PHYSICAL REVIEW B

VOLUME 42, NUMBER 16

1 DECEMBER 1990
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Numerical results are reported for the quantum site-percolation problem. For the square lattice
and the simple cubic lattice quantum percolation thresholds p, are calculated by studying the sensi-
tivity of eigenvalues to a change in boundary conditions. Observing the energy dependence of the
transition from localized to extended states, mobility edge trajectories are calculated. We obtain
Py =0.45 in three dimensions and p, =0.70 in two dimensions. The latter value of p, is identified
with a transition from weakly to strongly localized states, according to a similar localization behav-

ior observed for the Anderson problem.

I. INTRODUCTION

Condensed systems with a large degree of disorder are
abundant in nature and frequently have remarkable prop-
erties. Theoretically such systems cannot be treated as
regular systems with a small perturbation. Thus their
characterization poses a substantial problem. One of the
attempts to characterize disordered systems is by the lo-
calized or extended nature of their eigenfunctions of a
quantum-mechanical Hamiltonian. This character neces-
sarily has a strong effect on transport properties. In the
present article we shall deal with these properties of lo-
calization.

In a disordered system, all eigenfunctions become lo-
calized when the strength of disorder exceeds some
specific value. This fundamental theorem is due to
Anderson’s study of a tight-binding Hamiltonian.! The
operator of the Anderson Hamiltonian reads

Aliy=elid+3 vl . (1)
J#i

H acts on an atomic orbital located at site i. This sum
has to be taken over all nearest neighbors of i. All atomic
orbitals are assumed to be orthogonal. In the original
model, the interactions between different sites are kept
constant and only the diagonal elements of the Hamil-
tonian vary within a uniform distribution of width W. If
W /V exceeds W, /V, all states become localized, so there
is no carrier transport at zero-degree temperature. For a
given W < W_, the spectrum can be divided into a part
where all states are localized and another part where in
addition to the localized states extended ones occur. The
two regions are separated by a mobility edge EC.Z‘3 As
analytic work is difficult, numerical calculations have
been widely used in the study of Anderson localization.
For a review see, e.g., Refs. 4 and 5.

In recent years, attention has been drawn to the quan-
tum percolation problem. In classical percolation theory,
a regular lattice is filled with particles with probability p
and empty sites with probability (1—p). Only connec-
tions between nearest neighbors are taken into account.
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There always exists a critical value p. above which an
infinite cluster appears in an infinite lattice. This is the
classical percolation threshold. The present problem is
called site percolation.®

In quantum percolation theory, the Anderson Hamil-
tonian is combined with classical percolation. A regular
lattice is filled as described above and the € and V param-
eters are defined as follows: ¢; is chosen to be zero for all
i, V;;=1/Z if sites i and j are nearest neighbors and nei-
ther i nor j is an empty site; V;;=0 otherwise. Z is the
number of nearest neighbors. The Anderson transition
point is called p,. As long-range transport is only possi-
ble on the infinite cluster, p, has to be larger than or
equal to p,, which is approximately 0.59 for the square
and 0.31 for the simple cubic lattice.® Systems described
by the same Hamiltonian have been studied by Kirkpa-
trick and Eggarter’.

Most of the methods used in numerical studies of the
Anderson problem are also used to obtain quantum per-
colation thresholds. Srivastava and Chaturvedi® have
calculated the average inverse participation ratio by the
equation-of-motion method of Weaire, Williams, and
Srivastava.” Odagaki and Chang!®!! have presented an
approach based on a real-space renormalization-group
analysis. Root, Bauer, and Skinner'? have used a finite-
size-scaling method to calculate p,. The transfer-matrix
method!'>'* has been used by Soukoulis, Economou, and
Grest!® to determine P, and the mobility edge trajectory
in three dimensions. Evangelou has studied the density
of states and the inverse participation ratio in two and
three dimensions.!® Odagaki, Ogita, and Matsuda have
obtained p, for the square lattice by a Green’s function
method.!” Raghavan and Mattis'®!® have determined the
quantum percolation thresholds by the recursion
method.”® This method has been frequently applied to
the Anderson problem.21 Meir, Aharony, and Harris
have studied the quantum bond percolation problem by
the inverse participation ratio.”? Numerical estimates of
quantum site-percolation thresholds range from 0.59 to
above 0.94 for the square and from 0.38 to 0.70 for the
simple cubic lattice.
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II. METHOD

One measure of localization is the Thouless number.
Thouless, Edwards, and Licciardello?>?* (TEL) showed
the proportionality between the conductivity of a system
and the shift of the energy of an eigenstate as a result of
changing boundary conditions from cyclic to anticyclic
ones. The results are that

o <N{AE )p(E) (2)
in two dimensions, and
g <N{AE)p(E)/L (3)

in three dimensions. o is the conductivity, (AE) the
geometric mean of the energy shift in an energy interval,
p(E) the density of states in that interval, N the total
number of eigenstates, and L the length of the cube edge.

In the numerical work we proceed as follows: For each
realization, the eigenvalues are calculated for cyclic
boundary conditions and for Dirichlet boundary condi-
tions. We have performed test calculations for both
cyclic-anticyclic and cyclic-Dirichlet boundary condi-
tions. The energy shifts showed no difference. As no
crossing of eigenvalues as a result of changing boundary
conditions should be allowed, the coupling strength be-
tween sites located at different edges of the system is kept
small when cyclic boundary conditions are imposed. The
coupling strength ranges from & V to -t V, depending
on the particle concentration p. Whenever o decreases
with increasing system size, the states in the energy inter-
val considered are dominantly localized states. The
quantum percolation threshold is given by the concentra-
tion p below which this behavior is observed for all ener-
gy intervals. From the discussion above we also conclude
that the averaging over an energy interval leads to a loss
of information. We are looking for a transition where,
for the first time, extended states appear. By averaging
we can only conclude whether the states in an energy in-
terval are dominantly localized. Even if the transition is
sharp we smooth it out in this procedure. The method
described above will be called the TEL method hereafter.
As no eigenvectors are required for the TEL method, the
systems studied with this method can be made very large.

To simplify the calculation, a basic symmetry property
of the lattice can be exploited.?> As the square lattice and
the simple cubic lattice are bipartite, E; and —E; are
both eigenvalues of A Asa result, only half of the eigen-
values have to be calculated. In addition, the symmetry
of eigenvalues is an excellent test for the numerical accu-
racy in the algorithm used for the eigenvalue problem.

For the study of energy shifts as a result of different
boundary conditions, a Hoshen-Kopelman algorithm?® is
used to grow the largest cluster on a lattice m 2. It is im-
portant to have only one cluster on the lattice to avoid
the influence of many small clusters. Their presence may
spoil the statistics, so all clusters but the largest have
been eliminated. In the existing literature, this point has
not always been properly accounted for. For the diago-
nalization we used the Lanczos algorithm.?”?8
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III. RESULTS

A. Results in three dimensions

For the simple cubic lattice, TEL calculations have
been performed on an 8X8X8, a 12X12X12, and a
16 X16X 16 grid with 50, 25, and 8 realizations, respec-
tively.

With the help of Fig. 1 we explain how the quantum
percolation threshold and the mobility edge are obtained.
n= —log,y0 is plotted as a function of E for the occupa-
tion probabilities p =0.35, 0.45, and 0.55. The energy
spectrum is subdivided into energy bins of width 0.0625.
Within each energy bin, the behavior of 1 with increasing
lattice size (L =8, 12, 16) is plotted from the left. When-
ever 77 increases with increasing system size, i.e., o de-
creases with increasing system size, the states in the ener-
gy interval considered are dominantly localized states.
All bins showing this behavior are shaded. At p =0.35,
all states are localized. At p =0.45 and 0.55, the spec-
trum can be subdivided into a part containing predom-
inantly localized and a part containing dominantly ex-
tended states. For a given value of p we observe in gen-
eral at high energies a decrease of 7, i.e., an increase of o,
so this energy region contains dominantly extended
states. For lower energies we observe an increase of 7,
i.e., a decrease of ¢, so this energy interval contains dom-
inantly localized states.

The regions of dominantly localized and dominantly
extended states are separated by a mobility edge. This
mobility edge has the value E =0.4 for p =0.45 and

PR TR ST SN0 T N N T O TN TS T ) S U S S T S S S S W B M 0

~N
S e S S S B I SO S S B

U TN TN T S TS S S T N

<]
[S]
<]
]
B
s
o
o
<)
@
o

FIG. 1. = —log,oo as a function of E for the simple cubic
lattice for p =0.35, 0.45, and 0.55. For details, see text. 1 and
E in arbitrary units.
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E_.~=0.56 for p =0.55. The mobility edge trajectory, i.e.,
E,_ as a function of p, can be obtained by calculating E,
for a number of different p values. This has been done for
the p values indicated in Fig. 2. The mobility edge calcu-
lated by Soukoulis, Economou, and Grest'’ is contained
in Fig. 2 as well. At p =0.45, intervals containing ex-
tended states can be observed for the first time. It is thus
concluded that p, equals 0.45. As the fluctuations of the
AE values are large, p, can only be determined within a
certain range of the occupation probability. We estimate
this to be 0.45+0.03 from detailed calculations of occu-
pation probabilities in the neighborhood of 0.45.

We observe that the opening of the region which con-
tains dominantly extended states is rather sudden. Below
p =0.45 all states appear to be localized for all energies,
and at p =0.45 a wide energy interval (from E = —0.44
to E=+0.44) opens suddenly in which we find dom-
inantly extended states. Due to the statistics of the
present calculations it is impossible to derive an analytic
form for the mobility edge as a function of the occupa-
tion number.

The total width of the density of states increases with
increasing value of the occupation probability p. At
E =0 the density of states has a spike. This spike in-
creases with decreasing p. It is separated from the
remainder of the density of states by a small gap. The
density of states is shown for three different values of p in
Fig. 3. The spike at E =0 is suppressed. According to
Kirkpatrick and Eggarter,’ this spike is caused by local-
ized states with a high local symmetry. They may occur
even on a large, finite cluster. Figure 3 also shows the
mobility edge obtained with the TEL method. The part of
the spectrum which is dominated by localization is shad-
ed.

B. Results in two dimensions

For the square lattice, the TEL method is applied to
systems containing at least 512 and 1024 particles with 50
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FIG. 2. Mobility edge trajectory for the simple cubic lattice.
Dotted line: mobility edge trajectory obtained by Soukoulis,
Economou, and Grest (Ref. 15). E in arbitrary units.
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FIG. 3. Density of states for the simple cubic lattice for
p =0.45, 0.65, and 0.85; p and E in arbitrary units. The local-
ized part of the spectrum is shaded.

and 25 realizations, respectively. The quantum percola-
tion threshold and the mobility edge trajectory are ob-
tained as described in Sec. II. p, equals 0.70, and a plot
of the mobility edge trajectory is presented in Fig. 4.

To avoid a numerical problem described below, a
different coupling strength y is chosen for systems with a
different occupation probability p. A large value of p
causes a large energy shift AE, so the coupling strength is
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FIG. 4. Mobility edge trajectory for the square lattice. E in
arbitrary units.
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kept small. If p <p,, the energy shift (AE) may be
smaller than the accuracy obtained with the eigenvalue
algorithm, so the results may become meaningless. In
this case y is increased up to &V to enlarge (AE). No
problems of this kind are observed for the simple cubic
lattice, where we have chosen ¥ = = V. The density of
states shows the same features as the density of states in
three dimensions.

IV. DISCUSSION

Literature results for quantum percolation thresholds
are collected in Table I. The situation is as follows. In
three dimensions p, ranges from 0.38 to 0.70. All calcu-
lations based on a scaling hypothesis or related ap-
proaches, i.e., the work of Chang and Odagaki,'”!! Root,
Bauer, and Skinner'? and Soukoulis, Economou, and
Grest,'” lead to 0.42 <p, <0.48 with one exception. An
early work of Chang and Odagaki,'® based on a real-
space renormalization approach, gives a value of 0.70 for

. The method has been applied to larger systems by the
same authors,'! correcting this value which then became
0.42.

The TEL method used in this work is closely related to
scaling methods, because a quantity proportional to the
conductivity o is studied as a function of the system size.
Thus our result, p, =0.45, falls into the expected range.
According to Licciardello and Thouless,?* the inverse lo-
calization length k of an exponentially localized eigen-
function can be obtained by

-1__dino
K—k T (4)

As we have studied systems of only three different sizes
in three dimensions and two different sizes in two dimen-
sions, we can neither decide whether an eigenfunction
obeys an exponential or a power-law decay nor calculate
the localization length quantitatively. Nevertheless, it
can be seen (Fig. 1) that for a given p the localization
length is small at the band edge and large near the mobil-
ity edge.

Raghavan!® has calculated the quantum percolation
threshold by an apphcatlon of the recursion method,*
giving p, =0.38, which is close to the smallest value ob-
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tained with a renormalization approach (p, =0.42)."!

The mobility edges calculated with the TEL method
and with the transfer-matrix approach of Soukoulis,
Economou, and Grest!® almost coincide. The Anderson
transition occurs in a large energy interval at p =0.45
and the mobility edge is moving towards the band edge as
p increases. There always exists a mobility edge up to
p =0.90. Soukoulis, Economou, and Grest'*> have ob-
served a narrow mobility gap at E=0. We think that
this gap is caused by the unique localization properties of
eigenfunctions at E =0. According to Kirkpatrick and
Eggarter,’” all of these states are localized due to a high
local symmetry. As our TEL calculation gives nearly the
same p, value and the same mobility edge trajectory as
the work of Soukoulis, Economou, and Grest,' it sup-
ports their choice of the localization length divided by
the system size, A, /M =0.6, to identify the mobility
edge.

In two dimensions, the literature results for p, range
from 0.59 to above 0.94 and so almost cover the entire
possible interval [p.=0.59,1.0]. Using the TEL method,
we obtain p, =0.70. The mobility edge trajectory looks
similar to the one calculated for the cubic lattice: There
is a large energy interval in which the Anderson transi-
tion occurs, and then the mobility edge moves gradually
towards the band edge.

The methods used in the literature to calculate p, for
the square lattice are described above. Dropping the p,
value of the first work of Odagaki and Chang (see above)
and p, =p,, the results can be grouped as follows: (i) p, is
close to one.!" This value is supported by similar results
for the quantum bond percolation problem.? (ii) Pq
close to 0.7, as obtained by Srlvastava and Chaturvedl
and our TEL calculation. Raghavan'® has calculated a
rather broad interval for p,, ranging from 0.7 to 1.0.

A similar contradiction has been discussed for the An-
derson problem.* The numerical results give either
W./V=6or W./V =0 for the square lattice, depending
on the system size and on the method used. Numerical
applications of the scaling theory of localizations'® lead
to W =0, and the equation-of-motion method’® leads to
W =~6. Results obtained with the TEL method depend
on the system size.”** For small systems, W, =6,
whereas for large systems there are serious doubts about
the existence of an Anderson transition above W =0. It

TABLE I. Results for the quantum site-percolation problem. The abbreviations used are as follows:
RG, renormalization group; GF, Green’s function method; RM, recursion method; EOM, equation of
motion; TEL, method of Thouless, Edwards, and Licciardello; TM, transfer-matrix method; 2D, two di-

mensional; 3D, three dimensional.

Author(s) Reference Method , (2D) , (3D)

Chang and Odagaki 11 RG >0.94 0.42
Odagaki and Chang 10 RG 0.87 0.70
Oagaki, Ogita and Matsuda 17 GF 0.59

Raghavan 19 RM 0.70-1.0 0.38
Root, Bauer, and Skinner 12 RG 0.48
Soukoulis, Economou, and Grest 15 ™ 0.44
Srivastava and Chaturvedi 8 EOM 0.73 0.47
This work TEL 0.70 0.45
Pe 6 0.59 0.31
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is interesting to note that those methods applied to both
the Anderson problem and the quantum percolation
problem lead to the same transition behavior (either a
transition at arbitrary weak disorder or a transition at
finite disorder) for both problems. All of these methods
give a unique result for p, in three dimensions.

According to the analytical scaling theory of localiza-
tion,?? no extended states should occur for any amount of
disorder in two-dimensional systems. A transition from a
weakly localized to a strongly localized behavior is al-
lowed, however. So the result W./V =6, can be inter-
preted as the point of transition from a weakly to a
strongly localized behavior. Strongly localized states
show an exponential spatial decay, whereas the decay of
weakly localized states obeys a power law.

We suggest similar localization properties for the quan-
tum percolation problem on the square lattice: A transi-
tion from weakly to strongly localized states occurs at
p,=0.7 and a transition from extended to weakly local-
ized states at p, =1.0. The type of transition obtained is
determined by the method or the system size used in the
calculation. As we use rather small lattices in the TEL
approach, we obtain the first kind of transition. Further
calculations with different methods, e.g., the transfer-
matrix approach, should be performed for two-
dimensional lattices to resolve the problem.

V. CONCLUSIONS

We have studied the quantum percolation problem nu-
merically for large systems on the square lattice and on
the simple cubic lattice. Quantum percolation thresholds
and mobility edge trajectories have been calculated by the
behavior of a number proportional to the conductivity as
a function of the system size, leading to p, =0.45+0.03
in three dimensions and p, =0.70+0.03 in two dimen-
sions.
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For the simple cubic lattice, the mobility edge trajecto-
ry has been calculated for the first time without making
any assumptions about a critical localization length. The
mobility edge appears to open up rather suddenly at
P, =0.45 over a broad energy interval and then moves
slowly towards the band edge. Except for the states at
E =0, which play a special role, there does not appear to
be a mobility gap at E =0.

To resolve an uncertainty about the value of p, for the
square lattice in the existing literature, we have suggested
the existence of two transitions in two dimensions, ac-
cording to a similar behavior observed for the Anderson
problem in two dimensions. A transition from weakly to
strongly localized states occurs at p,=0.7 and a transi-
tion from extended to localized states occurs at p, =1.0

For the square lattice, the mobility edge trajectory
separating weakly and strongly localized states has been
calculated. The mobility edge trajectory opens up sud-
denly at p, =0.70 similar to the mobility edge trajectory
calculated for the simple cubic lattice.
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