parameter of the
pseudospin system [see Eq. (3.2)]:

u,„,~(o) =g, (4.3)
v'3

e = —1=—0. 13422

e» =0,
+]3=

—,
' =0. 1428

(3.14)

while e is the bulk strain induced by the ordering of the
pseudospins.

I
)

I I ) )
~

) I I ) ) ) ) )
~

)

u,„,=-,' =0.166 .

The observed parameter values are tabulated in Table I in
comparison with those of the ideal (5, 2) structure. It is
noticed that all of the observed parameter values (except
for @33) are approximately —,

' of the "ideal" values. In par-
ticular, we notice that the shear strain E'&3 just corre-
sponds to ( Q") discussed in the previous section.
Therefore, the above results suggest that (Q'") couples
linearly to the order parameter g ( =(o.) ) which is con-
sistent with Eq. (2.11).

At this stage, the reason why the obtained order-
parameter value remains to be about one-half of the ideal
value is not known. This point will be discussed later in
Sec. V.

0.2

0.1

- 0.1

- 0.2

0.1

- 0.1

LL

(40L)

(30L)

IV. SHIFTS AND BROADENINGS
OF THE DIFFRACTION SPECTRA: CRP STRUCTURE

0.1

(20L)

So far, we have considered the averaged structure as-
suming that the system is spatially homogeneous. On the
other hand, as was pointed out in I, there are appreciable
broadenings (sometimes even splittings) of the peak
profiles as well as irregular shifts of the peak position
from the regular commensurate positions. The observed
patterns of the peak shift and the broadening are given in
I, one of which is reproduced in Fig. 7. These features
definitely suggest that the system does not have a spatial-
ly uniform and regular structure but exhibits some sort of
spatial irregularity or modulation. In the following, we
discuss the properties of spatial variation of the structure
which are consistent with the observed results.

The most remarkable characteristic of the pattern of
the peak shift (and broadening) seen in Fig. 7 is that it
shows regular repetition along the [001] direction with
the period of 7c*. That is,

- 0, 1

(10L)

—0.1

) I I ) ) ) I l ) ) I ) I ) ) ) I I i ) ) I

-10 -5 0 5 10

FIG. 7. The observed shift pattern of the peak position from
the commensurate reciprocal-lattice points of the average
monoclinic lattice. The solid circles give the original bcc Bragg
reflections. The triangles indicate the positions of the minor
peaks when the spectra show the double-peak feature.



10 412 Y. YAMADA, Y. NODA, AND K. FUCHIZAKI 42

In the previous section, defining the averaged struc-
ture, the parameter u;„,and e are taken to be constant
throughout the system. In order to describe the inhomo-
geneity of the structure, we now consider that these pa-
rameters are r dependent. Thus, x,k is given by

Summarizing these results, we construct a possible
model of the inhomogeneous structure as follows: The
system is given by the coherent mixture of the two kinds
of domains with slightly different monoclinic structures
defined, respectively, by

x k + [E(r' ) r']~ + ( k ——,')+;„((r,)( 1 —50' ) (4.4) x,(k'=x,k+e„x,+eI3'z, +(k ——,')u „,'(1 —5()„),
k =0, 1, . . . , 6, v=1, 2 (4 9)

From Eq. (4.3), the r dependent u;„,implies that, in the
inhomogeneous structure, the order parameter g is spa-
tially modulated.

Furthermore, we have to notice that, in the present
system, the order parameter is coupled linearly to the
shear strain e». [See (2.11).] Hence, the inhomogeneity
of the structure is considered to be essentially due to the
spatial modulation of the order parameter Pr). The
characteristic length scale of the spatial variation of g is
of the order of the inverse width of the broadening of the
Bragg reflections. Referring to Fig. 6 of I, the length
scale of the spatial variation should reach as long as 300
A (-20Xc~ ) which means that the modulation period is
of semimacroscopic size. As was discussed in Sec. II, the
possibility of the stabilization of the state with a spatially
modulated order parameter called the crest-riding-
periodon phase has been pointed out by several authors.
Since the GL equation we derived in Sec. II has exactly
the same form as the one which these authors phenome-
nologically postulated, one expects that the present sys-
tem may stabilize the crest-riding-periodon phase.

In this connection, it is important to notice the follow-
ing experimental results: As was discussed in I, the gen-
eral feature of the diffraction spectra can be understood
by considering the coexistence of two monoclinic lattices
with different monoclinic angles given by

P")=94.37,
P' =93.82' .

(4.5)

6(3= ( cosPm —cosP~ ), (4.6)

the above fact indicates that there are semimacroscopic
regions of differently strained lattices with

E ) 3' =0.0696,

F]3 0.0794 ~

(4.7)

Therefore, it would not be unreasonable to consider that
the observed inhomogeneous state is identified to be the
predicted CRP phase where the order parameter g,
whence the internal displacement parameter u,

„„

is spa-
tially oscillating between two different values g'" and g'

as well as the shear strain. Using the proportionality be-
tween g and e» and the values included in Table I, the
corresponding parameter values of u;„,are estimated to
be

u,'„",=0.0743,

u' ' =0.0847 .
(4.8)

Since the monoclinic angle P is directly related to e(3
by

with

u,'„",=0.0743,

~",,'=0.0696,

Q;„t=0.0847,

E]3 0 0794

(4.10)

(4.10')

Notice that, due to the difference in u,'„t',these two struc-
tures are internally different rather than just specified by
the monoclinic angle P".

The observed pattern of the shift and broadening
should be compared with the following diffraction spectra
of the CRP state:

2

I(K)= g g ~F(K)~ 5(I(. —E„')),
V —( g(~)

h

fK. r"'
F(K)= g bq) )e

k, k'

(4.11)

where K&
' is the reciprocal-lattice point of the monoclin-

ic lattice specified by P". Here, we have assumed that
the domain sizes are of semimacroscopic scale, so that
the spectra are simply expressed by the superposition of
the intensities of individual Bragg reflections.

The result of the calculated spectrum along the (40L )

line is given in Fig. 8(a), in comparison with the observed
spectrum. As is seen in the figure, there seem to be
overall agreements. For instance, the observed directions
of the tailing of the reflections (404), (403) and

(402) are consistently explained by the interpretation
that the tail occurs towards the minor peak of the pair of
reflections.

To be more quantitative, we estimate the peak shift
A(L) defined by

~I(1) I(2)
0 (40L) (40L) (+:I I(2) )(]) (2)

I(4oL) +I (4oL]
I3.(L ) =

(4.12)

where I"'(40L ) and I' '(40L ) correspond to the intensi-
ties of the (40L ) reflection of the lattice (1) and the lat-
tice (2), respectively, and b,0 is the splitting of the pair of
Bragg reflections. The value b, (L) is considered to define
an "averaged" peak position by taking the weighted
mean with respect to the intensities I"' and I' '. The re-
sults are plotted in Fig. 8(b). The agreement is fairly
good except for (401) . We carried out a similar analysis
for the (20L ) line. The agreements in the shift pattern
A(L) are poorer, although qualitative features such as



42 MARTENSITIC TRANSFORMATION OF A. . . . II. 10 413

tailing are consistent with the observed spectrum. We
did not perform an analysis of the (30L ) and (10L )

lines because the Bragg intensities are sensitive to the ad-
ditional parameter associated with the concentration dis-
tribution of Ni and Al on different sites.

V. SUMMARY AND DISCUSSIONS

(a)

(40L)

I-
(hz
UJ

K

-2 0 1 2

(a)

0.2

I S S &

f
1 & & 1

(
t y

-0.1

(4OL)
l I I l 1 t s ) l i i i I s s I

-10 -5 0 5 10

FIG. 8. (a) Comparison of the observed spectrum along the
(40L ) line and the calculated I(40L ) of the CRP state by Eq.
(4.11). (b) Comparison of the observed shift pattern along
(40L ) line and the calculated 6(40L ) by Eq. (4.12).

We have developed a theoretical treatment of the mar-
tensitic phase transformation within a site-independent
scheme to describe atomic fluctuations in a highly anhar-
monic lattice. From the microscopic standpoint, a pseu-
dospin variable has been introduced which stands for the
amplitude of a local vibrational mode called the "em-
bryonic mode. " The martensite structure is then charac-
terized by the ferro-type ordered phase of the pseudos-
pins. Through the coarse-graining procedure of the pseu-
dospins, a semimacroscopic treatment has also been
developed within the GL framework.

Both results were applied to the analysis of the marten-
site structure of the Ni-Al alloys. In particular, the
anomalous features in neutron-diffraction spectra are un-
derstood by considering that the order parameter is spa-

APPENDIX

We consider a random system which is characterized
by an irregular stacking of the equivalent basal planes
defined by the unit-cell vectors (a, b ). The structure
factor of the system should be given by

F(K)=FI(K)g e '6lK —K„), (A 1)

where F&(K) is the "layer structure factor" of a single
atomic plane and K& is a reciprocal-lattice point within

tially oscillating between two different values, which are
interpreted in terms of the theoretically predicted crest-
riding-periodon phase.

As was pointed out in Sec. III, the observed order-
parameter value is 0.48 relative to the perfect
( ABCABCB) stacking of hexagonal basal planes. (See
Table I.) Tadaki also observed similar behavior in the
so-called "9R"structure of the Cu-Zn alloy which exhib-
ited a deviation from the ideal 9R structure. They dis-
cussed that the origin of this deviation is due to the
difference of the atomic radius between Cu and Zn atom.
From simple geometrical considerations, it was proved
that, by taking the difference into consideration, the lat-
tice will deviate from the exact orthorhombic system in
accordance with the experimental results. Considering
the appreciable difference in atomic radii between Ni and
Al, the same arguments may also be at least partly applic-
able to the present case.

In the present treatment, we have ignored the atomic
concentration fluctuations. Since the sample has the al-
loying ratio considerably off from nominal Ni05Alo 5 to
construct the CsC1 structure, the excess Ni atoms should
be distributed more or less randomly on the Al site. It is
quite possible that there is strong coupling between the
concentration distribution of these excess Ni atoms and
the structural characteristics. In fact, in the structure
analysis of (-AgZn, Yamada and Noda pointed out that
the mass-density wave (MDW), which specifies the atom-
ic concentration fluctuation, and the lattice distortion
wave (LDW), which specifies the positional distortion,
coexist side by side in Ag-Zn alloys.

When the r-dependent concentration c(r) is taken into
consideration in the present case, there would be an alter-
native interpretation of the coexistence of two slightly
different monoclinic structures in NiA1 as follows: After
the heat treatment, the alloy tends to decompose into
Ni-rich and Ni-deficient regions (spinodal decomposi-
tion). Through strong coupling between c(r) and g(r),
such decomposition processes will eventually induce a
"structural decomposition" which is equivalent to the
CRP structure.

In this connection, the analysis of the spectra along the
[10L ] and [30L ] lines would provide additional infor-
mation concerning c (r) because the structure factors of
these reflections are sensitive to the atomic distribution
on the sites within the basal plane. At the present stage,
we cannot clearly distinguish from experimental evi-
dences which is actually the major driving mechanism to
stabilize the two-monoclinic mixed state.
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the (a, b ) plane given by

K& =Ha* +Lb*, H and K are integers . (A2)

The coordinate r, is the position vector drawn to the ori-
gin of the ith layer which will be generally expressed by

r;=x, a +z;c

I(K+7c* )=I(K) . (A6)

Inserting K+7c' for K in (A4), we have

Notice again, K, is not an integer.
As is pointed out in the text, the observed results show

the following translational symmetry in the reciprocal
space:

Notice that, due to the random stacking, x, and z, are not
integers but allowed to take arbitrary values.

The diffraction intensity is given by

I(K+7c ) = IF((Kg )I' y e

In order to satisfy the condition (A6), we should have

(A7)

I(K)=~F&(K&)~ ge (A4) z;= —,
' (integer) . (A8)

where the scattering vector is given by

K=K„+E,c' (A5)

Therefore, the translational symmetry (A6) is established
when the layers are stacked with the same spacing of
—,
'

/c /sinP
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