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Magnetic phase diagrams of the antiferromagnetic planar model on a stacked triangular lattice
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The classical antiferromagnetic planar (XY) model on a simple hexagonal lattice with an applied
in-plane magnetic field is studied. With only nearest-neighbor exchange interactions along the c
axis, J~~ =—1, and in the basal plane, J„the ground-state (T=0) phase diagram (H, J, ) exhibits an

unexpected richness of ordered states. Finite-temperature effects treated within a molecular-field

approximation for a number of values of J, reveal complicated {H,T) phase diagrams. Detailed
Monte Carlo simulation results are presented for the case of J = l and compared with recent pre-
dictions associated with chiral multicritical behavior.

I. INTRODUCTION

Noncolinear magnetic order can arise in simple hexag-
onal systems of antiferromagnetically coupled ions as a
result of frustration imposed by the triangular symmetry
of the basal plane. ' In the case of planar anisotropy, or-
dering in the basal plane is the so-called 120' spin struc-
ture, which can be described as a helically polarized spin
density where both the polarization vector S and wave
vector Q lie perpendicular to the c axis. Left- and right-
handed (+Q} chiral states are degenerate in energy for
crystals with a center of inversion symmetry. Kawamu-
ra has shown that frustrated spin systems of this type
are associated with a new kind of universality class (n=2
chiral) as characterized by the symmetry of the order pa-
rameter V= Z2 XS, . Theoretical and experimen-
tal ' estimates of the critical exponents for such chiral
spin systems differ significantly from those of the stan-
dard xy universality class. Insight into the novel critical
behavior of these three-dimensional (3D) systems was
gained through earlier studies of the two-dimensional
(2D) antiferromagnetic triangular lattice. ' "

A magnetic field applied in the basal plane is predicted
to split the zero-field transition from paramagnetic to hel-
ically ordered phase into two lines of transitions in the
(H, T) phase diagram, ' ' revealing an unusual type of
multicritical point at H=O, T=T~. Recent neutron

diffraction, ultrasonic, ' and Monte Carlo' studies of
the quasi-one-dimensional insulator CsMnBr3 confirm the
expected convergence of two critical lines at T~. The de-
tailed analysis of a Landau-type free energy' indicates
that the two transitions correspond to the following se-
quence of phases as temperature is decreased: paramag-
netic to linear and finally to an elliptically ordered phase.
Symmetry, scaling, and renorrnalization-group argu-
ments' suggest that the paramagnetic to linearly polar-
ized phase transition belongs to the of xy (5&) universality
class, the linear to elliptically polarized phase transition
belongs to the Ising (Z2) universality class, and that the
multicritical point has critical properties of the r1, =2
chiral universality class. The asymptotic temperature
dependence of the critical phase boundaries at Tz is

determined by the crossover exponent P, which is es-

timated for this type of system to be very close to unity
($-=1.04). Similar splitting of the Neel temperature is
also observed in mean-field and Monte Carlo results on
the 2D triangular lattice, ' ' but with linear and ellip-
tical phases of different symmetries than found in the 3D
case for antiferromagnetic coupling along the c axis.

Stimulated by these new results, we investigate here the
planar model on a simple hexagonal (stacked-triangular}
lattice with nearest-neighbor (NN) antiferromagnetic ex-
change coupling and an applied in-plane magnetic field.
The Hamiltonian can be written as

A=J g s, s, +J~ g sk st —gH s;,
( I'g ) ( kl ) 1

where s;lc and J~,J~&0 with (i,j ) and (k, 1) summed
over NN sites along the c axis and in the basal plane, re-
spectively. Except for a special examination of CsMnBr3,
we set J~~

=1 and consider the possible long-range mag-
netic order stabilized by this system as a function of J~,
magnetic field, and temperature. Exact results at T=O
show that four ordered states of different symmetry occur
in the (H, J~) phase diagram, in addition to the 120' spin
structure at H=O. This serves to extend the previously
studied ' quasi-one-dimensional case J~~ &&J~. The coex-
istence curves of this phase diagram show quite compli-
cated structure. Finite-temperature effects are treated us-

ing a Landau-type expansion of the free energy deter-
mined within the molecular-field approximation, and ex-
ample (H, T) phase diagrams calculated for a number of
J~ values exhibit diverse features. Although this ap-
proach is a good approximation to an exact mean-field
treatment only in regions close to T~, it allows the free

energy to be expressed as a simple functional of the spin
density. Appropriate order parameters are then transpar-
ent from a Fourier expansion of the spin density, with the
principal component being Q= —,'G~~+ —,'G~ (where G is a
reciprocal lattice vector). Some analytic results are ob-
tained and contact is made with our earlier phenomeno-
logical model. ' ' One of the more unexpected results is
for the quasi-two-dimensional case (Jj »J~~) where the
(H, T) phase diagram also exhibits splitting of a Neel tem-
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perature, but with the linear-elliptical phase boundary be-
ing a first-order transition line, thus revealing another
novel multicritical point.

In addition to this mean-field analysis, we studied in
detail the (0, T) phase diagram near the Neel tempera-
ture for the case J,=1 by Monte Carlo simulations of a
system described by the Hamiltonian (1). The transition
at Tz is split as in the quasi-one-dimensional case into
two second-order transition lines, allowing tests to be
made of the predicted critical behavior. In support of the
symmetry, scaling, and renormalization-group analyses,
the critical exponent P is estimated to have the values
0.34+0.02 and 0.32+0.02 at the paramagnetic-linear and
linear-elliptical phase boundaries, respectively. It is also
evident from our data that the crossover exponent P is
indeed very close to unity. These results compliment and
extend those of Refs. 4 and 15.

II. GROUND-STATE PHASE DIAGRAM
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The analysis presented here follows that given in Refs.
22 and 23 for the anisotropic Heisenberg model on a sim-
ple hexagonal lattice. With only NN exchange couplings,
only three sites on each of two consecutive triangular
planes need be considered. Thus, with

s, =cos&,x+sin0, y,
and H~~x, the ground-state energy, is given by

& =
—,
'
J~, («se/4+«se25+«se36)

+ —,
' Ji(cose, z+ cose, 3+cosBz3

+cose4, +cose4, +cose„)

9-

8-

5A

(b&

„'H g co—s0—;,
1

where e„=I9,
—0, i = 1,2,3, labels sites on one plane and

i=4,5,6 labels sites on the second plane. The numerical
determined (H, J~) phase diagram, with J =1, is shown
in Fig. 1. Following our earlier notation, ' the region
labeled 1 is the field-induced ferromagnetic (paramagnet-
ic) state (8, =0), phases 5A, 58, and 5C are denoted as
linearly polarized states (see below) and phase 7, the ellip-
tically polarized state. The configurations of the six sub-
lattice spins for the linear and elliptical phases are
displayed in Fig. 2 and are distinguished as follows:

phase5A: 0=0=—6I = —0 0= —0

phase 5~: I = t94 I92= I9s

phase 5C: 0I =06 03 04 02 0$ 0,
phase 7: O, = —

Os, Oz
———O, , O, = —O

Phases 5A and 7 are the ordered states previously dis-
cussed in Ref. 21 for the case J~, &&J~. Phases 5B and 5C
have apparently not been reported in the literature. Of
particular interest regarding Fig. 1 is the result that the
state 58 is stable only in a very small region of the phase
diagram. The continuous transition from phase 58 to 5C
is achieved through a complete alignment with the field
direction of one-third of the c axis chains (02 = 8~ =0) and
a fanlike configuration describing the remaining spins. A

6
0.9 l.o l.2

FIG. l. Ground-state phase diagram with J~ =1. Dashed
lines denote second-order phase transitions, and the solid line

denotes a first-order transition. Regions 1, 5, and 7 represent

paramagnetic, linear, and elliptical phases, respectively (see Fig.
2). The 120' spin structure occurs at H=O. Details of the phase
boundaries near H-6.5 and J,—1.05 are shown in (b). 0 and

J1 are measured in units of J~~.

E= drdr' J r —r' s r .s r' — dr H.s r1

2V
(4)

similarly narrow phase region among three linearly polar-
ized states was discovered recently from a phenomeno-
logical treatment of spins with strong uniaxial anisotropy
of a hexagonal lattice. Further understanding of the
phase diagram of fig. 1, and contact made with the results
of Ref. 25, follows from an alternate formulation of the
ground-state system in terms of a Fourier expansion of
the spin density. This description also provides a frame-
work for an analysis of the free energy developed in Sec.
III.

For this purpose it is convenient to write the ground-
state energy from (1) in the general form
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5A For a description of the ground-state magnetic order, it
is convenient to write the polarization vectors as the sum
of real and imaginary parts:

5C

FIG. 2. Schematic representation of the six sublattice magne-

tization vectors for the linear phases 5 and elliptical phase 7.
Shown are two layers of three consecutive basal-plane sites.
The magnetic field H~~x is in the vertical direction.

3

p(r) =m+ g (S„e " +S„'e " ),
n=1

(6)

where the uniform component I is induced by the ap-
plied magnetic field and

Qi =-,'G~~+-,'Gi Q2=-, Gi Q3=-', Gi

e.g. , Q, =(n/c)z+(4~/3a)x. Only the wave-vector com-
ponent Q3 has been omitted in our recent studies of mag-
netic order in hexagonal systems. ' ' ' Equilibrium
spin structures are predominantly characterized by the
component Q„with S, being the primary order parame-
ter. The incidental wave-vector components Q2 and Q3
are, however, required for a complete description of the
magnetic states, serving to distinguish the three linearly
polarized phases 5A, 58, and 5C.

Evaluation of the energy described by (4)—(7) is
straightforward, with the result

with the spin density given by

s(r) =—g p(r)5(r —R),V

N ~

where R denotes hexagonal lattice sites and p(r) charac-
terizes the long-range magnetic order. With only NN
coupling, the magnetic order can have only a periodicity
of 2 (or less) along the c axis and a periodicity of 3 (or
less) in the basal plane (i.e., only six sublattice spins are
required). The Fourier expansion of p(r) can thus be ex-
pressed by

The primary ordering vector in each of the phases 5 is
colinear, S, ~~y, describing linearly polarized states. For
the elliptical phase, S~ has an additional component along
the field direction (these two components being equal in

magnitude for the 120' spin structure at H=O). The
three phases 5 are distinguished from each other by the
relative magnitudes of S„and S», in addition to the in-

cidental Fourier components. To see this more clearly,
let

S~.= ~S; ~cosy„s;, = S;~sing, . (10)

The phase angle P, can take values P, =me/3 in state
5A, P, = (2m + 1)n /6 in state 5C, and intermediate
values in state 5B (i.e. , 0&/, &n./6). Note that the in-

cidental component S2 does not appear in phase 5C. An
identical characterization of three linear phases is made
in Ref. 25, where the suggestion is made that phases of
the type 58 have the symmetry of the three-state Potts
model. It can be seen from the above description that a
change in spin ordering 7-58 or 7-5C involves a spin flop
of S» from a configuration S»~~x to S»~~y so that these
transitions are necessarily first order. A phase angle can
also be associated with S3 for the linear phases:

S3, = ~S", ~cosP„S» = ~S; ~sin/3,

where /~=me/3 in both states 5A and 5C. Relation-
ships between the primary and incidental wave-vector
components are discussed in Sec. III.

It is straightforward to obtain a few simple analytic re-
sults for some of the second-order phase boundaries of
Fig. 1. Both 1-5A and 1-5C transitions are given by the
same expression,

S„=S„„.+iS b .

Note that we can set Szb =0 since sin(Q2 R)=0. For a
particular choice of phase angles (see below), the phases
of Fig. 1 can be characterized by the following nonzero
Fourier components. Phase 1: m, 120' structure:
s~.=s",la 1b&

phase 5A: m ', S„,S2„S3, ,

ph~~~ 58: m', S'„, S», S'„, S3 S3b

phase 5C: m ', S,b S3, ,

phase 7: m", S&a S~b, S2a& S3a& S3b

E:J[(m 2S 2S +2S ) H
& -5A

j~

+ Jl ~1-5C (12)

+3Ji(m —S, +2S2 —S3)—mH,

where J~~=(V/N)J(c), Ji=( VN/) (J),aand S„=S„.S„*.
Equilibrium states are then determined by minimizing E
along with the constraints that p(R, ) p(R, )=1 for
i = 1 —6, the six sublattice sites as described above.

+5A-7 = 12J~)J
These results corroborate those of Ref. 21.

(13)

In the case of strong coupling between triangular planes,
J,

~

&&J~, the 5A-7 transition is determined by
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III. MOLECULAR-FIELD LANDAU EXPANSION

%'ithin molecular field theory, the Hamiltonian

&=—,
' g J,,s, .s, —g H. s,

is approximated by the variational form

MF= gh, s, ,

(14)

(15)

l5.

lo-
5A

h;= gJ;, (s, ) —H. (16)

where the effective field h, minimizes the free energy
(5F/5 ( s, ) =0), giving 0

0.5
I

l.0 ).5

Following a straightforward generalization of the formu-
lation by Bak and von Boehm (also see Ref. 29), a
Landau-type expansion of the free energy in powers of
( s, ) leads to the following result to sixth order:

FIG. 3. Phase diagram with J~~
=1 and J, =1 near T~ = —',

calculated using the molecular-field model. Regions 1, 5A, and
7 represent paramagnetic, linear, and elliptical phases, respec-
tively, as characterized in Sec. II. Dashed curves denote lines of
second-order transitions.

F[s(r)]= —,
' f dr dr'A (r —r')s(r) s(r')

—fdrH s(r)+ ,'8 f dr[s—(r) s(r)]z

+ —,'C dr s r.s r +. . . ,

where ( s, ) =s(r),

(17)

which stabilizes a helical spin polarization [e.g. ,

S,=S,(x+iy) so that S, S, =O], and the term ~m S, ~,
which stabilizes a linear polarization S, ~~y. Expressions
for the second-order phase boundaries (see, e.g. , Fig. 3)
given in Ref. 16 reduce, in the present analysis, and for
T- Tz, to the relations

A(r) =aT+ J(r), 8 =bT, C =cT, H, 5A
=——Ag(b') /8(T~),

(22)
with a =3, b =—', , and c =

—",,', for classical statistics
(S= oo). With expressions (5)—(7) and (9) for the spin
density, this free energy can be written as a function of m
and the polarization vectors S„. Magnetic phase dia-
grams (H, T) are then calculated numerically by minimiz-
ing F(m, [S„I ) to find equilibrium phases, as character-
ized in the previous section, for a given set of parameters
(J~~~, J,H, T}

A few simple analytic results can be obtained from an
analysis of the free energy truncated at fourth order and
evaluated using only the principal components of the spin
density m and S, :

F=
z Aom + AgSi+BSi + ,'8 IS& Sil —+—'Bm

where b'=a(Tg —To).
In the case of a 2D triangular lattice or a hexagonal

lattice with ferromagnetic interplanar coupling, only
wave-vector components 0 and —,'G~ contribute to the
spin density (6). The free energy in that case contains
terms of the form' (m S)(S S), resulting in magnetic
phase diagrams with ordered states of different sym-
metries' '" than found here.

Analysis of the full free energy demonstrates the fol-
lowing relationships between the incidental (Sz and S3)
and primary (S, ) Fourier components of the spin density.
To lowest order in S, , one finds (also see Ref. 27)

+28~m S, ~
+Bm S, —m H,

where mf/H[fx and

(19) Sz+ Sz —
—,
' S, ( S, S, ) +S,(m S3 ) +c.c. ,

S3--~;m(S, .S, )+S,(m S, ) .

(23)

AD=a(T To), Ag=a(T—Tg), —

T.'= (2J„+6J,»a, —Tg (2J„+3J,)/a——
(20)

(21)

The Neel temperature is given by T~= T&. A phenome-
nological version of the above result was recently used by
us' to study the magnetic phase diagram of CsMnBr3.
That work was based on a nonlocal formulation of the
free-energy functional where five ternperature-
dependent fourth-order coefficients 8 (p= 1 —5) appear
[related to the present analysis by 8 =8(T~ )], with a, .

To, and T& also treated as free parameters. Splitting of
the Neel temperature by a magnetic field was shown to be
a consequence of competition between the term ~S, .S, ~,

For linear phases where S, ~~y, the first part of relation
(23) yields Sz-S&cos3g„showing that Sz=O in phase
5C [P, =(2m +1)~/6] Relation (24). indicates that S, is
nonzero only if a magnetic field is present; this is a gen-
eral result valid to all orders. It is evident from these ex-
pressions that both S~ and S3 are small in regions of the
phase diagram of interest here (not too far from T~) since
S —(T - —T}.] X

Illustrative examples of magnetic phase diagrams cal-
culated from the free energy (17) are shown in Figs. 3, 4,
and 5 for J, = 1, 1.5, and 10, respectively, where J

~~

= 1

and with the Neel temperature Tz = Tg given by (21). In
each figure, the 120 spin structure occurs at H=O for
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FIG. 5. As in Fig. 3 with J, =10 (T& =—', ). Solid curve
represents a first-order transition line.

FIG. 4. As in Fig. 3 with J,= 1.5 (T& =—"). Solid curves

denote first-order phase boundaries, and the dotted curve
represents two second-order boundary lines as shown in (b).
The two lines 5A-5B and 5B-5C coalesce at the paramagnetic
phase boundary.

T ( T&. Figure 3 (J, = 1) demonstrates the splitting of
the Neel temperature by the in-plane field into two lines
of second-order phase transitions. The structure of this
phase diagram at very low temperatures (outside the
range of validity of the present model) must be quite
complicated since the sequence of phases
7~5A~ 5B~SC~ 1 occurs with increasing field
strength at T=O (Fig. 1). An indication of the complexi-
ty which can occur is illustrated by Figs. 4(a) and 4(b)
(Ji =1.5) where all of the phases of Fig. 1 are seen, with
the phase 5B again stable only in a very narrow region of
the phase diagram, as at T=O. This figure shows a num-
ber of unusual types of multicritical points, such as the
intersection of four second-order transition lines where
phases 1, 5A, 58, and 5C coalesce. Also note the similar-
ity of Fig. 4(b) and Fig. 1(b). Perhaps more interesting
for a wider class of real materials is the phase diagram in
the quasi-two-dimensional case (JR =10) shown in Fig. 5
(similar results are also found for J~ =2). Splitting of the
Neel temperature occurs as in the previous two examples,
but here the linear phase has the symmetry of state 5C.
A significant, and related, additional difference is that the
linear-elliptical phase boundary is a line of first-order
transitions. Note, however, that the magnitude of the
discontinuity in the order parameters (e.g. , Si) across this
transition line was found to decrease to zero as T~Tz.
It is not clear that the universality class of the transition
at Tz remains n=2 chiral (V=Z2 XS~) since the asymp-
totic merging of Z2 and S, critical lines previously ana-
lyzed' is absent for this case. The possibility that critical
fluctuations drive this transition to be first order at some
critical value of Ji (not accounted for in the present
mean-field treatinent) deserves further investigation, espe-
cially in view of results by Diep on related systems.

We conclude this section with results for CsMnBr, cal-
culated as above using the experimentally determined
(see, e.g. , Ref. 8) exchange parameters Ji=(20.4 K)S
and Ji =(0.044 K)S and with the magnetic field given in

physical units (Tesla) determined by H/(Sgp~), where
S= —,'. T~ calculated from. (21) has a value 85.28 K in the
present model, to be compared with the experimental re-
sult ' of 8.3 K. Such a discrepancy for the Neel temper-
ature in quasi-one-dimensional systems is not surprising
in view of results from better calculations which treat
only interchain coupling within a mean-field approxima-
tion, giving T~, —I,'J~ J, )

' . The phase diagram shown in

Fig. 6 has the same general features as found experimen-
tally, ' with Monte Carlo simulations, ' and our previ-
ous phenomenological model. ' Among notable
differences is the very narrow initial splitting of the phase
boundaries near T~.. The separation between these tran-
sition lines is apparently widened considerably by critica1
fluctuations as is evident from the Monte Carlo and ex-
perimental results. Also note that the 1-5A phase bound-
ary near T„of Fig. 6 decreases in temperature with in-
creasing field strength, a feature of the isotropic model
(Fig. 1) as well. The opposite behavior is observed in the
Monte Carlo and experimental results. This feature was
accounted for in the phenomenological model of Ref. 16
by assigning a negative value to the coefFicient B~ of the
term m S

&
[see (19)].
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FIG. 6. Phase diagram calculated for quasi-one-dimensional
CsMnBr& with details of the region near T& shown in (b).

IV. MONTE CARLO SIMULATIONS

M (q)=
I /2

L gs, e (25)

(where a=x,y) were calculated with q=0, Q„(n =1—3),
given by (7). Quantities were averaged over 2 —8 runs us-
ing random initial spin configurations. For each run,
10000 Monte Carlo steps (MCS) per spin were used with
the initial 4000 MCS discarded for thermalization.

Boundary lines of the phase diagram shown in Fig. 7

In order to test predicted critical behavior associated
with the splitting of Tz by a field into two second-order
transition lines, ' Monte Carlo simulations of the Hamil-
tonian (1) with J~~

=J~ =1 and H~~x were performed. This
investigation serves to extend and compliment the Monte
Carlo results of Kawamura, who studied this system
with J~~= —1 and J~=l at zero field (the sign of J~~

should not affect critical behavior at H=O) and Mason,
Collins, and Gaulin, ' who studied the magnetic phase di-
agram of CsMnBr3 using the experimental values for J~~

and J~. The standard Metropolis algorithm was em-
ployed using periodic boundary conditions on L XL X L
lattices with L=12, 18, and 24. Fourier components of
the spin density defined by

'

FIG. 7. Phase diagram determined by Monte Carlo simula-

tions with J~t =J,= l. Regions labeled 1, 5A, and 7 represent
paramagnetic, linear, and elliptical phases, respectively. Lines
in (a) serve as guides to the eye. Linear temperature dependence
of H. for both phase boundaries near T„-=1.45 is suggested by
the data in (b), where the dashed lines are from the molecular-
field relations (22).

were determined by the behavior of the primary Fourier
component M =—M (Q, ) for constant H and T scans us-

ing a lattice of size L= 12. Appropriate order parameters
for the paramagnetic-linear (1-5A) and linear-elliptical
(5A-7) transitions were taken to be M and M„, respec-
tively (see Sec. II). Illustrative data are shown in Figs. 8

and 9, which display behavior typical of second-order
phase transitions. ' The critical temperature (T, ) and
fields (H, ) were determined from such results by the loca-
tion of the points of inAection. These were estimated
with the aid of cubic spline fits to the data, giving errors
of less than +0.02 in T, and +0.2 in 0, . The Neel tem-
perature was found to be T&=1.45+0.02, in agreement
with Kawamura. Qualitative similarity between the
phase diagrams calculated by these Monte Carlo simula-
tions and by molecular-field theory is evident on compar-
ing Figs. 7 and 3.

Note that in Fig. 7 the paramagnetic-linear phase
boundary near T& rises vertically and then curves to the
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FIG. 8. Temperature dependence of the primary order pa-
rameter at H= 3 for the 1-5A phase transition from Monte Car-
lo simulations with L= 12. Arrow indicates estimated critical
temperature determined by the point of inflection.

FIG. 10. Finite-size effect on the order parameter at H=3
for the 1-5A transition at selected temperatures T=1.20—1.42
below the transition T, ==-1.430.

left, as found in the mean-field results with isotropic
(J~~ =J, : Fig. 3) and strongly anisotropic (J &)J, : Fig.
6) exchange parameters. The Monte Carlo simulations of
Mason, Collins, and Gaulin' show this boundary curving
to the right. All of these results taken together suggest
that an increase in T, of this transition line with increas-
ing field strength is a consequence of effects from both
critical fluctuations and the quasi-one-dimensional aspect
of the exchange interactions.

The analysis in Ref. 17 of the multicritical point at
T= T~ and H=O suggests that the asymptotic behavior
of both critical lines is governed by H —

~ Tv
—T

~
with a

crossover exponent $=-1.04. It is clear from the H T-
plot shown in Fig. 7(b) that the data near Tv fall on near-

ly straight lines, although a small curvature may be seen
in the data for the 1-5A phase boundary. These Monte
Carlo simulations thus provide support for the prediction
that P is very close to unity. The broken lines of Fig. 7(b)
are from the molecular-field, "elations (22), showing re-
markable agreement with the simulation data for the
5A-7 phase boundary.

Finite-size scaling estimates of the critical exponent P
were also made for the 1-5A and 5A-7 transitions from

temperature scans at H=3 and field scans at T=0.9, re-
spectively. Data below the transition in each case were
analyzed, and for this purpose we adopted the nonstand-
ard method of accounting for L dependence of data, due
to spin waves as described by Kawamura. At large L,
the spin-wave correction to the staggered magnetization
vector of the present system appears as

M (L) =M ( ~ )+c„/L . (26)

Kawamura notes that this is the dominant finite-size
effect if the quantity x =tL '~', where t =(T~ —T)/T&. , i.s

not large, as is the case with our data. Plots of M (L)
versus 1/L at temperatures T ~ T~ then yield M ( ~).
With /3 defined by M,„( Oo )-t~, log-log plots of the tem-
perature dependence of M ( ~ ) then give an estimate of
this critical exponent. In this way, Kawamura deduced a
value P=0.25+0.02 for the transition at Tv, compared
with his earlier result of 0.22 from standard finite-size
scaling techniques.

The transition temperature for the paramagnetic-linear
phase boundary at H= 3 is estimated to be
T, = 1.430::0.005. Figure 10 shows the finite-size
analysis based on relation (26) at selected temperatures
T ( T,, for lattices of size L=12, 18, and 24. The log-log
plot of the resulting data for M, ( oo) displayed in Fig. 11
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FIG. 9. As in Fig. 8, showing here the H- dependence of the
primary order parameter at T=0.9 for the 5A-7 phase bound-
ary.

FIG. 11. Log-log plot of the temperature dependence of the
order parameter for H=3 for the 1-5A transition. Open circles
indicate L= 12 data, and solid circles show the data extrapolat-
ed to L = ~ i'rom Fig. 10. Slope of the line gives f3= 034—.
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FIG. 12. Fin'Finite-size effect on the order parameter at T=0.9
for the 5A-7 transition at selected fields H=4. 15—4.60 below
the transition H, =—4.605 ~

FIG. 13. Log-lot plot of the h-=(H —H-')/H, ' dependence

of the order parameter at T=0.9 for the 5A-7 transition. Open

circles indicate L=12 data, and solid circles show the data ex-

trapolated to L = ~ from Fig. 12. Slope of the line gives

/3=—0.32

yields the estimate j3=0.34+0.02, in agreement with the
predicted" XY critical behavior (to be compared with,
e.g. , accurate c.-expansion results /3—=0.349 for this
universality class ).

Finite-size effects for the linear-elliptical transition at
T=0.9 for selected values of H (H, =4.605+0.005 are
shown in Fig. 12. These data were analyzed using the re-
lation M, -(h-')~, where h =(H H)/H ', as s—hown -in

Fig. 13. Field dependence of this form follows from not-
ing that the second-order coefficient ro =at of standard
Landau-Ginzburg-Wilson Hamiltonians takes the renor-
malized form r=at+bH when a magnetic field is ap-
plied to an antiferromagnet [see, e.g. , the free energy
19)]. The data of Fig. 13 yield the estimate

/3=0. 32+0.02, supporting the prediction that this transi-
tion belongs to the Isling universality class (cf. p=—0.327
from Ref. 32). Note from Figs. 10—13 that there is a
much smaller finite-size effect for this transition than at
the 1-5A phase boundary.

V. CONCLUSIONS

Th'his work has demonstrated a number of new results
for magnetic phase diagrams of the planar model on a
stacked-triangular lattice with nearest-neighbor antiferro-
magnetic exchange coupling. The ground-state phase di-
agram as a function of in-plane applied magnetic field
and intraplanar coupling (J~) exhibits a rich structure in-

volving an "elliptical" and three types of "linear" or-
dered states, as characterized by the polarization of the
primary wave-vector component Qt= —,'G + I G~ of the

spin density. The stability of the intermediate linear
phase (5B) only in a very narrow region of the phase dia-
gram near J =J~ was shown to be a consequence of the
relative weakness of the incidental wave-vector com-
ponents which distinguish this state from the other two
linearly polarized phases.

Th Fhe Fourier expansion of the spin density provided a
convenient description of long-range magnetic order
from a Landau-type expansion of the free energy formu-
lated within the molecular-field approximation to exain-

tne the structure of (H, T) phase diagrams near T~. In
cases where J, is not too large, splitting of the Neel tem-
perature by the field into two lines of second-order transi-
tions was found, in support of our earlier phenomenol

16cal model. Of particular interest is the large-J~ case
where one of the phase boundaries becomes a line of
first-order transitions. This feature suggests that for
weak interplane coupling, the criticality of the transition
at T~ may not be n=2 chiral, as it is for larger J,, /J~.
Experimental studies on the magnetic phase diagrams of
h exagonal materials with planar anisotropy and quasi-
two-dimensional exchange coupling, such as" LiCrS2, are
clearly of interest.

J =J
Finally, our Monte Carlo simulations for the ce case

J provide support for the recent symmetry, scaling,
and renormalization-group analysis' on the critical be-
havior of the n=2 chiral multicritical point. This data
suggests that the crossover exponent P is close to unity
as calculated by Kawamura, and that the critical ex-
ponents P estimated for each of the two phase boundary
lines are consistent with the predicted XY and Ising
universality.

&ore added in proof. Recent Monte Carlo simula-
~ 34tions for the case J~~

= 1, J~ = 10 indicate strong
critical-fluctuation effects on the magnetic phase diagram
(Fig. 5). Tetracritical behavior, as in the isotropic and
quasi-one-dimensional cases, is observed. The estimated
value for f3 at H =0 is consistent with the n =2 chiral
universality class.
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