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Transport phenomena near the Mott transition
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We consider the transport properties of a strongly (antiferromagnetically) correlated electron sys-
tem in the temperature regime where the Fermi-liquid coherence ceases to exist. We find that the
resistivity is linear in temperature, the thermal conductivity is almost temperature independent
obeying approximately the Wiedemann-Franz law, while the Hall coefficient acquires a temperature
dependence. The sign of the thermopower and Hall coefficient are hole-like. We calculate the re-
sidual resistivity caused by a random potential using the slave-boson technique. The disorder
changes the slope of the temperature-dependent resistivity, but the Fermi surface remains relatively
sharp.

I. INTRODUCTION

subject to the single occupancy constraint c, c, «1.
This inequality constraint can be converted into a holo-
nomic constraint

f,+f, +b,+b, =l (2)

by introducing a Bose field b, which keeps track of the
empty sites, and a Fermi field f, , which carries the spin
quantum number,

+ —f +b

The description of the nature of the ground state, the
elementary excitations, and the low-temperature thermo-
dynamics of this model is a long-standing problem going
back as far as Pomeranchuk' and Landau, who discussed
the thermal transport in the insulating limit of (1) in
terms of fermionic excitations.

It is becoming increasingly clear that at half-filling the
model is insulating and exhibits some form of magnetic
long-range order. Very far away from half-filling the
low-energy physics is described by Fermi-liquid theory.
The transition between these two regimes is up to now an
unsolved problem. In this paper we would like to study
the transport properties of a phase, in which the Fermi-
liquid coherence is lost above some characteristic temper-
ature, T„h, which is much lower than the spin correla-
tion energy J, which locks the spins into singlets. We

The thermodynamic and transport properties of
strongly correlated systems have received renewed in-
terest in connection with the anomalous physical proper-
ties of the transition metal oxides. The t-J model is one
of the simplest Hamiltonians used to describe these sys-
tems. It is defined by the Hamiltonian:

H = g (
—t,Ic,+c~ +J,JS;Sj)

cannot prove rigorously that this situation occurs in some
region of parameter space of (1). However, assuming that
this situation is realized, it is possible to derive an
effective Lagrangian describing the low-energy physics of
this phase, and one can study in detail the thermodynam-
ics and the transport properties. This study is the main
goal of this paper.

The main ideas of the derivation of the effective La-
grangian were introduced in the resonating valence bond
theory. ' For earlier references to the study of transport
using this technique see Refs. 4—6. In this approach one
introduces auxiliary fields which describe the fluctuations
of the bond variables 5, =c,+c to decouple the exchange
term in (1). If the amplitude fiuctuations of these fields
around a value 5,- =6 uniform in space is small, the
effective Hamiltonian which describes the low-energy
physics of the problem is given by

2

f V' i A +—a
2mI ch'

1
b (tI ia) b+A, (b—+b+f+f —1), (4)

where a is the continuum limit of the phase of the bond
variable b, =b,exp(ia, ). A is the external electromag-
netic field and e is the charge of the electron.

For a neutral system e=0 and the coupling to the
external vector potential vanishes. The coupling to the
internal gauge field a, however, is not changed since it de-
scribes the eff'ects of the constraint (i.e., the infinite U
Hubbard repulsion). A, is a Lagrange multiplier that
plays the role of a longitudinal scalar potential. It ac-
quires an expectation value and fluctuations around this
expectation value are short ranged. The effective Hamil-
tonian (4) describes the subsystem of fermions and bosons
interacting with a gauge field. This description was intro-
duced by Baskaran, Zou, and Anderson. The interac-
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tion with the gauge field is very important. It enforces
the constraint j~+jF=0 and expresses the physical resis-
tivity as the sum of the resistivities of the Fermi and Bose
subsystem:

R =Rb+R~ .

The transverse gauge field describes an overdarnped col-
lective mode which strongly scatters the Bose and Fermi
particles. The singular effect of a diffusive spectrum
cu=ik was discovered by Reizer and applied to the
strong correlation problem by Lee. '

The assumptions leading to the effective Lagrangian (4}
are not likely to be valid very close to half-filling, because
of the onset of dimerization, spontaneous formation of
Aux, or other forms of magnetic long-range order. Di-
merization occurs in a large-N limit of (1) close to half-
filling, "' in a large-S generalization of (1), ' and in a
spin-one-half frustrated antiferromagnet. ' At half-filling,
the uniform bond variable is also unstable against a phase
modulation which indicates the spontaneous formation of
Aux. "' However, a small concentration of holes des-
troys the magnetic long-range order. This happens in the
quantum dimer model, ' in a large-N limit of (1), ' and in
the semiclassical treatment of the doped quantum antifer-
romagnet. '

The effective Lagrangian (4) allows a very transparent
description of the transition between the Fermi liquid and
a non-Fermi-liquid regime. At zero temperature the bo-
sons are condensed and (1) describes a Fermi liquid with
strong antiferromagnetic correlations, close to a Mott
transition. ' There is a temperature scale T,,„below
which the system displays Fermi-liquid behavior. T„h
corresponds to the Bose condensation transition tempera-
ture in the slave-boson approach. If T„h «J there will

be an intermediate temperature range T„h « T «J
where the spins are partially frozen out but there is no
Fermi-liquid coherence. In this case we will show that
the transport is dominated by the holes.

In this paper we will study the transport properties in
this regime. %e derive a quantum Boltzmann equation
from the effective Lagrangian (4), and use it to calculate
the residual resistivity, the optical conductivity, the
thermal resistivity, and the thermopower. %e conclude
with a critical discussion of the applicability of this idea
to the description of experimental results in the
transition-metal oxide systems.

We note that same form of the effective action (but
with different parameters) appears also in the slave-
fermion Schwinger-boson approach to the strongly
correlated electron system if we assume ' a phase where
the Schwinger bosons are neither condensed nor pair con-
densed while the slave fermion forms a degenerate Fermi
liquid. Physically it would correspond to a phase with
free local magnetic moments but coherent charge trans-
port. This physical picture is very different from the one
that we advocate for the transition-metal oxides. Howev-
er, the results of this paper, which are based on the
effective action (4), could be used in this context as well.

II. THE KINETIC EQUATION

The quantum distribution
S (s,p), S"(s,p), S'(s,p) are defined by

G "(s,p)=S "(s,p)[Ga(s, p) —Gg(s, p) j,

functions

where u stands for f, b, or a. When the imaginary part of
the retarded Green function is sharply peaked the trans-

port theory can be formulated entirely in terms of
the semiclassical distribution function n(p): S/(p)=1
—2n (p), S (p)=1+2n (p). In this problem we will be
able to perform this reduction from distribution functions
in rnomenta and energy to distribution functions in the
momenta alone for the fermions and the bosons but not
for the gauge field. Calculating the self-energy diagrams
in Fig. 1 one obtains a system of equations for the distri-
bution functions S (p},S (p) of the fermion and boson
fields:

—+F.' +u—S(p)=I(p),d
dt dp dr

I = Jdk imD„(g —
g +„,k) u-

k

(9)

X[1—S'(g —
g „,k)(S —S „)—S S ] .

The equations for the Bose and the Fermi functions
S/(p), S (p) have the same form. Equation (9) describes
the scattering of the electrons and the bosons by the
gauge field. The electrical field E' acting on the fermions
and bosons is different: E& =E +e, Eb =e where E is
external electromagnetic field and e is the field produced
by the gauge field: u =(p +k/2)/m„.

In this derivation we neglected the higher-order
corrections to the self-energy diagrams, Fig. 2, such as re-
normalization of the particle-hole vertex or corrections to
the Green function inside the self-energy diagram. These
corrections are nonsingular for both Bose and Fermi
fields; for the Bose field they contain parameter m&/mb
and become very small in the limit m& &)m&, whereas
corrections to the Fermi functions are of the order of uni-
ty. Thus, the results obtained for the Bose distribution
function are quantitative, whereas the fermion properties
can be only estimated. However, as we show below, al-
most all physical properties are governed by the Bose

The kinetic equation is derived using self-consistent
perturbation theory for the Keldysch Green functions of
the fermions, the bosons, and the gauge field:

G/ = i(—f f' f'—f )

G, 2
= —i (b, b2+ +b2+b, ),

D„= i(—a, a2++a2+a, ),
and the retarded Green functions:

Gg, = i (f,f—+ +f+f, )6(t, —t ),
R a u = i (—b, b 2 b2+ b—i )8( t, t 2

)—,
Dtt&2= —i ( a& a2 —

a2+a& )e(t~ —t2) .
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FIG. 1. Self-energy graphs for inelastic scattering included in

the kinetic equations. The straight, double, and wavy lines

denote the Fermi-, Bose-, and gauge-field propagator, respec-
tively.

subsystem. The gauge field acquires a diffusive spectrum,
so that its quantum distribution function cannot be re-
placed by a function of p only. The equation for it fol-
lows from the Dyson equation, Fig. 1. The effective La-
grangian (4) does not contain the usual F„, terms, be-
cause the field a has no intrinsic dynamics. The photon
Green function and the distribution function can be ex-
pressed directly through the fermion and boson Green
functions without solving the kinetic equation:

ref+ n,'
D '=IIf +II' S'=

R R R
R A

(10)

Here II denotes the polarization matrix of the photon
which in one-loop approximation becomes

Ilc„„(co,k)= f dE f dp u„u„[2G (e,p)G "(e+co,p+k)

+G(e+ru, p+k)G(e, p)] .

II „(co,k)=f dE f dp u„u„[G"(E,p)G(E+co, p +k)

+G "(a+co,p +k)G (E,p)],

Since the longitudinal field is screened, only the trans-
verse part of the gauge field is responsible for the long-
range interactions between fermions and bosons. Thus
we keep only the transverse part of the polarization H. If
both Fermi and Bose subsystems are at equilibrium the
gauge field distribution function becomes S'(c,,p)
=coth(E/2T). Equation (10) expresses the fact that the
deviations away from equilibrium in the Bose or Fermi
subsystems drive the photons away from equilibrium. As
we show below, the contribution of the Fermi field to the
polarization (10) dominates over the Bose one, therefore
photons tend to be dragged by the fermion current. This
is analogous to the phonon drag effect in normal metals.
There is a fundamental difference between these two situ-
ations. In normal metals the phonon drag effect is very

important and dominates the low-temperature transport
properties of metals with closed Fermi surfaces. In our
case the bosons govern the physical properties of the sys-
tem and the drag effect is not essential.

The kinetic equations (9)—(11) describe a composite
system of low-density bosons and high-density fermions,
driven by external fields Ef,Eb, in a media of over-
damped photons. The total currents of fermions and bo-
sons obey the constraint jf+jb =0 which can be formally
derived considering the stability condition 5L /5a =0
where 5a are macroscopic variations of the gauge poten-
tial. This constraint has a simple meaning: only elec-
trons can move eventually in a system. By definition the
electron operator is a product of Fermi and anti-Bose
operators, thus the motion of real electron implies the
motion of fermion in the same direction and boson in the
reverse: j„~=jf jb

Thus, in a state with electric current, fermions and bo-
sons drift in opposite directions. Since the density of bo-
sons is low the average drift velocity of the fermion gas is
less than the drift velocity of the boson gas. Thus, in the
first approximation we can neglect the effect of the fer-
mion drift on the properties of the gauge field. Since the
properties of the gauge field are governed mainly by the
fermion system, in the leading approximation we can re-
gard photons as being in equilibrium and use Eq. (11) to
estimate the effects of the drag.

We evaluate now the photon Green function in the
equilibrium. The photon transverse polarization opera-
tor at small frequencies and momenta has a general form:

Ilq(q, cu) =yq —iI (q)cu,

xg +7» ~(q) ~f(q)+ ~ (q»
(12)

where gf, g& are diamagnetic susceptibilities of the Fermi
and Bose systems, I &(q), I b(q) are their damping
coe%cients. The susceptibilities of the Bose and Fermi
systems should be viewed as parameters that determine
the low-energy physical properties. They can be estimat-
ed by their values in noninteracting systems:

wr
IL E L

l 1
Xy 2 Xb

24~'vg(0) 48vr vb(0)

FIG. 2. Self-energy graphs for impurity scattering.
where vb(e) is the density of states of bosons and v&(E) is
the density of states of a single species of fermions. This
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estimate neglects Fermi-liquid corrections which are
present because of the interaction with the longitudinal
and transverse gauge fields. At large temperatures the
Bose distribution function nz(0) is small: nb(0) —5/
(m& T). At lower temperatures T & 5mb

' the interaction
between bosons becomes important and we can no longer
estimate n b(0) using the free-boson approximation. We
do not have a theory describing this regime. However,
we will assume that Bose condensation does not take
place and therefore n&(0) &1 in all temperature ranges

T„h T~mb '. If mb))m&, y& is always less than g&,
whereas if mb -m&, gb becomes of the order of g& only
at a temperature T-5mb '. As a first approximation we
will neglect a weak temperature dependence of the polar-
ization operator (12) caused by yb. However, the temper-
ature dependence of yb becomes important in the discus-
sion of the Hall effect (Sec. V).

The susceptibility of the Fermi system is governed by
states which are very far from the Fermi surface. It is
weakly renormalized by the interaction with the gauge
field and is almost temperature independent. This was
checked directly by evaluation of the next order correc-
tions to the bubble diagram of Fig. 1.

Since the main contribution to the damping coefficients
comes from photons with q « 1 and ~/( vq) && 1,
r, (q), I b(q) depend strongly on q and on the presence of

I"/(q) =) p~ /~q, I (q)-5' /q, (14)

so that I
&
))I b in this region also. y is a number equal

to 1 to lowest order in the perturbation theory in the in-
teraction with the gauge field. Evaluation of higher-order
corrections to the bubble (Fig. 1) do not show any singu-
lar contributions. Therefore it does not acquire singular
temperature or momentum dependence. Thus we con-
clude that the main contribution to the photon propaga-
tor D (q, cv) comes from the Fermi subsystem only.

To calculate transport coemcients we linearize the ki-
netic equation {9) describing the scattering of fermions
and bosnns by photons. We consider the Bose system
first. Linearizing it around the equilibrium solution
S =So+I, we get the collision operator

scattering in the system. In the presence of scattering
rf b are approximately constant for r», U, „q «1. ~f
is the fermion and boson transport scattering time and is
discussed further in Sec. III. These limiting values are
proportional to the residual conductivities of the Bose
and Fermi subsystem. As we show below, the conductivi-
ty of the Fermi system is larger, so that I &(q}»I,(q) in
this region. At larger momenta (vq)))r/& the damping
coefficients I ~ and I b are inversely proportional to q, as
a result of Landau damping. In this region

I (k)(g —g~+q) +y k"

X [S,(p) —S", (p +k)]coth +S, (p)coth +S",(p +k)coth0, —0, +~ (a+a
(15)

The main contribution to this integral comes from the low-energy processes with

~ ( —
g + q ~

-yk /I ( k ) - ( m b T) /m/ && T .

In this energy range we can keep only the first term in braces in the previous equation and replace coth(x) in it by x
The typical distribution function changes on the energy scale of T, so that its variation as a function of angle 0 be-
comes more important [for all transport properties S, (p) contains factor cos(8 )]. Thus we neglect its energy depen-
dence and keep only its dependence on angle S, (p) =2cos(8& )P(p). In this approximation S, (p) becomes the eigenfunc-
tion of the collision operator:

I(cos(8~ )P„(p)) = —r„„'(p)cos(8~ )P„(p), (16)

r&„=2T dk v — (1 —cosO + & ) .
—

1 I(k), (vk)'
I'(k)(g —( +q) +y k k

(17)

The form of the function P(p) depends on the transport property considered. However, for any transport process solu-
tion (16) serves as a good starting approximation.

Now we consider fermions. Linearizing their collision integral we obtain

X [S (p}—S (p+k)]coth +S (p)tan — +S {p+k)tan4, —k, +a Spit
1 1 2T 1 2T 2T

(18)
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III. ELECTRICAL CONDUCTIVITY

In this section we discuss the electrical response of the
combined Bose Fermi system. The zero-frequency elec-
trical conductivity of the Bose system is calculated by
linearizing the kinetic equation (9). Using the property
(16) it follows that

S 1
= TbtrEB V SPB B (19)

is a solution with rb, „given by (17). The main contribu-
tion to this integral comes from the processes with small
energy transfer, so that ~p+k~=~p~. Choosing the vari-
ables ~p +k~ and 8~+k and neglecting a weak dependence
of angular factors in (16) on ~p+k~ we perform integra-
tion over ~p+k~ and then over 8 +k.

—
1 T

btrp 4mba
(20)

The result (20) does not depend on the damping con-
stant and, thus, is not sensitive to the impurities and in-

elastic scattering which change the damping coefficient at
low momenta. To estimate the corrections to (20) which
are due to these mechanisms we insert the solution (19)

I

The main contribution to this integral comes from the en-

ergy transfer ~g
—g +k~ —T which coincides with the

energy scale of their distribution function Sf&(p) peaking
around the Fermi surface. Thus, in this case we cannot
neglect the energy transfer in the scattering process. In
contrast to the Bose scattering integral the momentum
transferred in a typical collision is small:
k —Tl (k) «pF. We cannot guess the general form of
the solution of (18) for the fermions. We can only esti-
mate scattering rates entering different transport proper-
ties.

—1
mf

b =mfa, T «
fmb

(21)

E~mf Tf
2 —2

mBT

1/2 2

T )) mf

fmb

The fact that the inelastic lifetime of the bosons is pro-
portional to the temperature was first pointed out by
Nagaosa and Lee. Equation (21) shows that this result
is unsensitive to the modification of the propagator of the
gauge field by impurities or inelastic effects. The pres-
ence of impurities only increases the scattering rate by an
amount proportional to the concentration of impurities.
The resistivity of the Fermi system is small Rf= ( Tmf ) . ' Using formula (5) we conclude that the
physical resistivity is governed by the Bose subsystem:

R = — (I+6) .= T
45y

(22)

In three dimensions, the infrared singularities are not so
severe and the estimate of (20) in the clean case gives

—1 T3/2Q~btr (23)

The physical conductivity is given by the Bose conduc-
tivity in the regime where the number of bosons is small.

We now consider large frequencies. In this case we
cannot use the kinetic equation and we have to resort to
an approximate evaluation of the Kubo formula. The ex-
pression for the Bose conductivity in terms of the exact
Green functions and vertex functions of the system is

into collision integral (16) and evaluate the corrections to
the scattering rate due to the actual I (q) dependence:

rbt' = debt~(1+ ~ »

nb(x) nb(x +co)—
cr (co)= f dp f dx UF y~(x, x +co)lmG„(x,p)imG„(x +~, p), (24)

where we introduced a vertex function y describing the renormalization of the vertex p by the interaction at short
length scales. At high temperatures T & 6/mb this renormalization is not important: y =1. The Green functions are
approximated by inserting a pure imaginary, temperature, momentum and frequency dependent self energy:

4, +, 4p+qcoth +coth
2T 2T

(25)

We now estimate the frequency dependence of the Bose
self-energy in various limits. When co =(~ )& T,

q4, r, co
(26)

( )
3/2 1/2 (27)

except for the very dirty limit mfa '&5' when (27)
crosses over to

The dominant contribution comes from large momenta
and gives, with c, =co=( and q~ =q —(q.p)/p,

Xb(E) =(r 'mf )E . (28)

(29)

C
ImXb(c. ,p )=-, c &(p

p X
(30)

In the limit of large frequencies the direct interaction

The crossover frequency above which (27) holds is
co, =T mb

' . It is also useful to have some estimates
of limiting values of the off-shell self-energy:

ImXb(E, p )=p, c. )&p
QmF
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2
cc) mf

coal(p

/mf (31)

(32)

(32) represents the physical processes in which a boson

I

of the bosons with the spinons via the longitudinal part of
the gauge field becomes important; it results in the off-
shell self-energy

excites a fermionic particle hole pair when it propagates.
With this information we can estimate the Bose con-

ductivity using (24). In Eq. (24) nb(x +co) is small unless
x ~ —co but at these energies ImG&(p, x) becomes very
small, thus nz(x +co) yields negligible contribution to the
integral. The main contribution to the integral over x
comes from 0 ~ x co. In this frequency range
ImG„(p, x)ImG„(p, x +co) considered as a function of co

is peaked around g =x and g =x +co. We perform in-

tegration over p in these regions separately and get

n~(x) (x +(Lcb )
ob(~)=vzmb ' jdx ImX "(x,+2mzco)+1m' "(m, +2mb(x +pb))

CO tom&
(33)

Equation (33) expresses the Bose high-frequency conductivity in terms of the off-shell self-energy in different limits

p /(mb E) )) 1 and p /(mbc) ((1. At very large frequencies the second limit dominates ImX "(coax)))co 1m' "(x,co).

Combining (33) and (32) we conclude that the Bose contribution to the optical conductivity decays slower than the
Drude model with a frequency-independent relaxation rate:

o~(co)=5T cu

We now turn to the Fermi contribution to the optical conductivity:

(34)

nF(x) nF(x +co)
o,(~)=f dp f dx U~y~(x, x +co)lmG„(p, x)lmG„(p, x +re) . (35)

In this case (35) is simply related to the Fermi transport time rF calculated using the kinetic equation:

0, +q
—0, I e ei kp

—
4p+q kp+,—tanh

Il(k, +, —0, )l (e)t'+qi l
e' (36)

1 T4/3 1/3NF
7F

(37)

At zero temperature and low but finite frequency we find

At finite temperatures and zero frequency it gives the
known' result

IV. THERMAL PROPERTIES

A temperature gradient and an electric field induce an
electric current J and a heat current U. For small distur-
bances the response is proportional to the fields and
defines the thermoelectric coefficients

J =e Eo(E —V'p)+K&
3/2 1/2 (~ F

+f 4/3 1/3 )) F
co mf, co co, .

(38)

(39) U =eI(.', (E —Vp, )+K&

(41)

The crossover frequency between the two regimes is given
by ~, =mf/~ .

The Fermi contribution to the high-frequency optical
conductivity is given by

1K-
T

K
1

K 2
Ko

(42)

The thermal conductivity is measured when the elec-
tric current is zero and it is given by

(40)

Combining (34) and (40) we conclude that at high fre-
quencies the Bose conductivity dominates the optical
conductivity. The conductivity falls off slower than the
prediction of a standard Drude theory. The processes in
which a hole scatters off-spin excitations to recombine
into a bare electron are responsible for the slow falloff of
cr(~).

Ko 'K1
(43)

We calculate E'' and E by considering the response of
the Bose and Fermi system to electric fields Ez, EF, re-

spectively, and a thermal gradient VT. E~ and EF are

The electromotive force induced by a thermal gradient
when the electric current is zero defines the thermopower
coefficient
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J=J = —JqF 8 (45)

The analog of Eq. (41) for the Fermi and Bose subsys-

tem, the index a stands for fermions (F) or bosons (8).

J =Ko (E P'p )+—K,
—VT

T

the effective fields acting on the bosons and fermions, re-

spectively; their difference gives the total field

EF E~ =Ee

while they are adjusted to obey the constraint

To evaluate the effect of this scattering we again use the
linearized quantum kinetic equation. We consider the
processes of energy and momentum relaxation separately.

We start with the Bose system. In this case the col-
lision operator has the set of eigenfunctions of the general
form S,(p)=2cos(8 )P(p) with eigenvalue rbt,

' which
correspond to the processes of momentum relaxation.
The rate of the energy relaxation is described by the ei-
genvalues of the collision operator on the functions of the
general form S, (p)=2/(p). To estimate these eigenval-
ues we insert in the collision operator (16) the trial P(p),
evaluate the result, and compare it with P(p). We get

U =K, (E V'p )—+K2
—VT

T
(46)

T
I(+m sT)

(54)

The chemical potential of the electrons is given by the
difference of the Fermi and the Bose chemical potentials

(47)

KF~+K~ »E+
KFO+KBO KFO+KBO T

E
KF — KF+KB VTE+

KF +K~ KF +K~

(48)

The electric current J can be expressed either in terms
of the Bose or the Fermi current J~,JF.

o oE+ o o

e KIKb e(KfKb KfKb ) qT
(49)

KI+Kb KI+Kb'

The first term is nothing but the conductivity and just
gives the formula (5):

which allows us to solve (44) and (45) for the effective
fields E =E —Vp acting on the fermion and the boson
system

The change of the distribution function resulting from
the temperature gradient has a general form cos(8 )(t(p).
Comparing (54) with the transport rate (20) we see that
the energy relaxation is much slower than the relaxation
of the momentum, and can be neglected for all fluctua-
tions of this form. The physical reason for this is that the
transport rate is enhanced by the scattering off an anoma-
lously large number of low-energy photons. This
enhancement is more suppressed in the calculation of the
energy relaxation rate because the energy relaxation has
an additional factor of u-qj &&qj. Thus, any such dis-

tribution function is the approximate eigenfunction of the
collision integral with eigenvalue vbt„and the kinetic
equation for bosons acquires a simple form:

VT
Uk (E ~jub ) gk ~ b „5&b ~ (55)

T k

In order to evaluate the thermal or electrical current
induced by 5nb in (55) we need the form of the Bose dis-
tribution function. We use the distribution function nb of
free bosons and get

KFK~Ko=
K~+K~

(50)
r$g vb T Pmg [3+3(P) 4@2(P)inP+@)(P)in P]

(56)

The second term is K
&

of the electron system

KFKB KFKB

KF +K~
(51)

This is a new result. The heat current of the electrons is
given by

U —UF+Ug . (52)

We insert (48) in (52) and compare with Eq. (41) to identi-
fy

(K'+K„')'K'=K'+K'—
K'+K'f b

(53)

which expresses the thermal conductivity of the electrons
in terms of the thermoelectric coefficients of the Bose and
the Fermi subsystem.

W'e now estimate these coefficients when the scattering
is dominated by inelastic scattering off the gauge field.

Kb = „rb&Tvpmb '[242(p) —4&(p)lnp],

where P=exp(p/T) and

s —1

4, (p) = f dx
0 expx—

(57)

At large temperatures vb T ))5 the result (56)
simplifies:

Kb =rb, „5Tmb '[6—ln(5/vb T)+ln2(5/vb T)],
Kb Tbt&5Tmb '[2—ln(5/vb T)] (58)

Now we consider the Fermi system. We estimate the ei-
genvalues of the collision operator which describe the re-
laxation of the energy and the electrical current.

The deviations for equilibrium in the Fermi system in-
duced by an electric field are given by 5f z

=( —Bf/Be)uxcos8 while a thermal gradient produces a
distribution 5f 2 =( —Bf/Be)vgc s8(og /Tk). Inserting
these trial eigenfunctions into collision integral (18) we
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estimate the corresponding eigenvalues:
—1 z-4/3 1/3 —1 z 2/3 —1/3 (59)

In the Fermi system energy relaxation proceeds much
faster than current relaxation because the main contribu-
tion to the relaxation comes from processes with very
small momentum transfer which dissipate energy very
efficiently but cannot dissipate momentum. This allows
us to estimate the thermal conductivity of the Fermi sys-
tern

X'= T4/3mmf (60)

The ther mopower of the Fermi system is small
Ef'=mf ' and its estimation is complicated by drag
effects. Since its contribution to the thermoelectric
response (51) is small compared with the Bose subsystem
(56) it will not be estimated here.

Combining (51), (53), (58), and (60) we finally get ther-
moconductivity and thermopower of the total system at
large temperatures:

a=8yfi+T'nm& z~'

S=2+in(vb T/5) .

(61)

(62)

V. MAGNETIC SUSCEPTIBILITY
AND HALL COEFFICIENT

For tetnperatures Tm/((5 the Wiedeman-Franz law
is obeyed, with the Wiedemann-Franz ratio being 2, while
for Tmf & 5' the heat transport is dominated by the spin
degrees of freedom and is the same as in the insulator.
The thermopower S is anornalously large compared to
the Fermi-liquid result.

Xp 9Xd (68)

with g & 1. We will use (68) for the estimate of the total
susceptibility, which becomes:

susceptibility. It will be reinstated in the discussion of
the numerical values of the efFective Lagrangian parame-
ters in Sec. VII. At high temperatures the Bose suscepti-
bility is small and decreases with temperature:
gb-5/(Tmb). To describe it more quantitatively we in-
troduce the phenornenological parameter T* by
7t'~=(T*/T)yI at T»T„h, T*. At low temperatures
T T„h, T* the temperature dependence of Xb ceases. If
T*~ T„h the Bose susceptibility becomes comparable to
the Fermi one in the temperature range T„h & T ~ T*.
We will use T* instead of mb in the discussion of the
properties of real cuprates. In a simple picture of nonin-
teracting fermions and bosons, T„h--8/ma is approxi-
mately equal to T'=5/mF i one assumes ~F=ma
However it is very likely that the fluctuations of the
gauge field substantially depress the coherence tempera-
ture, in which case one could have two intermediate
asymptotic regimes T„z ~ T ~ T* and T' & T ~ 1/mI.

The measured susceptibility is the sum of the paramag-
netic susceptibility of the fermions X and X&. In the
noninteracting Fermi gas the paramagnetic susceptibility
is simply related with diamagnetic one: Xz =3Xd. As is
well known in the theory of the Fermi liquid this relation
is renormalized by the interactions. We have checked
that the interaction with the gauge field, in spite of being
nonlocal, does not result in any singular contributions to
the paramagnetic or the diamagnetic susceptibility in the
leading and next to leading orders in the perturbation
theory, and results in

An external magnetic field 8 induces screening
currents in the Fermi and Bose systems. Therefore the
Fermi and Bose systems feel effective magnetic fields BF
and 8&. They can be determined by minimizing the free

energy

Xb
Xtot Xf

Xf Xb

Provided that T» T* (69) can be estimated as

(69)

F =
2 (y~Ba+yFBF ) (63)

T*
3

(T+ T') (70)

subject to the constraint BF Bs =B:(e/c—fi)B. The re-—
sult is

8 = B
Xf+Xg

(64)

XF +XB

The minimized free energy is

XFXg

2(xF+xa)

(65)

XUXp
Xd=

X~+XF cA

In the following we will drop the factor e/cubi in the

which identifies the total diamagnetic susceptibility of the
system as

R =R +R, . (71)

The Hall resistivity of the bosons can be reliably estimat-
ed as

X~8
(yF+)t'~ )8

(72)

The Hall resistivity of fermions R„cannot be reliably
estimated in this framework. The continuum Lagrangian

Having determined the effective magnetic fields felt by
the bosons and the fermions one can easily calculate the
Hall coefficient in the framework of the kinetic equation,
Replacing the driving term E' in Eq. (9) by E'+U XB'
with B' standing Bb,Bf for bosons and fermions, respec-
tively, and following the steps leading to (5) we find that
the xy component of the resistivity tensor is given as the
sum of the xy component of the resistivity tensor of the
Fermi and Bose subsystem:
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(4) cannot capture the details of the curvature of the Fer-
mi surface which are crucial for the determination of the
Hall coeScient. In other words, R„„calculated from the
lattice model (1) and the continuum limit (4) are going to
differ significantly except in the limit of very large dop-
ing. Because of this limitation we are going to
parametrize R ~ =RHfBf. We will treat RHf as a param-
eter which can be estimated from more detailed band
structure calculations. Combining (71) and (72) we find
for the Hall number n~ =B/R

1 HfXB XF

XF+XB

At high temperatures (73) becomes

1 1 T*
R +-Hf 5 T

T'~T .5' (74)

Estimates based on renormalized band structure calcula-
tions show that for reasonable values of the next-
nearest-neighbor hopping amplitude in the effective fer-
mionic Hamiltonian Ritr is negative (hole-like), large
(Ritr-4), and depends weakly on doping at small 5.
Thus, the temperature-dependent correction to the Hall
coeScient is positive at very small doping and negative
when 5 & R iaaf'. At low temperatures (73) becomes

r

nor =R iif' 1+ 1+, , T & T* . (75)
5R Ht T*

VI. EFFECT OF IMPURITIES
IN THE SLAVE-BOSON TECHNIQUES:

ELASTIC SCATTERING

At very low temperatures inelastic effects are rare and
the dominant scattering mechanism is due to impurities.
It is therefore important to analyze the effect of a weak
random potential in the slave-boson technique. We con-
sider diagonal disorder

+Hp —g U(C;~C(0 (76)

with

Vi Vj
—W 5ij (77)

This term modifies the coupling to the density of the Fer-
mi Bose system in Eq. (4)

5L =(u, +iA, , )f,+f, + gik, b,+b; . . (78)

When the random potential is absent the saddle-point
solution for i A. ,

- is uniform, ik, =kp. Ap is fixed from the
constraint equation (2).

The random potential u,- makes the saddle-point solu-
tion iA, , =—k +5k, nonuniform in space. We can inter-
pret U; =5k., as the random potential seen by the bosons
and v;+5k, ;

—= u; as the random potential seen by the fer-
mions. k, and hence u,- and u; are easily determined in
terms of the random potential u, when the random poten-
tial is a small perturbation. Defining the compressibility

kernels:

K IJ

We find

an,B

~B p
B

F
IJ

an,F

Vj UF—p
F (79)

1
. . K.k UI

( F+ B)EJ 2

1
U, ~ ~ K &uk ~

(IrF+~B)V J"

(80)

(81)

Now we estimate the compressibility matrices for Fer-
mi and Bose systems. The density of fermions is large;
their density correlations are short ranged (their Debye
correlation length is of the order of lattice spacing):

F
KIj mf 5(J (82)

5mB
ir (q)=

I+(lBq)2 TmB+5
(83)

Comparing (83) and (82) we see that Ir «a unless we
consider the region of low temperatures T&5/mb and
small momentum (qlB ) « 1 where they become compara-
ble, K -K . Therefore estimating the random potential
as seen by fermions and holes (6) and (7) we can neglect
K in the denominator compared with K, and get the
variance of the random potential

( B B ) 2

( F F )—
q

—
q

1 5

(lBq) +1 Tmb+5

2 (84)

These formulas mean that the bosons feel an almost
unscreened random potential, whereas the random poten-
tial seen by the fermions becomes a very smooth function
of coordinates. The smooth potential cannot scatter fer-
mions effectively so that their transport relaxation time
remains large. The estimates of the variance of the ran-
dom potential of the bosons and the fermions can be used
for their residual resistivity. We replace diagrams Fig. 1

At high temperatures the uniform (q=0) compressibili-
ty of the Bose system coincides with the compressibility
of the ideal Bose gas 5/T. At very low temperatures bo-
sons condense and form a superfluid with compressibility
mb lln5. As was explained in the Introduction, we do not
understand the regime T=5lmb where strong fluctua-
tions of the gauge field presumably suppress the transi-
tion temperature. However, we believe that matching the
compressibilities in these two regimes we get the reason-
able estimate of the compressibility for all temperatures:
a(q =0)=5/( T +5/mb ).

Repeating the same arguments for the temperature
dependence of the Debye screening length we arrive at
tB =(TmB+5), which interpolate between the high-
temperature regime where lB coincide with thermal
wavelength and low-temperature regime where IB be-
comes interparticle spacing. Combining these estimates
we get the estimate for compressibility at all tempera-
tures and momenta which becomes exact at very low
(T&5/mb) and high (T »5lmB) temperatures.
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in the derivation of the kinetic equation by the standard
impurity diagrams (Fig. 2) (the crossed line stands for the
variance of the random potential) and follow the pro-
cedure outlined in Sec. II. The random potential seen by
the fermion system is smooth and causes scattering
events at angles less than 6, =+6+Tm&. The residual
resistivities of the Fermi subsystem can then be estimated
as

m 2~2g3K2
b c B

PF
(as+irF )2

(85)

In all regimes the residual resistivity of ferrnions is small
and the residual resistivity is governed by the Bose sys-
tem: p=p~,

mmeb F
PB

&(IrF+&g )
(86)

The residual resistivity in Eq. (86) can be estimated in
the different temperature ranges:

5 ', T~T„„
mb +mf

pz (mbmfwT) /5, T„h & T& T*

(m&m) I5, T'&T
(87)

VII. CONCLUSION

The slave-boson formalism ' provides a suitable
language for describing the transition between a Fermi-
liquid and a non-Fermi-liquid regime. When the bo-
sons are condensed the fermionic quasiparticles are the
only relevant low-energy degrees of freedom and one re-
covers Fermi-liquid theory. When the slave bosons are
not condensed the adiabatic continuity between the
noninteracting system and the system with interactions is
broken, and the Fermi-liquid picture is no longer a good
one.

It is useful to recollect how this transition happens in
the heavy-ferrnion problem. ' At low temperatures
when the bosons are condensed the system behaves as a
Fermi liquid which can be obtained by turning on U in
the Anderson model. At high temperatures when the bo-
sons are not condensed the system is better thought of as
a two Quid of conduction electrons and local rnoreent,
the local moments being degrees of freedom which are

For weak disorder the coefficient of proportionality be-
tween the residual resistivity and the variance of the ran-
dom potential (87) is much larger than in Fermi-liquid
theory. For stronger disorder we expect even more
dramatic effects since the bosons are very easily localized
if mb))mf. Therefore, even weak disorder can drive a
metal insulator transition in this system. The Fermi sur-
face can remain relatively sharp, even when the resistivity
is large, because the physical resistivity is governed by
the Bose subsystem while the sharpness of the Fermi sur-
face is governed by the inelastic scattering rate of the fer-
mions which is much smaller than the physical resistivi-
ty.

not present in the U=O limit of the Anderson lattice.
The analogies between the high-temperature supercon-
ductors and the heavy-ferrnion systems and the relevance
of the scale T„h for the phenomenological description of
both systems have been discussed in Ref. 29 by Levin and
collaborators, and in Ref. 30.

Turning to the one-band t —J model at T=O, Eq. (l)
describes a Fermi liquid, with a Luttinger Fermi sur-
face. ' However, in many respects this Fermi liquid
behaves as a collection of a small numbers of holes. ' At
high temperatures the bosons are not condensed. If we
insist on describing this situation in terms of quasiparti-
cles one would say that the lack of Bose condensation sig-
nals the loss of Fermi-liquid coherence, and the quasipar-
ticles form an incoherent quantum fiuid [IQF]. There is a
very significant difference with the heavy-fermion prob-
lem. Here the antiferromagnetic exchange energy is still
much larger than any temperature of interest and there-
fore the spin degrees of freedom are still quenched. From
the point of view of the spin response the quasiparticles
still form a degenerate Fermi liquid. The incoherence is
revealed only when we investigate the charge transport.
A second fundamental difference with the heavy ferrnion
is that at high temperatures we still have a one-band
model. The fermions and the bosons still describe the
same charge degrees of freedom, since they are linked
inextricably by the constraint (3) even at high tempera-
tures. However, the transport properties can be under-
stood in a simple way if we think of a system of weakly
interacting bosons. This suggests that in this regime one
can understand the transport properties by focusing on
the motion of a few holes in a magnetic background. One
could refer to this situation as partial charge spin separa-
tion (PCSS).

We now compare the predictions of our analysis with
some experiments in the copper oxides. In carrying out
this comparison it is important to bear in mind that the
predictions for the transport properties which are dom-
inated by the Bose subsystem become quantitative only at
high temperatures. At very low temperatures when the
susceptibility of the bosons is comparable to the suscepti-
bility of the fermions, the simple interacting Bose-gas pic-
ture is not applicable. That is why the predictions that
do not involve the exact form of the Bose distribution are
more robust than the ones which involve the exact details
of this distribution. Also, we consider only the transport
properties within the ab plane.

The resistivity is linear in temperature in most high-T,
compounds. ' To explain this fact in this framework we
need to assume that either the contribution of the Bose
susceptibility to the resistivity [see Eq. (22)] is small or
that it is temperature independent. So, we expect linear
resistivity only when T )& T* or when T ((T*. We pro-
pose to view the cuprate superconductors in the parame-
ter range T„h = T* ~ T ~ TF. The slope of the resistivity
in good quality single crystals is about 0.5 pQ cm/K in
1:2:3 and 2.0 pO, cm/K in 2:1:4. We use these slopes
and Eq. {22) to estimate y. %'e find y=200 K for the
2:1:4and g =-400 K for the 1:2:3compound.

We can also estimate y comparing Eq. (69) with the
measured magnetic susceptibility: y„,—1.5 X 10
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emu/mol Cu (Ref. 32) in the 1:2:3 compound and

y„,-0.5 X 10 emu/mol Cu (Ref. 34) in the 2:1:4com-
pound. Neglecting yb in Eq. (69) and converting to di-
mensionless units we find graf

—800 K and graf -250 K
for the 1:2:3and 2:1:4compounds, respectively, which is
not inconsistent with our previous estimate. The esti-
mate of the Fermi susceptibility based on the free-
fermion equation (13) is also consistent with the values
deduced from the slope of the resistivity. The Bose con-
tribution to (69) makes the susceptibility an increasing
function of temperature.

The transport properties of La2 Sr, CuO have been
extensively investigated. It is antiferromagnetic when
x=0 and is superconducting in the range of compositions
0.05»x»0.25. Recent muon spin resonance, however,
has indicated that x=0.15 is the only metallic composi-
tion which is microscopically homogeneous and therefore
we will compare our results with this composition only.
The Hall coefficient in the ab plane is relatively large,
and increases with temperature. Converting to our di-
mensionless units gives a Hall number per copper
n0=0.3. The sign and the temperature dependence of
the Hall number can be accounted for by Eq. (74), with
5=0.3 provided that R „f is hole-like and larger than 1/5.
The consistency of this assumption can be tested experi-
mentally once the full shape of the Fermi surface is
mapped out.

The thermopower has been measured in (Ref. 36) and
is given by about 70 pV/K which when converted to our
dimensionless units, S=0.7. This is much larger than
what one would predict for a Fermi liquid but smaller
than the prediction of (62).

The thermal conductivity has been measured in
YBa2Cu307. It is almost temperature independent or
increases slightly with temperature. The Wiedemann-
Franz ratio observed was around 5.5 in our units. Equa-
tion (61) predicts weak temperature dependence of the
thermal conductivity with the Wiedemann-Franz ratio
being -4 in reasonable agreement with experiment.

The Hall coefficient in the YBazCu307 compound
displays more complex behavior. The Hall number is
very small and remarkably linear in a wide temperature
range. We could attempt to explain this effect in this
framework if we assume that in the 1:2:3compound T* is
large and therefore one is in the regime T» T* where
(75) applies, and RH, is anomalously large. However, we
do not have a qualitative understanding of this regime,
where the bosons interact strongly with the fermions and
themselves.

The analysis of Sec. VI predicts a residual resistivity
which is proportional to the concentration of impurities
with a very large proportionality coe%cient (which scales
with the inverse hole concentration). We expect this
phase to be much more sensitive to impurities than the
Fermi-liquid phase. The large sensitivity of the dc resis-
tivity to small changes in the impurity concentration
seems to be a general feature of transition-metal ox-

39,40

We have not addressed here the problem of estimating
semiquantitatively the energy scales T„& and T* and the
parameters which appear in the low-energy Lagrangian.

It is particularly important to understand the mecha-
nisms that make T„.,& so low. While various mean-field
theories ' predict superconductivity in the t-J model,
more sophisticated treatments (such as exact diagonaliza-
tion of finite systems or theories which take into account
the next orders of the perturbation theory) all indicate
that one needs to go beyond the two-dimensional model
(1) to explain high-temperature superconductivity.
Therefore to describe superconductivity additional resid-
ual interactions should be added to the effective Lagrang-
ian (4). These are important questions outside the scope
of this paper.

We conclude with a discussion of some physical effects
which have not yet been measured and are natural conse-
quences of the theory. Equation (47) indicates that the
chemical potential of the electrons in the regime T )&T*
is strongly temperature dependent. p =const —ln6/
[m~'r]. This should be contrasted with the conventional
Fermi-liquid result. In the regime where the bosons are
not condensed but when their thermal wavelength is
comparable with the interparticle spacing Eq. (83) pre-
dicts a constant chemical potential which is indistin-
guishable from the Fermi-liquid result. The anomalous
dependence of the chemical potential on temperature
could be observed by measuring the temperature depen-
dence of the contact potential between a normal metal
and a high-temperature superconductor in its normal
state.

The observation of "low-temperature superconductivi-
ty" in a single-layer bismuth compound "Bi 2:2:0:1"
will allow magnetoresistance and specific-heat measure-
ments at low temperatures in the normal state. We ex-
pect negative magnetoresistance in the metallic phase be-
cause in the presence of a magnetic field the dynamics of
the gauge field become propagating instead of diffusive at
low frequencies and, in addition, a Chem-Simons term
appearing in the effective action of the gauge field de-
creases substantially its fluctuations. Both effects de-
crease the scattering by the gauge field which is responsi-
ble for the linear resistivity. Hence a magnetic field
should reduce the resistivity.

The same collective mode which is responsible for the
linear resistivity should give the dominant contribution
to the electronic specific heat c, =(T/g) . This contri-
bution to the specific heat should also decrease in the
presence of a magnetic field.

Towards the end of the work reported here, we became
aware of the work by Nagaosa and Lee who considered
the problem of transport in the model (4) in a more quali-
tative manner. They pointed out the importance of the
region co « T in the evaluation of the Bose conductivity.
We agree with their conclusions on the electric transport.
Application of similar ideas to the calculation of the Bose
energy relaxation rate allows us to conclude, however,
that the thermal transport obeys approximately the
Wiedemann-Franz law.
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