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Several statistical-thermodynamic theories involving an exact solution in one dimension (d=1),
high- and low-temperature series expansions, and an exact solution of an infinite-range system
(mean-field theory) are presented for a quadrupolar spin model whose Hamiltonian is described with
m-cotnponent classical spins S, as yI= —

z g. . .J„(S, S, )' on a d-dimensional lattice. An orien-

tational phase transition is analyzed systematically as a function of m. The transition is first order
generally for 2 & m (x) and d) 2. We evaluate the transition point and the discontinuity in energy
as a function of m. We also present exact solutions in the m ~ ~ limit for arbitrary spatial dimen-
sions.

I. INTRODUCTION

In molecular crystals and liquid crystals, interactions
between nonspherical molecules are generally complicat-
ed and depend on mutual angles and distances of the mol-
ecules. If the molecules have no dipole component, i.e.,
no polarity, and have an oval shape (Fig. 1), it is under-
stood that the interactions can be expanded in Legendre
series with even orders. When the lowest term propor-
tional to P2(cos8, ) dominates the other terms in the ex-
pansion, i.e., when the molecules are well approximated
as uniaxial quadruples, the system of this molecular crys-
tal is described by a Hamiltonian:

J;(S S)
l,j = 1

(1.3)

quadrupole (S; S))
&ij &

(1 ~ i,j ~ N)

(1.4)

This model should be compared with the standard m-
vector model whose Hamiltonian is given by

apart from constant Ao. We call this Hamiltonian sys-
tem an m-component quadrupolar system. If the interac-
tions act between only nearest-neighbor spins with an
equal strength J~ =J, the Hamiltonian (1.3) reduces to

N

J(r„}cos8„,
~vector = S; S

(ij )
(l l J~N)

where Ao is a constant, r„and 0; are distance and angle

between two molecules i and j. This model was first dis-
cussed by Maier and Saupe' for the isotropic-nematic
phase transition of liquid crystals. Let us introduce clas-
sical m-component spin variables

The quadrupolar model described by (1.4) is equivalent to
the RP ' model in field theory. It is possible, in prin-

S; =(S& S2 Sm) (1.2)

with i =1,2, . . . , X (N is the total number of sites). For
simplicity we introduce a d-dimensional lattice, fixing
each spin on each lattice site and ignoring any spatial dis-
placement. This simplification would be valid in discuss-
ing the property of the orientational phase transition, if
no spatial order switches on simultaneously at the transi-
tion point. Then one may rewrite the above Hamiltonian
in a form

FIG. 1. Schematic picture of interacting two oval-shape mol-
ecules which may be approximated as quadrupoles.
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ciple, to consider a mixed Hamiltonian which has both
the quadrupolar part (1.4) and the vector part (1.5). In
this case, the vector part plays a role of a symmetry
breaking field along the director axis. Such a mixed
Hamiltonian may describe annealed magnets or some
kind of liquid or molecular crystals. On the other hand,
usual orientational orderings associated with the rota-
tional symmetry breaking are characterized by a quadru-
polar order parameter

(1.6)

which is traceless, i.e., g„A""=0. The field associated
with this order parameter is not (1.5) but

(1.7)

(Inclusion of such a term will be treated later in an exact
manner both for general m in an infinite-range system
and for the m~oo limit in a short-range system. ) Al-

though it is possible to further generalize the Hamiltoni-
an by considering quadrupolar glasses, ' where J; is spa-
tially random in (1.3), or chiral transitions, we restrict
ourselves basically to the simplest case of the homogene-
ous quadrupolar models in the following.

The m =1 quadrupolar model is trivial at a first glance,
because the Hamiltonian becomes always constant in this
case, although the limit m ~1 might have some meaning.
The m =2 model is equivalent to the classical X-Y model
(planar model) which undergoes a second-order phase
transition, because of an identity cos 8, =(1
+cos28,

~
)/2. How about the case of larger values of m?

One may find just from symmetry considerations that
possible phase transition is first order for general num-
bers of spin components. ' A Monte Carlo study' has
been carried out for m =3 in three dimensions and exhib-
ited indeed a first-order phase transition at finite tempera-
ture r, . There are also several important works in two
dimensions. " ' In two dimensions, much interest has
been aroused in vortex condensations and topological or-
derings. "

As far as we know, however, there was so far no report
studying systematic m-dependences of general m-

cornponent quadrupolar systems. The main purpose of
this paper is to discuss the order of phase transitions and
give reliable estimates for the transition point as a func-
tion of m (and also for the discontinuity at that point if
the transition is first order). In this paper we present
several exact or rigorous theories of m-component qua-
drupolar models. Especially, we give a complete analysis
including an exact solution in d=1 of a short-range sys-
tem and an exact solution in arbitrary dimensions of an
infinite-range system which corresponds to mean-field
theory. We find that the short-range system at d=1
shows a second-order phase transition in the m ~ ~ limit
and no phase transition for any finite values of m. While,
in the analysis of the infinite-range system, we find that
the transition is first order for all m & 2 « ~.

The knowledge of these exact solutions helps us to de-

velop high- and low-temperature series expansions of the
present model with a short-ranged interaction. The
high-temperature expansion is essentially a (graphical)
linked cluster expansion. We notice that there are two
theorerns with which weight functions associated with
spin traces for higher order graphs can easily be calculat-
ed from lower order graphs. In fact we need to evaluate
only nine independent spin integrals in order to obtain a
result up to the seventh order in a simple cubic lattice.
On the other hand, the low-temperature series expansion
is possible at arbitrary spatial dimension d although a re-
striction, d) 2, should be imposed for the existence of an
orientationally ordered phase. For the nearest-neighbor
model (1.4) we will present explicitly the high-
temperature series up to the seventh order and the low-
temperature series up to the second order for general
values of m. Then, from these series data, we conclude
that a first-order transition generally takes place for
m & 2 in three spatial dimensions. It is also possible to es-
timate the transition temperature T, and the discontinui-

ty of the internal energy AE, .
We pay further attention to exact solutions in the

large-m limit not only for completeness to all m but also
for simplicity of these solutions which are described just
by elementary functions. For an infinite-range case we
find, in this limit, a single first-order phase transition as-
sociated with the orientational ordering. On the other
hand, in a short-range case, Kunz and Zumbach' ob-
tained quite recently an exact solution of the RP
model in the m~~ limit which shows a first-order
phase transition for d 2. We reanalyzed this limit in
terms of the quadrupolar model by explicitly taking ac-
count of an effect of symmetry breaking fields (1.5) and
(1.7) and derived the equation of states. In the limit G,
H" ~0, we have essentially recovered the results for
d &2 reported by Kunz and Zumbach, but reached a
different interpretation for the nature of the phase transi-
tion and the ordered state at d «2. We have revealed
that the occurrence of a phase transition in d «2 dimen-
sions is associated with the appearance of a bond long-
range order, b,2-

~
( S, S )

~

WO. As mentioned in Sec. V,
the occurrence of such a symmetry breaking is a peculiar-
ity of the m ~ ~ limit, since, for finite m, b2 is trivially
zero at any temperature due to the underlying local syrn-
rnetry of the system. In this sense, the m ~ (x) limit cor-
responds to a singular limit in this model. Thus, the in-
terpretation by Kunz and Zumbach that the first-order
transition found at d=2 is of topological origin mediated
by vortex condensation is clearly inappropriate. It
should be emphasized that the essentially same type of
ordered state characterized by Az&0 persists even for
two isolated spins which cannot sustain any topological
object such as vortex.

The remaining part of this paper is organized as fol-
lows. We give exact solutions in one dimension in Sec. II.
The case of an infinite-ranged interaction (mean-field
theory) is treated in Sec. III. The high- and low-
temperature series expansions are developed explicitly for
general values of m in Sec. IV. The large-m limit of a
short-range system is analyzed in Sec. V. Lastly Sec. VI
is devoted to Summary and Discussions.
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II. EXACT SOLUTIONS IN 0=1

The use of the transfer matrix method and the Funk-
Hecke theorem' enables us to obtain an exact solution of
the quadrupolar model (1.4) in one dimension. The treat-
ment is quite similar to what treats the m-vector model
(1.5). We first write the partition function as Z =z and
introduce the notation of spin traces:

N

Tr= g Tr, ,

(2.1)

denote, respectively, the modified Bessel function and the
gamma function. ' In an analogous way, the partition
function of the quadrupolar model is given by

N~ quadrupole W

J(S -S + I ) /T
zquadrupo]e Tri [e ' ' "

]
Px (1 2)(m —3)/2d

—1

(1—x')' ""dx—
1

dS; 5(SO —S;)
Tr[ ]=

fdS;5(S —S )

Let us parallelly sketch the treatments for the m-vector
model' and for the quadrupole model. The one-particle
factor z of the vector model is evaluated as

=,F, ( —,';m/2;p) =1+pA, + A2+

and the associated free energy F reads

F/N = —T lnz = —T lntFt( —,';m/2;P),

(2.3)

(2.4)

GS, .S, + ]/T
Zvector ri( e

eax( 1 x 2}(m —3)/2 dx
1

—1

( 1 x 2)(m —)/
—1

a2 a4= OF, ( m /2; a /4 ) = 1+, A t +, A 2 +

(2.2}

where a=GSO/T and OFt(m/2;a /4) is the generalized
hypergeometric function' which may be rewritten as
I (m /2)(a/2)' / I /2 t(a) Here .I,(x) and I (x)

where p is the effective coupling p= JSO/T and
Ft(ta; bz) is the confluent geometric function. ' In

these two expansional equations (2.2) and (2.3) we put

1 3A2=
m

' m(m+2)
(2.5)

I (m/2)l ( —,'+k)
&n I (m /2+0)

The internal energy E can be obtained by evaluating the
logarithmic derivatives with respect to a (or p):

tz OFt((m+2)/2;tz /4}
1noFt(m/2;a /4)=-

NJSO Btz m OFt (m /2;a /4)

a' a4 a'
ln 1+ A + Aq+ A +

8cz

(2.6a)

A2=aA1+a
2!

A1 A3+a'
2 5! 8

+ +
3

Q +0!

m

5 7 ' '9
a CK CXQ+ —Q+ —Q+
m ' m ' m

(2.6b)

for the vector model and

,F, (
—

—,';m/2;P)
ln tF t ( —,'; m /2;P) =1+, —1 (2.7a)

2 3

ap
ln 1+PA+A+A+

1 2t 2 3t 3

=A +P(A —A )+P ——A A +A +
1 2 1 2 2 1 2 1

2
' '3 4 5

+ 2PR + 2P R + 2P R + 2P R + 2P R
m m ' m m m m

(2.7b}
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for the quadrupolar model. The explicit m-dependent
forms for the spin-trace functions Qttg2, . . . and

R, ,Ro, R „.. . are listed in Table I. These expansional
expressions (2.6b) and (2.7b) off'er the high-temperature
series in a one-dimensional lattice, which will be useful in

a later analysis in higher dimensions (see Sec. IVA for
the quadrupolar model). However, there is no phase
transition in this one-dimensional system except for
m = ~. Let us briefly consider this m~oo limit. Put-
ting

(3.1)

(P", ")=0 at T = ~ . (3.2)

Here P";' is a symmetric traceless tensor which has vanish-
ing mean at infinite temperature:

E 1

NJSO 2E
tFi( —

—,';I /2;mK) —1

,F, ( —,'; m /2; ntK )

O(1/m), for K (—,
'

P JS0K=—=
m mT

and taking the limit m ~ ao in (2.7a) we find

(2.8) In the case of the uniaxial quadrupoles introduced in Sec.
I, p", "=St'S,"—S05„,/I is taken for granted. In this

case, the field term in (3.1) becomes identical to (1.7). In
(3.1) the sum ij runs over all quadrupole pairs, including

the term with i =j also. It is only because of the infinite

range of the interactions that the I. =j term does not
matter.

The free energy of this system reads

1 — +O(1/m), for K & —,
' .

1

2K

(2.9)

Thus a second-order phase transition occurs at
K, =JS0/m T, = —,

' for m = ~ and d= l. The same result

(2.9) will be rederived from the independent analysis in
the large-m limit in Sec. V; see (5.19a).

m J NF= —Tln Tr g exp
2NT ..

H"'+ g ppv

i =l
(3.3)

III. EXACT SOLUTION OF AN

INFINITE-RANGE SYSTEM:
MEAN-FIELD THEORY

The Hamiltonian of a generalized quadrupolar model
with an infinite-ranged interaction and a field is given by

where Tr= g~, Tr; denotes the phase-space integral for
all quadrupoles introduced in (2.1). This free energy can
be evaluated as follows. First we rewrite the summation
over particles as a quadrate in the first term in the ex-
ponential and get

TABLE I. The spin-trace functions appearing in the high-temperature series in the one-dimensional systems. Q„Q~, . . . appear in

the vector model and R &,RO, R &, . . . appear in the quadrupolar model.

q =—
1 m+2

2m2

(m+ 2)(m+ 4)

m'(5m + 12)
(m + 2)"-(m. + 4)(m + 6)'

2m'(7m+ 24)

(m + 2) (m + 4)(m + 6)(m + 8)

m —1
R m+ 2'

1 m+2
m —1'

m —2

m+4 '

R
(m —4)(m'+ m —8)

(m + 2)(m + 4)(m + 6)'
(m —2)(m —5m —17m+ 24)

4 (m+ 2)(m+ 4)(m+ 6)(m+ 8)

m" —6m —66m + 78m~ + 798m —552m2 —2128m + 1920
5 (m+ 2)2(m+ 4)2(m+ 6)(m+ 8)(m+ 10)

(m —2)(m —10m6 —110m + 182m' + 2278m —712m~ —7844m + 5760)
6 (m + 2)-'(m + 4) (m + 6)(m + 8)(m + 10)(m + 12)

m —11m —251m —21m + 11487m"'+ 21483m —154717m —204874m" + 859592m + 229728m'- —1729152m+ 967680
7 (m+ 2)"'(m+ 4)&(m+ 6)2(m+ 8)(m+ 10)(m+ 12)(m+ 14)
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m N

F = —Tln Tr Q exp
2NT

PP.V

2

HPv N
PPV

l

(3.&)

Second, putting a" =v'J/NT g+pI" we apply the iden-

tity

exp
2

( Pv)2
exp — + pvap d "

1 22r — 2

(3.5)

m times to introduce an integral representation for the
free energy:

(")',, J 1/2

2
exp P'

NT 1g PPV+

= —Tln f g dP' exp
p, v=1 p, v=1

Tr &exp g P"
p, v=1

F= —Tln Tr P f dP" exp
oo

Hpv N

Q PPV

1

1/2
H"+ PPV

NT T

' N

(3.6)

The factor 1/ 22r is irrelevant in the potential F and has been dropped. Now we may utilize the method of steepest
d~~~~~t b~~~~~~ on)~ the m~~~~al ~~1~~ of the integrand contributes in the hmit Ã
given by its minimuin with respect to P":

m (/-pv)2F = —T min ln exp
p, v ——1

m

Tr, exp .
NT

HPv
+ PP.1'

1 (3.7)

Substituting y"'=P'i/T/M in (3.7) we obtain as the
normalized free energy per one particle

E Bf (y"')'= —J
N B(1/T) „,, I p, v=1

HPv Pv

F =min If (y"') I,NT yp.

where

J m (yPv)2f (y"")=-
T 2

(3.8a)

—ln Tr~ exp g (Jy"'+H""—)/t/~'

p, v=1 T

(3.8b)

At this moment, applying the minimal conditions
Bf/By ~=0 leads us to m necessary conditions for a
minimum in m space, namely,

a/3 ( ya/3 )

m

Tr, P, ~exp g (Jy""+H"")P",—'
p, v=1

m

Tr, exp g (Jy" +H" )P", "—
p, v —1

T

(3.9)

This equation indicates that y ~ is an ensemble average of
The set of extremum parameters, y"', thus are

identified as a tensor order parameter of this system.
Note that the right-hand side of (3.9) is just the usual
definition of the order parameter against the field H ~;

one can rederive (3.9) from a relation y ~= —Bf/BH ~.

Now it is easy to see that this tensor order parameter is
traceless because P",

' itself is traceless. Moreover,
di6'erentiating (3.8) with respect to 1/T, we find that the
internal energy E per one particle is given by

(3.10)

In the discussion below we restrict ourselves to the
case of the uniaxial quadrupoles and set all fields H"'
equal to zero. The order parameter y" in this case is
then identical to the usual quadrupolar order parameter
(1.6). Moreover we do not try to find all local minima of
f(y"") in m space, but we investigate all tensors y"'
with only nonzero diagonal elements. Let us assume

y ~=0 in the high-temperature side ( T & T, ) and

y ~=AS 5 5
6p

(3.11)

in the low-temperature side (T & T, ). The choice of this
order parameter b corresponds to an ordered state where
the director points to the first axis in spin space. From
(3.8) we obtain

f=D, for T)T,
Jh So=(m —1) +x —ln, F, ( —,';m/2;mx)

(3.12a)

JS()6
x =Kh=

mT
(3.13)

By expanding (3.12b) around 6 =0 we obtain the spinodal
point K, =(m +2)/2. When K =K, , disordered states

m —1 R
1

R
(2x) +', forT & T, ,

2 I 1
I+1

(3.12b)

where RI is the functions given in Table I and x is a new

parameter defined by
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become unstable with respect to infinitesimal perturba-
tions. The explicit derivation of (3.12) is relegated to Ap-
pendix A. On the low-temperature side we should im-
pose the extremum condition (3.8a) with respect to the
order parameter 6,

JSOA
=(m —I) —x

mT

,F, ( ——,';m/2;mx) —1 =0 . (3.14)2,F, ( —,'; m /2; mx )

Then to use (3.14) in (3.12) yields

F(x) m +1 m —1,F, (
—

—,';m/2;mx)
x+

XT 2 4,F, ( —,'; m /2; mx )

—ln, F, ( —,'; m /2; mx ), (3.15)

(3.16)

which is obviously derived from Eqs. (3.13) and (3.14). It
is interesting to note that the same function as in (3.16)
appears in the exact solution in one dimension except
that the argument differs by a factor b, [compare (2.7a)
with (3.16)]. Figure 3 shows the x dependence of the or-
der parameter b, given by (3.16). On the other hand,
from (3.10) one finds that the internal energy is related to
the order parameter 6 via

E m —1~2
NJS() 2m

(3.17)

i.e., the internal energy is simply proportional to the
square of the order parameter.

For m =2, the system undergoes a second-order phase

which is a function of only x defined by (3.13). The curve
F(x)/NT is shown for several values of m in Fig 2.
There is a phase transition at x =x, where F(x, ) =0.
The order parameter 6 is related to the variable x
through the equation

,F, (
—

—,';m /2;mx)

2x,F, ( —,'; m /2; mx )

transition because F(x) is always negative for all x) 0
and therefore x, =0. For general values of m, however,
the transition is first order as is expected. The transition
point x, (and IC, =ISO/mT, ) and the discontinuities of
the order parameter 5, and of the internal energy AE,
are listed in Table II for various values of m.

The investigation of the m ~ ~ limit in this infinite-
range system helps us to understand the present analysis
more distinctly, because all the relevant functions become
elementary. First, taking the limit m ~ ~ in (3.16) gives

l0 — forx( —'
m 2

1 1
1 — — +0 — for x ) —,

'

2x m

[rigorously same procedure as in (2.9)]. Substituting this
result for x & —,

' into (3.13) we get

2xx =
—,
' [E + &E (K —2) ] or E =

2x —1
(3.18)

F(x) m 1 1—x + —+ln(2x)+0
NT 2 2 m

(3.19)

and the transition point determined by the condition
F(x, )=0 is

x, =1.75643 (K, =2.4554), (3.20)

below which the low-temperature phase becomes meta-
stable. Thus we should have

with K =JS~/mT. Obviously the solution for the low-
temperature phase, (3.12b), does not exist for x ( I (i.e.,
@&2) because x becomes pure imaginary in this region.
The point at which the ordered state becomes unstable
with respect to infinitesimal perturbations has been
denoted by second spinodal' or K, 2, therefore this value
is E,„2

= 2 in the large-m limit. Equation (3.15) becomes

0. 1

1,0

F(x) 0
NT

m = 2

m = 3
m=5

~ """.m =10

0.8

0.6

0.2

—0. 1 0
0

FIG. 2. Free energy in the low-temperature phase, (3.15), as a
function of x =JAS&/mT for m=2, 3, 5, and 10. The transi-
tion point x, is determined as the crossing of this curve and the
x axis corresponding to the free energy in the high-temperature
phase.

FIG. 3. The order parameter 6 in the low-temperature side
(x )x, ) given by (3.16). Three curves are corresponding, re-
spectively, to m=2, 5, and 10. This 6 is constantly zero in the
high-temperature side (x (x, ) and abruptly jumps to finite 5,
at the transition point.
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TABLE II. The numerical values of the transition point x„K„the order-parameter jump A„and
the energy jump AE, of the infinite-range system for various m.

m=1
m —2
m=3
m=4
m=5
m=6
m —7
m=8
m=9
m=10
m=20
m=30
m =40
m=50
m =(x)

x, =0.00
x, =0.97
x, =1.31
x, =1.47
x, =1.56
x, =1.61
x, =1.63
x, =1.66
x, =1.68

x, =1.73
x, =-1.74
x, =1.74
x, =1.75
x, = 1.7564

f:0, —since "up"
K, =2.00
K, =2.27
K, =2.34
K, =2.40
K,. =2.42

K, =2.43
K,. =2.44
K, =2.44
K, =2.44
K,, =2.45

K,, =2.45

K,, =2.45

K, =2.45
K,, =2.4554

is equivalent to "down"
6, =0.00
6, =0.43
6, =0.56
b, =0.61
6, =0.64
5, =0.66
5, =0.67
6, =0.68
6, =0.69
6, =0.70
6, =0.71
6, =0.71
6, =0.71
6, =0.7153

hE, /NJS() =0.00
AE, /NJSO=0. 06
hE, /NJS() =0.12

hE, /NJS() =0.15
b,E, /NJSO=0. 17

hE, /NJS() =0.19
AE, /NJS =0.20
hE, /NJS() =0.21
b,E, /NJS() =0.21
AE, /NJS o

=0.23
AE, /NJSo =0.24
hE, /NJS() =0.25

AE, /NJS() =0.25
hE, /NJSO =0.2528

0, forx (x,
1 — for x &x,

2x

(3.21)

16,=1-
2x

=0.715 332 (3.22}

and the resulting K-5 curve is shown in Fig. 4 together
I

for thermal equilibrium. From (3.20) and (3.21) the
discontinuity in the order parameter at the transition
point is evaluated as

with the spinodal point E, = ao and the second spinodal
point K, 2=2 for the I~ ~ limit. In the same figure,
the K-6 curve for m =3 and a typical value for the criti-
cal order parameter 5,. of liquid crystals' are also shown
for comparison. From these curves, the temperature-
dependence of the internal energy E is readily obtained
via Eq. (3.17).

Before ending this section we make a comment on ex-
pansional expressions of the free energy. In (3.8) we
could expand the free energy with respect to the order
parameter up to a finite order. The result up to the
fourth order is given by

Jm(yPv)2=—XT 2

J4+
T4

J2 m 2

Tr, g z""P",'
'4

1
m m

1 1 8 1
Tr g z""P"' +—Tr

JM, v=1 p, v=1

J2 m

2T p, v, cz, f3—1

zu yw

zi

2 2 '

p, i, a, P, )', a=1

3

J4 m

p, v, a, P, y, e,p, a=1
z"'z z 'z (

—
—,', Tri[gi P& Pi'Pi ]+—'Tri[P&'Pi ]Tri[gi'P& ]) (3.23)

where we put z" =y"'+H"'/J. A somewhat more restricted form of the free energy expansion has been proposed
only from symmetry considerations by de Gennes and Lubensky and Priest, which might be applicable in the isotro-
pic (high-temperature) phase. For uniaxial quadrupoles the explicit coefficients are now obtained from (3.23) not only
in the isotropic phase but also in the anisotropic (low-temperature) phase, by using the relation

(m —2}!!(21i —1)!!(2lq —1)!! . (21k —1)!!
T i[SI'~ ] '[S'i '] ' . [SI '~

] "=S (3.24)

with L =l, +lz+ +I&, (21 —1}!!=(21—1)(2l —3)
X 3 X 1, and (21)!!=(21)(21—2) X X 2. The
derivation of this relation is given in Appendix B.
Evaluating the expansional coefficients in (3.23) by apply-
ing (3.24) we find following three facts to be exaggerated.
First, for m ~4, this free energy expansion up to the
fourth order fails because the coefficient at the fourth or-
der becomes negative for the ordinary choice of the order

parameter (3.10). An easier check of this fact is to utilize
the expansional form of (3.12b); the function —R,R

&
is

positive only for (&13—1)/2 (m (4. Second, if the
term proportional to J (the third order term) vanishes,
the transition into the ordered phase is of second order.
One may easily check that this term vanishes actually for
m=2. Third, we could alternatively consider the nondi-
agonal case of the order parameter, e.g. ,
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i.o,
~c

(liquid crystal) 0. 8—

0.6—

0. 4-

0 2—

KSP2

sp

( 2K ) Q V/ (2)fg )p/ (2)fg )

fg
(4.3)

= (2K)' y l/, /(Xl )p/(2) ),

we derive

draw all the other interaction lines by straight lines; see
Fig. 5(a), for example. Now writing

/

Tr (SfS)

/z/(2)fg ) =v/(2)fg )
—g &/ (&jg )p/ /(&"-)

=~~o(& /&/r2+& z~/3/) (3.25)

instead of (3.11). From an analogous computation we es-

timated the instability point K;„„against the nondiagonal
order described by (3.25). Because this K,„„is large com-
pared to the K, evaluated by using (3.11) we conclude
that such an order does not emerge in equilibrium.

IV. SERIES ANALYSIS

A. High-temperature series

The high-temperature series expansion for the m-

component quadrupolar model (1.4) can be developed
along the same line as that for the m-vector model (1.5)
which has been treated by Stanley and Kaplan, Stan-
ley, ' and Ohno, Okabe, and Morita. Consider the
internal energy or the (fg-bond) correlation function
defined by

FIG. 4. The K dependence of the order parameter 6 of the

infinite-range system. The straight and dotted lines indicate the

large-m limit and the corresponding exact expression is given by

(3.21) with (3.18). The broken line indicates the case of m=3.
A typical value for the critical order parameter, 6, , for a liquid

crystal (Ref. 19) is included (marked with an arrow) for compar-
ison.

8 +A"=5
fg f~

(4.4)

from (4.1), where the condition 2)f +2)"=2)f indicates
that this summation runs over all possible ways in
decomposing the graph 2)fg into two subgraphs 2)f and

It is, however, not necessary to include in Xlfg or
2)fg any unlinked graphs or any graphs involving at least
one articulation point. (If the graph splits into two
disconnected parts by cutting at one point, we call this
point the articulation point. ) That a/ of such a graph
disappears is indeed derived from (4.4) in the case of the
quadrupolar model as well as the vector model. It is a
matter of simple algebra to evaluate the spin traces
v/(2)fg ) and p/(2)") by means of the mathematical for-
mula (3.24). Then the weight function a/(2)fg) can be
evaluated order by order through (4.4) using the spin
trace functions and the n& for lower order graphs.

It is important to notice that the weight functions
a/(2)fg) of topologically distinct graphs are not always
independent. To see this we consider the expansion
coefficients of the free energy defined as

ln Tr[e ]= g (2K)'g A/(2))p/(2)) . (4.5)
2So I —

1 D

Then the weight function /I, /+, (2)) is related to a/(2)fg )

via the relation

[(S .S )2
—'///r]

G(f )
f

—'///T]
(4.1)

a/(2)f ) =lfgl. /+, (Xl) (theorem 1), (4.6)

Here the Hamiltonian A' and the spin trace Tr are
defined, respectively, in (1.4) and (2.1). Using the graphi-
cal expansion by drawing each interaction
&,, = —J,, (S, .S, )' with a straight line and expanding
(4.1) in a power series of 2K =2JSojmT, we formally
have

(a)

G(f g)= g (2K)' g a/(X)fg)p/(2)fg)
l=o Dfg

(4.2)

where a/(2)f ) denotes the weight function of one 1th or-
der graph 2)f, which stems from just the spin traces, and

p/(2)fg ) is the number of its realization on the assumed
lattice. The notation X)f denotes the graph which is
made from the (l +1)th order graph 2) by changing one
interaction line on fg bond into one ext-ernal line
(Sf.S ) appearing in the numerator of (4.1). It is con-
venient to draw this external line by a wavy line, while we

FIG. 5. Illustration of the two theorems (4.6) and (4.7).
Theorem l represents the relation between the free energy dia-

gram % and the susceptibility (or energy) diagram X)„which are

shown in (a). Theorem 2 represents the relation between two

free energy diagrams 2) and X' as in (b).
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where lf denotes the number of interaction lines on fg
bond of the graph 2). The relation between the graphs
Xlf and X) is the same as above; see Fig. 5(a) also. The
k's for many kinds of graphs are indeed not mutually in-
dependent. Let us consider the graph 2) which has 1, in-
teraction lines on ij-bond. If we move one of these in-
teraction lines onto ik-bond (k is the new point which
connected no interaction lines before) and newly add lk

interaction lines on kj-bond as is illustrated in Fig. 5(b),
then the weight of the corresponding graph 2)' is given by

0: I

2: I

5: 2

5:5

6:5

6 12

6:13

6:l5

PI+I +,(2)')=1;,qRI li(2)) (theorem 2),
kj

where

(4.7)

4: I

6: 7

6: l6

6:l7

1q=
m+2 (4.8) 4:2I 5: 8 6:I8

and Rk is the same function appearing in the coefficients
in the case of the one-dimensional lattice; explicit forms
of R's are listed in Table I. The proofs of theorems 1 and
2 are given in Appendix C.

The graphs appearing in the expansion of the internal
energy can be evaluated by using (4.4) or by using these
theorems. All the graphs needed in considering to the
sixth order in the square and cubic lattices are presented
in Fig. 6 and the corresponding weight functions
mai(2)fs)/R, SO and realization numbers p&(2)f ) are
listed in Table III. It is more labor saving to list up all
weight functions k's rather than a' s. The graphs appear-
ing in the free energy up to the seventh order are shown
in Fig. 7 together with the weight functions
m A&(2))/R, SO. The graphs appearing at the eighth or-
der are in Fig. 8. The explicit form of the spin-trace

4:4

5: 9

6: I 6: IO

6:19

6:20 I

5: I 6:2I 6: I I 6:2I

FIG. 6. The energy diagrams appearing up to the sixth order.
Each contribution is tabulated in Table III.

functions R; are already given in Table I and the other
functions W, are listed in Table IV. The series for the
internal energy F. up to order K can thus be evaluated
for general component number m. In the case of the sim-
ple cubic lattice, the result is given by

TABLE III. The weight function m+1(2)«)/R ISO and the realization number pI(X)) relevant to
the energy up to order I(: for the square (sq. ) and simple cubic (c.) lattices.

No.

0.1

21
3:1
32
4:1
4:2
4:3
4:4
5:1
5:2
5.3
54
5:5
5.6
5.7
5.8
5:9
6:1
62

Weight

Ro
Rl=l
Rq
R3
q
R4
R~q
R zq-'

2R~q
R,

4

R3q
R3q
3R3q
R2q2
R2q2

2R &q&

2R ~q~

R6
2R, q4

sq. C.

1

1

1

1

4
1

4

4
1

44
4
8
4
4
8

4
8
1

12

No.

6:3
6:4
65
6:6
6:7
6:8
69
6:10
6.11
6:12
6.13
614
6.15
6.16
6:17
6:18
6:19
6:20
6:21

Weight

2R q
2R, q
R, q

R, q4

R, q4

2R -'q

R,R,q'
RzR3q-'

R,R 3q-'

2R ~R3q
2R ~R3q
3R,R,q'

R4q-"

R4q
4R4q'

sq.

4
1

6
12
12
6
2
4
2
4
4
4
2
4
2
4
2
4
2

C.

24
6

44
88
88
44

4
8

4
8

8

8

4
8
4
8

4
8

4
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[Ro+R, (2K)+R2(ZK) +(R3+4q )(2K) +(R~+20R2q')(2K)
Nd JSo m

+ ( R 5 +44q +24R 3 q + 36R 2q )( 2K) + ( R 6 + 392R 2 q +28R 2q + 84R 2R 3 q +28R 4q )( 2K )

+(R7+552q +128R2q +496R3q +1456R2q +32R&q +96R2R4q +48R3q +96R2R3q

+8W~q )(2K) + . ] . (4.9)

The corresponding expansion for the free energy F up to
the same order is readily evaluated from (4.9) via an in-

tegral with respect to E:

sistent with the exact result in the large-m limit which
will be treated in Sec. V.

F=— E EdE,E o
(4.10) B. I.ow-temperature series

where we ignored an irrelevant integral constant. If one
drops all the terms involving q in this series, one has the
same series as (2.7b) which appears in the one-
dimensional case. Moreover, in the limit m~~, the
internal energy F. becomes constantly zero in high-
temperature region, because R;=O(1), W, =O(1), and

q =O(1/m) in the limit m~ ao. This behavior is con-

At the absolute zero temperature, every axis of the
molecules lines up in the same direction, say the mth
direction. Hence, at extremely low temperatures at d & 2,
deviations of the spins from this direction are so small
that one may expand the partition function with respect
to these deviations. Let us write the deviations as
II, =(II,', ll„. . . , II, ') for the transverse components
and 0.; for the longitudinal component. That is, we
rewrite the spin variable as

Ro Rs/6 Rs/7 ( 2R22q3 S, =(11,', ll', , . . . , II;-',S,+~, ), (4.11)

I/2 q5 R4q 2

R2/3 Oi "" R2q4 R2R3q

) q 2R2q 2R2q" R2R3q2

2R2q R 3q2

) R, q

R4/5

R 2q2

R22 q2

R3q

2R2q 4

R 2q3

R 2q3

2V/ q2

2R23q2

3R2R3q2

2R2R3q2

R2q2 2R22q2 2R2q 8// 4Rsq

2R2q2

) R,q

Rgq

W3 q2

2RPq~ ~ R2R4q

) RPq

3Rpq~ W4q

BR3q2 6R3q4

Q& w„
)~~~

"
R~Rpq (
W2q ( 2R22q3

R3/4 2R2q3

R~/8 ~~~R, q (l~ ll2R, "
~+2Rssq ~( 2Rssqs

~ZR, q ~(

~o-."(
2R2 q

2R,'q'

~W, Rsqs

~W q»

6R2Raq

2R2Q' 4R22q4 2R2 q f2R4Q"

iO "'"(ll
2R2q 2R 2Q4

R&2q4 2R 2q4

3R2Rgq

3R2Rpq3 R q2q 2

R 'Q4
2R2R~Q R 2Q2

R Q

2R 2q4

2R22 Q"

4R22q4

W) q

'" (I I"*'*'

R2R~Q 4R4q

R,Rsq* ~ 2Rs' q'

R,~Q~
~ 2R ~ q~

R2' q' 2W2q'

2R2R4q

2R2R4q

Vill 2""'

W~q 2+Rpq R2 R3Q

2W, R&q

3R22 Rqq2

3R~2Q2

///l aR,R,qs

Mllw"*

W7Q2

/~l wsq*

) R, q

R2R5q

l)~ w~

+W, q

~ w, s'

FIG. 7. The free energy diagrams up to the seventh order to-
gether with the weight function mA, I(S)/R lSO.

FIG. 8. The free energy diagrams at the eighth order togeth-
er with the weight function mk&(A)/8 ISo.
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TABLE IV. Independent spin-trace functions appearing additionally in the high-temperature series in the higher dimensions.

2(m —2)(m' g 4m —24)

(m+ 4)~

2m + 16m —54m~ —181m + 142m + i)2m —288
2—

2(m ~ 2)'(m+ 4)'(m+ 6)'

2(m —1)(m~ + 9m —37m —36m+ 144)
3—

(m + 2)(m / 4) (m + 6)

m(m+ 1)(m + 10m —59m —150m+ 144)
W =

4 (m+ 2)&(m+ 4)-'(m+ 6)&(m+ 8)

2m + 24m~ + 37m —481m —693m + 2644m —804m —15984m —1728m + 20736
W =

5 2(m+ 2)'(m+ 4)'(m+ 6)' )

2(m —2)(m5 + 11m~ —85m' + 40m~ + 504m —576)
6 (m+ 2)(m+ 4)~(m+ 6)(m+ 8)

(m —2)(2m5 + 33m —161ms + 42m~ + 720m —864)
7— (m+ 2)(m+ 4)'(m+ 6)' t

2m + 40m~ + 96m —1038m —1465m5 + 7820m + 1988m —36144m —5184m + 48384
8 (m+ 2) (m+4)~(m+ 6)~ 7

2m + 30m —173m8 —1728m + 216m + 17214m + 15964m —29904m —42784m~ —8832m+ 46080
W =

9 2(m + 2) (m + 4)s(m + 6) (m+ 8)(m + 10) )

(m —2)(m + 14m —113m —292m + 481ms + 812m + 1536m —2304)
10 (m + 2)~ (m + 4) ~(m + 6) ~(m + 8) ~

~;=QS —II, —S (4.12)

where So is the spin length, i.e., So = ~S; ~. The transverse
and longitudinal components are not mutually indepen-
dent but related to each other via a relation

(S, S, )'=S,'—S', [Il', +II,' —2II, II, ]
—(II;+II )(II; II )

+[II II +(II II ) j+ (4.13)

The square of the spin products is then expanded to give
Then the partition function corresponding to the system
Hamiltonian (1.4) is given by

quadrupole

(s, s, )' g gs,' —
~s, ~')ds,

i=1f exp
J

(ij &

(1 i j 1V)

N

f g fi(s,' —~s, ~')ds,

f gdlI, J W

, zz exp —$ (S, .S )
~i T

&ij

so
(4. 14)

gdlI, 1
2 1/2

l

So

where (S; S,. ) should be read as (4.13). Since a change of the interval of the II, integration from ( —1, 1) to ( —~, 00 )
affects only the correction of order exp( —1/T), the low-temperature expansion can be asymptotically performed with
the infinite integral. Then expanding around the quadratic (Gaussian) part we find
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Zq d p, =exp g So Zo(1, 1) 1+ g &II, &

{Ij) 2SO
(1«ij «N)

+-J
&ij)

(1 «i j «N)

& II,'II,'+(11, 11, )' —(II,'+ II,')(II, .II, ) &+ .

J=exp
T

S', Z, (1, 1) 1+, y &11,'11,'&
&ij) 2SO

(1«ij +N)

+ (m —1)J
T [m & 11,'II,' & & 11,'II,' &+(m+2) & 11,'11,' &'

&ij &

(1 ij ~N

—2( m + 1)& II,' Il,' & & II,'11 '
& ]+ (4.15)

Here we introduced notations

Zo(a, P)= f P dII;exp
JSo
T [a(II, +II ) —2P(II, II, )]

&ii &

(1~ij ~N)

(4.16)

N JSOf g dII; exp
Zo * T

&ij )
(1«i j «N)

[(II;+II )
—2(II; II )) (4.17)

and used %ick s theorem for the Gaussian variables. Let us assume the d-dimensional hypercubic lattice. By means of
the Fourier decomposition

II„= —g IIqe'q ",
&N

the related functions are evaluated as

(4.18)

N
I'( /2)

m/2

1TT
[2JSO t ad —P g, , cosq; ] ]

(m —1)/2

(4.19)

and

& 11,'11,'& =— T a = T
inZO(a, 1)

~

1

2Nd (m —1)SO &a 4NJSO q
d —g, , cosq;

(4.20)

& II,'II,' &
=— lnZO(1, p)

2Nd(m —1)SO r)P

, cosq,

4NJSO q d —g,. , cosq;
=

& II,'II,'&- T
4dJS

(4.21)

Here and for later use in Sec. V, it is convenient to introduce two integrals,

14d(g)= —g ln d —g cosq;+(
N

(4.22a)

and

'Pd(g) =—g1 1

d —g", , cosq, +g
(4.22b)

where the limit (~0 is taken later. Especially, for a simple cubic lattice (d=3), the related integral is evaluated numeri-
cally, in the limit N~ ao and (~0, by use of an integral representation with the exponential and the modified Bessel
function' ' to give

@3(0)=0.9803, %3(0)=0.5044 .

Combining (4.15) and (4.19)—(4.22a) we finally find

(4.22c)
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X dJS()

T
1

1(m j2)
ln

dJSO 2JS()

(m —1)/2 (m —1)T4„(0) (m 1)T+, ——,&n,'nI)
2dJS', 2dJS,'

[m & n,' ll,' ) & n,' ll,' ) + ( m +2 ) & n,' ll,' ) ' —2( m + 1 ) & n,' 11,' ) & rl,' n,' ) ]+So
& m —1)/2

m I (m/2) m (m 1)+a(0) (m —1)(m +2)
dK v'~ 2K 2m dK

(4.23)

for the free energy and

E m —1 (m —1)(m +2)T
X dJSO 16m d K

(4.24)

for the internal energy. Here we put E =JSO/mT. It
should be emphasized that these expansions are valid
only for d) 2 and do not reproduce the low-temperature
series of the exact result at d= l. However, it is interest-
ing to note that, for m=3 and d=2, (4.24) agrees with
the result using a normalization group. '

%e show in Fig. 9 the curves of free and internal ener-
gies obtained by the low-temperature series as well as the
high-temperature series in three dimensions. A phase
transition occurs at the intersection of high- and low-
temperature curves of the free energy. The loop sur-
rounded by high- and low-temperature curves of the
internal energy may be regarded as a hysteresis loop, be-
cause elongations of these two curves correspond to
metastable phases. For m =2, the high-temperature
curve touches the low-temperature curve tangentially in
the free energy and the former takes over the latter
without jump of slope nearly at the right intersection of
the two internal energies. Thus we have a continuous
phase transition without hysteresis for m=2. On the
other hand, for larger values of m, the intersection in the
free energies lies at a point, where the internal energy
shows a jump inside the hysteresis loop. Therefore we ex-
pect a first-order phase transition generally for m) 2.
From Fig. 9 we may deduce following results. The tran-
sition temperature T, —1/K, decreases monotonically
with increasing m. The discontinuity AE, in the internal
energy first increases with m because the transition point
shifts from the right intersection to the bulge, in the hys-
teresis energy loop; after exceeding a maximum at very
large value of m, say m', AF., becomes decreasing to-
ward some finite value at m = ~ because the transition
point shifts in the direction of the left intersection of the
hysteresis loop. It is possible to deduce from this analysis
the transition point K, and the amount of the discon-
tinuity hE, in the internal energy, although an error of
estimates would depend on the convergency of the
present series. The direct use of the truncated series (Fig.
9), without using any Borel- or Pade-type resummations,
offers a crude estimate for K, and AE, and the resulting
values are tabulated in Table V, in which the exact result
in the m ~ ~ limit derived in the next section is listed to-
gether.

V. EXACT SOLUTION IN THE m ~ 00 LIMIT

Recently, Kunz and Zumbach' solved the m ~ ~ lim-

it of the 1attice RP ' model exactly, in the context of
particle physics. In this section we reanalyze this prob-
lem in terms of the quadrupolar model (1.4) by explicitly
taking account of the effect of symmetry breaking fields

(1.5) and (1.7). We found that the m~~ quadrupolar
spin model is characterized by two kinds of order param-
eters. One is the standard quadrupolar order parameter

g"'~
& S)"S ), as m ~ ~ . (5.1)

~,=—~&S, S, )~,=1 (5.2)

where i and j denote two sites next to each other. One
can immediately see that b z is trivially zero for any finite
m, since, under a local transformation S, ~—S;, the
Hamiltonian (1.4) is invariant while &S; S, ) changes
sign. In the m ~ ~ limit, however, this is no longer the
case. The above transformation for a single spin now in-
volves infinite degrees offreedom and virtually concerns a
global symmetry. Therefore, in the m ~ ~ limit, and in
this limit only, 62 could be finite as a result of a symme-
try breaking. In an ordered state with finite Az, the mu-
tual direction of neighboring spins tends to be fixed as ei-
ther parallel &S, SJ ) )0, or antiparallel &S; Si) (0.
Note that such bond orderings can generally occur in a
spatially random manner, as illustrated in Fig. 10(a).

TABLE V. The estimates of the transition point
K, =JSo/mI;. and the energy jump hE, from the high- and
low-temperature series expansions for the simple cubic lattice.

m=3
m=5
m=10
m =50
m=~

K, =0.51
E, =0.45
K, =0.42
E, =0.38
K, =0.3674

AE, /3NJS() =0.18
AE, /3NJSO =0.29
AE, /3NJS() =0.38
AE, /3NJSO =0.4
AE /3NJS() =0.425
6, =0.472

The original definition of b,""is given in (1.6). ln th«»-
lowing we seek it in the form b,"'=6(1—5„„).By diago-
nalization, one may see that this choice of the order pa-
rameter is equivalent to our previous choice (3.11). The
other order parameter, which we call the bond order pa-
rameter 52, is peculiar to the m ~~ limit and has no
counterpart in the case of finite m. It is defined at each
bond via
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FIG. 10. Examples of spin configuratiorations realized in ordered
s atiall random case and (b) astates, corresponding to (a) a spa

'
y a

uniform case. e. Th signs on each bond, +, represent the sign o
(s, s, ).

Now we sketch our solution. y
'

n. B adding the two kinds
of symmetry-breaking terms discusse in Sec. I [see
and (1.7)], the Hamiltonian is given by

—-05
E

3NJSp4

J
m (, )

(1 ~i,j ~ N)

N m

(S, S )
——g g Sf'S;

/ —1 p, v —1

05 IO l5
—10

20

(Ij )
(1~i,g

& V)

~, ~ S;.S (5.3)

0 5

F 0
3NJS,'

—
I 0

0 5

05 IO

(c) m =5

I

I 5

0 5

—0 E
3NJSp--0 5

—
I 0

I

20

les to be ~S ~

=&m and in-where we rescaled spm varia es
d 1=So /m. Equation (5.3) reduces to 1.4 in

the limit H, G~ . n0 I (5.3) an Ising-like variable define
at each site ~; ta es e vaa; k th values +1 and specifies the way

min the bond-order param-of symmetry breaking concerning
S S ). In fact, the variable r; can be eliminate

from the Harniltonian if one ma es a r
S.~~,S, This procedure corresponds to choosing a uni-

t te as a particular ordered state,form ferromagnetic s a e
as given in ig.F' 10(b) among infinitely many or ere
states wit

'
h (S S )%0. Finally we work with

0—F
3N JSp -0 5—

0 0 5
Pl ( )

(1~ &, g ~N)

N m

(S;S, )
——g gS";

m

05
}

10
I

I 5

—-0 5

—
I 0

20

E
3NJSp

&ig )
(1 I, g ~.V)

S, S (5.4)

0 5

K =J/T, h =H/T, g =6/T . (5.5)

F 0
3NJSp

—
I 0

05 I 0
I

I 5

0 5

—0
3N JSp—-05

—
I 0

20

In taking the m ~ ~ limit we regard E as a quantity of
so that the Hamiltonian is of order m. The m

s are deter-de endences of the symmetry-breaking terms aredepen ences o
n t ibutions to the Hamiltonianmined so that t e contri u ion

ma ct h that of the interaction term.
bThe partition function is defined y

Z= I " g dS;6(m —IS;I ) exp
pc I—=1

FIG. 9. The free energy F/3XJSO andand the internal energy
E/3XJSO as a function of K =JSO/mmT derived by the high-

ns for sim le cubic latticeand low-temperature series expansions
'

p
(d=3); (a) for m=2, (b) for m=, c=3 (c) for m=5, (d) for m=10,

hi h-and (e) for m ==50. The dotted lines indicate the hig-
d the solid lines indicate the low-temperature expansion an e

The hase transition is expected at K,temperature expansion. e p ase
indicated by a vertical straight line.

= exp( —
mNf ), (5.6)

where f is the free energy per p'er s in and per component
'ded b the temperature. By apply g1 in the Hu ar-vl e

3.5 to the K and h terms inStratonovich transformation 3. o
f(5.4), and utilizing the standard integra pe ral re resentation o

the delta function we get
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z=~ f'"
i =1

N lV (71'. }f "
pdri; 'exp m

(jk) i =1
(1~j,k ~N)

2

X N—fo
(1~j, k ~N)

(5.7)

(5.8)

(g, +g)SS + g g,'S; —g 71,S, .

where 3 is a numerical constant while fo is defined by

N

exp( —Nfo)= f g dS; exp( —%0),
00

Bf 1 7 df
4~ 2

Qg

On the other hand, normalized internal energy e is

F. 1 Bf
m+dJ d BK 4+2

(5.15)

(5.16)

(ij )
(1~ij N)

(5.9)

IJ

2I(

I

Il

2h

B(Nfo)

ag, ,
B(Nfo)

an,'

(5.10}

In solving (5.10) we restrict ourselves to the spatially uni-
form solutions g,'=g', g; =g, and 7)j,'=71' for all i and

(ij ). Under this restriction, fo is easily calculated by
means of the Fourier decomposition
S„=(1/&N ) g S exp(iq n), to give

1f0= g ln g' —(g+g) g cosq;
q i=1

(7}')'
4[4' —d (0+g}]

(5.11)

It is convenient to introduce new variables ( and 71 as

g' = ( g+ d )(g+ g ), 71' = h 71 . (5.12)

In terms of these variables the saddle-point equations
(5.10) are written into the form

2(g+g) =%7„(g)+—,'71'(g+g),

—g(g+g) =2(g'+d)(g+g} —1 —
—,'(71 (g+g),d

1[((g+g) h] =0 . —

Normalized free energy f is given by

(5.13a)

(5.13b)

(5.13c)

f = z@d(g)+ 2ln(g+g) —(g+d)(g+g)+ g
—

—,'ln7r .d 2

(5.14)

In these equations, 4„(g) and 4d(g)=4'd(g) are the
same functions defined in (4.22). Then the two order pa-
rameters 5 and A2 are given by

In the m ~ ~ limit one can evaluate (5.7) by the method
of steepest descent. The saddle-point equations are

B(Nfo)1=

Equations (5.15) and (5.16) form a set of the equation of
states in the large-m limit. Here the parameters g and 7}

are determined as functions of K, h, and g via equations
(5.13a)—(5.13c).

In order to study the phase-transition behavior of the
model we take the limit of vanishing symmetry-breaking
fields h~0 and g~0. In this case, the coupled equa-
tions (5.13) have the following three types of solutions:
(A) g= oo {g'=—,'), (=7)=0, which means b, =6&=0 and

corresponds to the paramagnetic state; (B) /+0, (%0,
and g=O, which means 6=0 and 62&0. We call this

state the ordered state I: It has a bond long-range order
but has no quadrupolar long-range order; (C) (=0, (%0,
and 71@0, which means 6%0 and hz%0. We call this

state the ordered state II, which corresponds to the con-
ventional ordered state with both quadrupolar and bond
long-range orders. This last solution (II) exists only for
d & 2. Since Kunz and Zumbach' did not deal with the
bond order explicitly, here we reanalyze the overall na-

ture of the phase transitions by considering A2 as well as

4 [4d '(2j)+d](2$) —1

K d (2g)2

=2[1+—,'(d —
—,
' )(2() ]+O(g ), (5.17a)

where %d
' denotes the inverse function of +d, since

d(d+ —,') d (d+ —', )
+

d(d'+3d + —,
-'d ——„')+—

5

+d(()
1

d (d'+5d + —",d ——", ) +0 — (5.17b)
g6 g7

At high temperatures the paramagnetic solution (P) is
stable, for which the internal energy is always zero, e=O.
This conclusion is rather transparent from the nature of
the high-temperature expansion developed in Sec. IV A.
That is, in the high temperature -series, all the terms di

minish as l jm or more rapidly, in the m ~ oo limit As.
far as the high-temperature side (T ) T, ) is concerned,
therefore, e becomes constantly zero in the m ~ ~ limit.
On decreasing temperature. The solution P becomes un-

stable against the solution I. This P-I instability is de-
scribed by the equation
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and

%d '(2g) = 1 —d (2g)+ —(2g)
2g 2

dered phase II (b,@0, Az&0), with discontinuities both in
6 and b z. The internal energy and the two order param-
eters in the low-temperature phase are calculated to be

+—1 —— (2g) +O(g )
4 2

(5.17c)
1/2

1 1 1E= 1+ 1—
4dK 2 dE (5.20a)

From (5.17a) one can see that the I' Iins-tability occurs at
E,=—,

' and that the associated phase transition is con-
tinuous for d ~

—,
' but should be first order for d & —,

' be-

cause it becomes impossible to assume (=+0 at
E =K, +0. At lower temperatures and for d&2, the
solution I becomes unstable against the solution II, for
which,

1 1a, =—1+
2 dK

1/2

1b =1——'d+ (0) 1 — 1—
Y d dK

1 /2

(5.20b)

(5.20c)

1/2
1(=E 1+ 1—

dK

g=2+1 —
—,'d+d(0)[1 —(1—1/dE)' ] .

(5.18a)

(5.18b)

which are certainly consistent with the result of our low-
temperature series up to the second order (see Sec. IV B)
if we take the m ~ ~ limit in the series. The transition
point K, is determined by the equation

When more than one solution are possible at a given tern-
perature, that giving the lowest free energy must be
chosen. The resulting phase transition behavior has
turned out to be rather rich, depending on the spatial
dimensionality sensitively.

(i) 1&—,'. There is a single continuous transition at

E, =
—,
' between a paramagnetic phase (b, =hz=0) and an

ordered phase I (b, =O, b,z@0). The exponents take the
classical values a=0 and Pz= —,

' for d & —,', where the ex-

ponent Pz pertains to b, z. Note that this classical transi-
tion persists even for d=0 (two isolated spins). At d= 1,
in particular, the internal energy and the bond-order pa-
rameter at K )K, are calculated to be

4d (0)+ In ~ 2E, 1+ 1— 1

dE,

1/2

+ ——dK, 1+ 1—1 1
C dK,

1/2

=0 . (5.21)

K, =0.3674 (5.22)

At d=3, Eq. (5.21) is solved numerically by use of Eq.
(4.22c), to yield

1e= — 1—
2K

(5.19a)
while discontinuities in the internal energy and the two
order parameters are estimated to be

1— 1

2K

1/2

(5.19b)

The result (5.19a) is consistent with the one-dimensional
exact solution (2.9). At d =—'„ the transition becomes tri-
critical with the classical tricritical exponents a= —,

' and

2 4'
(ii) —,

' (d &2, including d=2. Now the transition be-

tween the paramagnetic phase and the ordered phase I is
of first order with a discontinuity in A2. The quadrupolar
order parameter 6 is still zero at any temperature.

(iii) 2 &d (d*, with 1*& 3. In this case, two distinct
transitions take place, as was pointed out by Kunz and
Zumbach. ' The upper transition between the paramag-
netic phase and the ordered phase I is of first order, while
the lower transition between ordered phases I and II is
continuous with the exponents P= 1 and a=O. The oc-
currence of such successive phase transitions in inter-
mediate dimensions is analogous to the ones found for the
transverse-spin-density-wave transition in the m ~ ~
limit.

(iv) 1 & d*, including 1=3. There is a single first-order
transition between the paramagnetic phase and the or-

Ae, =0.425, 6, =0.472, A2, =0.652 . (5.23)

I 0

05-
c —0 472

62c- 0 652

0-—
0

I

Kc 05
Q3674

I0 I

15 20

FIG. 11. The E dependence of the order parameters 5 and
62 of the m QO model in three dimensions. The correspond-
ing exact expressions are given by (5.20b) and (5.20c), with
K, =0.3674, 5, =0.472, and 62, -—0.652.

The estimate of Ae, seems to be consistent with the esti-
mate by Kunz and Zumbach, ' 3he, =1.3. The K depen-
dence of the two order parameters 5 and Az, are
displayed in Fig. 11.
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VI. SUMMARY AND DISCUSSIONS

First we summarize the main result of this paper. We
presented several systematic analyses of the quadrupolar
system with general values of m and found that, for d) 2,
the orientational phase transition of the general m-

component quadrupolar system is first order except for
m=2.

The model with an infinite-ranged interaction was
solved exactly for general values of m and resulted in the
revised version of the usual mean-field theory. Especial-
ly, we found that the (Landau-type) free-energy expan-
sion up to the fourth order fails down for m & 4 because
the coeScient in the fourth-order term becomes negative
for such m. This fact may affect some previous results in-

cluding these free energy expansions. ' The present
analysis which does not use the free energy expansion is a
reliable one as a mean-field theory for arbitrary m. The
exact result for the transition point E, =JS~ jmT, and
the discontinuities in the order parameter 5, and in the
internal energy AE, of the infinite-range system are tabu-
lated in Table II as a function of m; the transition tem-
perature T, decreases monotonically with increasing m,
while the discontinuities b, and bE, increase monotoni-
cally.

It is now possible to compare the quadrupolar model
with the liquid crystal quantitatively. The liquid crystal
has been modeled by an ensemble of hard rods which
translate and rotate freely in space. At high density the
rods undergo a first-order phase transition into the
nematic phase, in which the rods are nearly parallel. At
the transition the order parameter 6 is 6, =0.85 in an
infinite-dimensional liquid crystal. ' This is somewhat
larger than the typical b, , in a quadrupolar model (see

Fig. 4). Therefrom follows that the ordered phase of the
quadrupolar model allows more fluctuations and thus is
more stable than that of the liquid crystal.

On the other hand, for a short-range system with just
the nearest-neighbor interaction of equal strength, we
presented an exact solution in one dimension and another
exact solution in the m ~ ~ limit. We also presented a
high-temperature series up to the seventh order and a
low-temperature series up to the second order for general
values of m. For a simple cubic lattice, the resulting free
and internal energies from the expansions were shown in
Fig. 9 for several values of m; m =2, 3, 5, 10, and 50. The
value of the transition point K, =JS~ Im T, and the
discontinuity in the internal energy AE, were tabulated
in Table V. The transition point E, decreases monotoni-
cally with increasing m, while the discontinuity AE, first
increases with increasing m. We may expect similar be-
havior also in the jump of the order parameter b, . How
about the case of quite large values of m? Looking at the
sequence of figures from small m to large m in Fig. 9, one
may anticipate that, after exceeding some quite large
value m =m*, which locates at the bulge in the hys-
teresis loop, bE, becomes decreasing toward some small-
er value at m = ~, and that the large-m limit of this
short-range system also undergoes a first-order phase
transition. This expectation is certainly consistent with
the exact result in the m ~ oo limit (see Sec. V and the

discussion below).
Particular attention was paid for the large-m limit of a

short-range case. [For the same limit of an infinite-range
case, see discussion from (3.18) to (3.22).] First of all, we
explicitly presented the equation of state in this limit; see
(5.13)—(5.15). Second we investigated the nature of possi-
ble phase transitions. As was discussed in Secs. I and V,
there are two order parameters in this limit: one is the
usual quadrupolar order parameter b and the other is the
bond order parameter b, ~. The paramagnetic (P) solution
with 6=6,=0 is stable at high temperatures. It should
be noted that the internal energy is always zero in this
phase. This property of vanishing energy turned out to
be rather transparent from the point of view of the high-
temperature expansion (see the last sentence of Sec. IV A.

also) if one takes the large-m limit. On decreasing tem-
perature, the P phase becomes unstable against the phase
with h z+0. Such an instability is also a peculiarity in the
large-m limit. For d )d* with 2(d'&3, there is a sin-
gle first-order transition between the paramagnetic phase
and the ordered phase which is characterized by b,@0
and b, &%0, with discontinuities both in 6 and bz. The
values of E, and bE, in three dimensions are also tabu-
lated in Table V. For 2&d &d', this single transition
splits into two successive transitions. The upper transi-
tion between the P phase and the ordered phase I charac-
terized by b, =0 and b, zAO is of first order, while the
lower transition between the phase I and the phase II
which is characterized by b,&0 and b zAO is continuous
with the exponents /3=1 and a=0. On the other hand,
for d & 2, no orientational order appears at any finite tem-
peratures. In this case, there remains the P-I transition
associated with the order parameter b z. This phase tran-
sition is continuous for d ~

—,
' and of first order for d & —,'.

On the other hand, what happens at d=2 for fi'nite m
is still an interesting issue. A finite-m model is character-
ized by vanishing order parameters 6=h~ =0 while it
can sustain vortex and might exhibit a topological phase
transition. In this connection it should be remarked that
the existence of a vortex and the possible occurrence of a
phase transition in the m =3 quadrupolar spin model had
been suggested by Solomon. " Similar types of vortices
were also found in the m =3 Heisenberg antiferromagnet
on the triangular lattice by Kawamura and Miyashita,
who also studied by Monte Carlo simulations the nature
of the topological phase transition driven by the vortex
dissociation. It has been found that the singularity at the
transition is rather weak, clearly not first order. They
also argued that the two-point spin correlation function
decays exponentially even in the low-temperature phase,
and characterized the transition by the changeover ob-
served in the behavior of the "Wilson loop" (vorticity
function) between the perimeter-law-like and area-law-
like behaviors. In view of similarities between the present
quadrupolar spin model and the triangular-lattice Heisen-
berg antiferromagnetic as to their defect structures, fur-
ther study is required to clarify the nature of a possible
topological phase transition in a quadrupolar model with
finite m.

Before ending this paper we make a short comment on
future problems. Although we restricted ourselves here
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to the simplest case of the quadrupolar systems, the
present analysis may perhaps be applicable to more com-
plicated systems such as quadrupolar glasses, annealed
magnets, and systems showing the chiral order. In the
forthcoming paper we present an application of the
high-temperature series expansion and the infinite-range
treatment to the case of quadrupolar glasses with general
values of m. A higher-order expansion in terms of 1/m
and a study of the e6'ect of surfaces ' may provide chal-
lenging problems also.
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APPENDIX A

—ln Tr, exp —b,S0
J 2

T Pl
(A 1)

By using the fact that P~& is traceless, the spin trace in-
side the logarithm in (Al) is evaluated as

In this appendix we give the derivation of (3.12). Sub-
stituting (3.11) into (3.8) with H"'=0 we first obtain

(m —1) Jb So
m 2T

Tr&exp

2 2Jhso (1) (1) So
Si S,T m

=Tr&exp
JASp

cos 0 ——
m

JAS
sin 0 d04

' f sin eexp
JASp p

=exp (m —1)
77l T sin Od6

0

JAS()
=exp (m —1) iF&((m —1)/2, m/2; —JbSO/T)

=exp
JhS()

|Fi(—,', m/2; Jb,SD/T) .
mT

(A2)

&F, (a, b;x) =e',F, (b —a, b; —x) . (A3)

In deriving (A2) we used the integral formula (3.383.1) in
Ref. 17 and the self-relation of the confluent hyper-
geometric function

APPENDIX B

We derive the mathematical formula (3.24) in this ap-
pendix. We assume the first direction as the z axis and
use the polar coordinate in the m-dimensional hyper-
sphere. Putting

S',"=Socos0, , S [
=SpsinO, cos492,

Thus combining (Al) and (A2) we finally obtain (3.12b).
The result (3.12a) for the high-temperature phase is then
derived from (3.12b) by setting b, =0.

~ ~ ~

Si =Sossn49i ' ' ' sinHk —&c 19k
(k)

we have

(Bl)

( & ) 1 (2) 212 (k) 21k 2L 211 . 2(12+13+ + jk ) 21 . 2(1 + +1 )Tri[SI '] '[SI '] ' [S',"'] "=So dn cos '8, sin ' ' ' 0, cos '82sin ' " g2X

21/,, 1
. 21k 21I,Xcos e„,sin e„,cos 9„ fdn' (B2)

fdn.

w here L =I, +l2+ +Ik and fdn denotes the integration over the solid angle on the m-dimensional hypersphere.
It is convenient to replace (B2) by

2/l, 2(/2+/3 + . +1~ ) 212 . 2(l3+ . + /~ )dQ cos '0& sin ' ' '
L9, dA, cos '02sin ' '

02
S2L

fdn.

f l —
1

' / 21kdn k+2eos ok ] sin ok ] dn k+] cos Ok
X

dQ f dnm —k+1
(B3)
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Using dQ(= [2'' '/I [(I —1)/2]Isin' 0d0 and the in-

tegral formula (3.621.5) in Ref. 17, i.e.,

d 0 ~cos0~" ' sin' '0=B (p/2, v/2),
0

we have

[g())] )[g(2)] 2. . . [g(k)] )

r(~ /2)r( ,' + I-, )r( ,'+ I-, ) r(-,'+I,. )
g2L

n."~ I (m/2+L)
(B5)

where 8(a,p) and r(a) denote the p and y functions, '

respectively. Then, rewriting (B5) with the double fac-
torial (21 ——1)!!we obtain (3.24).

APPENDIX C

This appendix is devoted to prove the two theorems in
Sec. IV A. In order to distinguish different bonds we in-
troduce the site-dependent coupling J," as in (1.3) and use
the notation K, =J, So /m T and &, = —

J& (S, S ) .
Theorem 1. The expansion coefficient for the free ener-

gy corresponding to the diagram 2) which has If interac-
tion lines on fg-bond is written as

A. ) + ) (2) ) =
2S40

m l12! Ifg. '

12 g fg

(3(2K, ) B(2Kf )
ln[Tre ]

Then carrying out one differential with respect to 2K' first we have

1 1
)+)

I I ( (I 1)

12

a(2K„)
a

B(2Kfg )

fr[(S S ) e ~
]f

(C2)

where a((Sf~ ) is the energy coefficient for the diagram 2)& which has one external line and If —1 interaction lines on
fg-bond.

Theorem 2. The expansion coefficient for the free energy corresponding to the diagram Xl which has 1, lk, and
l, —1 interaction lines, respectively, on ik-bond, kj-bond, and ij-bond, is written as

~(+(, +)(&')=
IJ

2S40

m I ! I !(I —1)!12 kj'
j&

12

B(2K)2)
cl

B(2K;k )

kJ

B(2K„,) (3(2K,. )
ln[Tre ~

]
IJ, I=0

(C3)

First evaluating one differentiation with respect to 2K;k we have

1
~)+) +)(&')=

l.y I ( I )( I —1 )'12' kj ij ()(2K„) B(2Kk, )

a
()(2K, ) ,

'J
I

=-0
IJ

(C4)

In evaluating all the spin traces we may fix the direction of one of the spins, because of the rotational symmetry in spin
space. If we fix the spin S to the o.th direction, then we may perform the spin trace at point k independently as
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'/ (nl ) (n2) —Hk /T
j Tr„(S„'S„'e '

)
/

kg
IJ, I=0

1

nl, a n2, a Ikj

a
B(2Kj,.j )

/ (S(aIS(aj j j )
—'A'. /T

k k k

-&k /T
Tre

I J I
=0

+5„„(1—5„)(1—5„) 1 1

kj™1
p (~a)

8
B(2Kkj ) Tre

' Tr. (S&~S„'~e "'
)

—'h' /T
kJ

I J„I=o

5 5n i, a np, a

„(1—5„)(1—5„)
m —1

1

IkJ 0

a

B(2Kj, ) Tre

[S(a)S(a)e j J ]
/Tlg

IJ, t=o

5„„(1—5„)(1—5„)
m —1 Ikj' /3

a

B(2Kj„)

Tr (S'~'S'~"e " )

—
/PJ /T

Tre IJ, I=O

6,

m —1 "1' "z' m —1 tk !
3

B(2Kk, )

—fS /T
'&j Tr (S' 'S'. 'e "

)k k k
—6'k /T

Tre

5„„(1—5„)(1—5„)
m 1

a

B(2Kj,, )

—Ak //'jj Trj,. (S'„.e " )
—'l'I'k /T

Tre

nl, a n&, a
!'J ' B(2Kj, ) Tre

'I,j Tr (S' 'S' 'e 'j
)

/T
k / !.

/rlg
I J, (

==-0

=qR/ SO ~n a~n a
n, , n,

(C5)

where we utilized Sj,. =S„=constant, q = I/(m +2), and (2.5b) of the high-temperature series of the energy in the one-
dimensional system. Thus inserting (C5) into (C4) we have

qR
I

I+I +I t ). . . (t 1)t. . .

12
~ ~ ~

B(2K,2)

a
B(2K„)

Tr[{s .S )2e
—jl' jl]S2 Tr(S2e

—'jj jr)'
—'lf/T m T

—'&,j T IJ, I=O

=I„qR( l((.X)),
/g

B(2K,q )

a
B(2K, ) IJ, I=o

(C6)

where 2) denotes the diagram which has no interaction lines on ik-bond and kj-bond and l, interaction lines on ij-bond.
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