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%'e give a comprehensive presentation of a renormalization-group theory for the study of a set of
one-dimensional Schrodinger equations on quasicrystalline and hierarchical structures. Particular
attention is focused on the spectral clustering and wave-function scaling properties. New results are
given on (i) a general characterization of the wave functions, (ii) the scaling of the localized edge
states, and (iii) a hierarchical-lattice implementation of the renormalization group.

I. INTRODUCTION

Pioneering work on aperiodic GaAs-AlAs superlat-
tices, ' the discovery of the quasicrystalline phases,
and the fabrication of other low-dimensional quasiperiod-
ic structures has generated a renewed interest in the
study of electronic properties of one-dimensional (1D)
quasicrystalline (QC) Schrodinger equations. For excel-
lent surveys, we refer the reader to Refs. 10 and 11.

The spectral and wave-function properties of these sys-
tems have been extensively studied by using several ap-
proaches. ' While most work has been done numeri-

cally, analytical approaches based on trace maps' and
real-space decimation techniques ' have played the
central role in our understanding of such systems. In
1986 we proposed a renormalization-group (RG) theory
based on a decimation scheme derived from degenerate
perturbation calculations. ' While it is exact only in a
certain limit, it offers us an intuitive and coherent picture
about the physics of the system. Besides, it gives a simple
analytical framework, in which extensive analysis of the
spectral and wave-function structures can be carried out.
Here we give a more detailed account of our work. New
results will be presented on (i) a general characterization
of the wave functions, (ii) the scaling of the localized edge
states, and (iii) a hierarchical-lattice implementation of
the RG.

The main character of our RG scheme may be summa-
rized as follows. The original system is decoupled into a
few subsystems, each of which corresponds to the origi-
nal system with renormalized coupling parameters and
length scales. The recursion relation for each branch is
explicitly given, and it only depends on the type of the
branch. The subsystems then branch into sub-subsystems
in a similar fashion, and so on.

More specifically, this RG scheme' is a recursive
block diagonalization of the Hamiltonian matrix
representing the original system. The diagonal blocks are
the subsystems. As a block is further diagonalized into
subblocks, the corresponding subsystem is decomposed in
sub-subsystems. At the end of the RG flow, we obtain
the individual energy levels and wave functions. Their

properties can be inferred from the structure of the RG
flow. In particular, the branching character of the RG
scheme implies a hierarchical structure of the spectrum
and wave functions.

Our RG theory has been applied to an analysis of the
roughening of two-dimensional quasicrystal interfaces by
Garg. ' In this work he computed the leading low-

temperature behavior of the roughness exponent. In an
appendix of his article, he rederived, in slightly diff'erent

terms, some basic results of the RG theory.
The RG theory presented here has also provided a sim-

ple analytic basis for a global scaling analysis of the spec-
trum by Zheng. ' His result compares qualitatively well

with the numerical result of Ref. 15 and is exact in the
limit of IT„/T, i ((1,, where T (T, ) corresponds to the
weak (strong) hopping amplitudes of the chain.

Finally, we should mention that our RG theory can be
applied to other aperiodic lattices with hierarchical cou-
plings. '

This work is organized as follows. In Sec. II we intro-
duce the basic ideas by studying a chain with hierarchical
couplings. In Sec. III we implement the real-space de-
cimation approach for the quasicrystalline lattice. The
branching patterns of the electronic spectra are analyzed
in more detail in Sec. IV. The behavior of the wave func-
tions is considered in Sec. V for the generic case and in
Sec. VI for the localized gap (surface) states. ' Finally, in
Sec. VII we summarize the basic results, discuss the mer-
its and shortcomings of the theory, and point out some
conceivable applications for the future. Appendixes A
and B are devoted to the mathematical details of the cal-
culation of the renormalized coupling parameters.

II. RG FOR A HIERARCHICAL MODEL

Although our real-space decimation approach was

originally introduced through studying a well-known
aperiodic system, a 1D quasicrystal or Fibonacci chain,
the idea can be applied to many other systems. One such
example is the class of tight-binding Hamiltonians on
structures with hopping amplitudes arranged in a
hierarchical manner. This kind of structure has been ex-
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tensively studied. ' In fact, the basic idea of the RG
theory can be most clearly exposed through the hierarch-
ical model. It is for this reason that we shall now consid-
er this model before the Fibonacci-chain case.

Suppose we have a one-dimensional chain of sites on
which a quantum particle lives. Assume that the site en-
ergies are all equal to Ep, and that the hopping ampli-
tudes are nonzero only for nearest neighbors. The
hierarchical structure is then built up by a spatial distri-
bution of the hopping amplitudes. The following descrip-
tion gives a simple example. First, for every other one of
all the nearest neighbors, we take T, as the hopping am-
plitude. Next, for every other one of the remaining
nearest neighbors, we take Tz as the hopping amplitude.
Then, for every other one of the nearest neighbors
unspecified before, we take T3. The process goes on until
all the nearest neighbors are specified. Therefore, a frac-
tion 2 " of the nearest neighbors have T„as the hopping
amplitude. We wish to consider the case that, for each n,
~T„+~/T„~ is much smaller than 1. The hierarchical
structure of the chain is then quite obvious. ' The
sites are grouped into pairs by Ti, and the pairs are
grouped into superpairs by Tz, and so on. This is illus-
trated schematically in the top chain of Fig. 1. It is con-
venient to call a set of sites grouped together by
I T, , Tz, . . . , T„] as an nth-order "molecule". Accord-
ingly, the sites may be called as molecules of zeroth or-
der, and the infinite lattice as a molecule of infinite order.
Thus an nth-order molecule contains two neighboring
(n —1)th-order molecules coupled by T„, each of which
contains two (n —2)th-order molecules coupled by T„
and so on.

At the first step of our RG, we diagonalize the tight-
binding Hamiltonian up to terms of order T, . This is
achieved by writing the Hamiltonian matrix in the basis

Tj T~ Tt T~ TI T~ T

of the bonding and antibonding states of the first-order
molecules. Specifically, if ~1 & and ~2& are the basis states
of the sites of a first-order molecule, then the bonding
and antibonding states of the molecule are given, respec-
tively, by

(2. 1)

and

(2.2)

n p n 1
(2 3)

where T„' is for two nearest-neighboring molecules origi-
nally coupled by T„+,. Incidentally, the above formula is
actually correct to second order in H i. The ignored ener-

gy shifts are of order Tz/T, or smaller. We have there-
fore obtained a renormalized lattice described by the
new-site energy

To be more specific for later reference, we assume that
site 2 is on the right of site 1. The resultant spectrum
then consists of two infinitely degenerate levels at
E =Ep+ T~ where the plus sign is for the bonding states,
and the minus sign for the antibonding states.

When the higher-order bonds (Tz, Ti, . . . ) are taken
into account, these molecular states are coupled together.
However„ the dominant effect is the resonant coupling of
the states with the same energy. We wish to construct an
effective Hamiltonian for each of the degenerate levels.
This can be done according to the formalism described in

Appendixes A and B, where we take Hp as the part of the
Hamiltonian containing all the first-order bonds Ti, and

H, as the remaining part. Let us focus our attention on
the bonding level Ep+ Ti first. As an approximation, the
effective hopping amplitudes will be carried out to the
leading term in the expansion for each of the nearest
neighbors of the molecules only, and the energy shifts
will be ignored. The resultant effective hopping ampli-
tudes I

T', , Tz, . . . ) are then given by

Ep =Ep+ T), (2.4)

FIG. 1. Schematic representation of the renormalized group
(RG) decimation procedure for a lattice with hierarchical cou-
plings (top chain). The hopping energies satisfy T, » T, » T3.
The renormalized chain, shown in the center, consists of the
bonding states of the strongly coupled pairs of sites in the origi-
nal chain. The effective couplings in the new chain are indicat-
ed. An identical procedure produces the renormalized chain
shown in (c).

n p n+~ (2.5)

This completes the first step of our RG.
The subsequent steps go on in a similar fashion. Sup-

and the set of new coupling constants I
T', , T&, . . . I. The

sites of the renormalized lattice are the first-order mole-
cules of the original lattice, and the new-site states are the
bonding molecular states of the original lattice. The re-
normalized lattice has a similar hierarchical structure as
before, with the new sites grouped into molecules of vari-
ous orders by the set of new hopping amplitudes. These
hopping amplitudes satisfy ~T„'+, /T„'~ &&1 as before.
See Fig. 1 for an illustration.

For the antibonding level Ep —T, , we repeat the above
procedure. The renormalized lattice for this level is then
described by a site energy Ep=Ep —T, and by a set of
effective coupling constants I

T', , T'z, . . . I given by
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E(m +1) E(m) ~ y(m)
0 0

y (m +1) ] y(m)
n n + 1 ~ n y ) ~ ~ ~ ~

(2.6a)

(2.6b)

The new renormalized lattice for this level then consists
of the bonding molecules of L as its sites (or site states).
And because

~
T™+,' /T„+"~ &&1 is satisfied for each n

as before, the sites of the new lattice are grouped into a
hierarchical structure of molecules of various orders by
the set of hopping amplitudes IT', +",T~
For the antibonding level, we have

pose we have obtained, after the mth step, a renormalized
lattice L, with a site energy Eo ' and a set of nearest-
neighbor hopping amplitudes I T', , TI ', . . . I with

~T„+', /T„' '~ &&1; then it can be renormalized again to
give rise to two new effective lattices. As was done in the
first step, the Hamiltonian of L is first diagonalized to
the order of T'& ', by using the bonding and antibonding
states of the first-order molecules of L . The two degen-
erate levels so obtained are perturbed by the high-order
hopping amplitudes t T™,n ) 1I, but again the dom-
inant effect is taken into account by the leading terms of
the degenerate perturbation expansion. With a similar
approximation as in the first step, an effective Hamiltoni-
an is constructed for each of the degenerate levels. Thus,
for the bonding level, we have

(2.9)

respectively. These correspond to the renormalized lat-
tices from the second step of the RG. The bifurcation
goes on indefinitely. In general, corresponding to the re-
normalized lattices of the mth step of the RG, there are
2 number of small clusters, located around

Eo+P)+ + ~ ~ ~ +
2 2m

each with a span of about T +, ~/2
If we had chosen the truncation

(2.10)

T, I,,
—T ~, k —23, . . . , (2.11)

W =4T (2.12)

This result is, in fact, exact according to Ref. 43.

III. RG FOR A QUASICRYSTALLINE STRUCTURE

then, after the mth step of the renormalization, we would
have obtained 2 chains, each of which have nearest-

neighbor couplings given by (
—1) 'T +, /2, where n,

is the number of antibonding branches in the m steps of
the renormalization. Since each chain gives rise to a
bandwidth of 4T,„+,/2, the total bandwidth is given by

E(m + t) E(m) 7 (m)
0 0 1

y(m +1) ] y(m)
n n+1

(2.7a)

(2.7b)
A. Hamiltonian

E =ED+1]=Eo+T]+—,
' r2, (2.8)

and by

Having described the general procedure of the RG, we
now introduce a scheme to specify the renormalized lat-
tices. There are 2 number of renormalized lattices pro-
duced in the mth step of the RG. Each of them can be
conveniently specified by a symbolic string p, p2 p
where each p is either b or a (meaning "bonding" or "an-
tibonding"), depending on how the lattice comes from the
renormalization procedure. Specifically, if this lattice
comes from the "bonding" level in the kth step
(k=1,2, . . . , m), then pt, =b; otherwise, pt, =a. In this

way each renormalized lattice has a proper name given
by its symbolic string, and its heritage can be read off
from its name. The length of the "name string" tells the
generation of the lattice. Also, from the name string, the
character of the basis state (in terms of the site states of
the original lattice) as well as the location and width of its
spectrum can be specified.

From the structure of the RG, it is easy to see how the
spectrum of the ultrametric model looks. First, the spec-
trum is centered about Eo and has a total span of about
2(T, ). Second, the spectrum consists of two clusters lo-

cated around Eo+ T~, each with a span of about
2~ T',

~

=
~ T2~, corresponding to the renormalized lattices

from the first step of the RG. Third, each of the two
c1usters again consists of two subclusters, with their ap-
proximate locations and spans given by

t„„~,g„~,+t„„,Q„,+e„f„=EQ„, (3.1)

where e„and P„are, respectively, the site energy and
probability amplitude at the nth site, while

t„„+,=(P„~H~g„+,)=t„+,„=—T„ is the hopping tran-
sition amplitude associated with the bond between sites n

and n +1. Three cases will be considered. In case 3 the
site energies e„are equal to a constant (which will be ab-
sorbed into the eigenenergy E), and the bonds take two

A one-dimensional version of a quasicrystal, also
known as a Fibonacci lattice, can be obtained by project-
ing a subset of the vertices of a two-dimensional square
lattice onto a line with a slope equal to the golden mean
r=2cos(n/5)=(1+v'5)/2. The distance between adja-
cent points in this lattice can only have two values, which
will be denoted by L and S. The exact Fibonacci se-
quence S„ofL's and S's can also be obtained without us-

ing the projection method, but recursively as
S +, = IS ~, S I, with SO= ISI and S, = IL I. An al-

ternative method of constructing the Fibonacci sequence
is to use the "inAation" transformation S~L, L~LS.
This transformation was introduced well before the
discovery of quasicrystals, in 1202, by Leonardo da Pisa
related to his research on population growth models
among mating rabbits. Throughout this paper we will
use the terms quasicrystal and quasiperiodic (QP) in or-
der to denote this kind of aperiodic ordering.

We will concentrate our attention on the tight-binding
model defined by the eigenvalue problem
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values T, (strong) and T (weak), arranged in a Fibonacci
sequence. This sequence is generated by repeated appli-
cations of the (concurrent) substitution rule T„,~T„,T,
and T, ~T, starting from the initial sequence S

~

= T .
Therefore, S2=T T„S3=T T, T „S4=T,T, T„,T T„
and so on. Case 8 is the same as 3, but with the inter-
change T ~~T„so that the strong bonds are more
numerous than the weak ones. In case C all the bonds
are equal to a constant T„=T, but the site energies take
two values V, and V2, arranged in a Fibonacci sequence.
The corresponding energy spectra for models 3, 8, and C
are shown in Figs. 2(a), 2(b), and 2(c), respectively, while
their band-splitting structures are presented, in a
schematic way, in Figs. 3(a), 3(b), and 3(c).

(b)

(c)

FIG. 3. Spectral-splitting pattern for the energy spectra
shown in Fig. 2. (aj, (b), and (c) in this figure correspond, re-

spectively, to the (a), (b), and (c) spectra of Fig. 2, and to models
A, 8, and C. Thus the off-diagonal models A and 8 have three
and five main clusters of states, respectively; while the diagonal
QC case has two main clusters. Every main cluster is composed
of three subclusters, each of these has three sub-subclusters, and
so on.

B. Summary of the RG analysis
of the canonical case A

En

E„

(b)

The basic idea of our RG theory' is summarized here
for the canonical case A. It turns out that cases 8 and C
reduce to case 3 after one step of renormalization. We
assume T„, /T, ~

&& l. In the first step of the RG, we di-

agonalize the strong bonds. If the weak bonds are ig-
nored, then the spectrum will consist of three degenerate
levels, corresponding to states on the isolated sites
(atoms), and the bonding and antibonding states (mole-
cules) on the pairs of sites originally connected by the
strong bonds. These levels are separated by the energy

~ T, ~, which is, by assumption, much larger than the ig-
nored weak bonds. When the leading corrections of the
weak bonds are taken into account, the different states in
a degenerate level are connected, but the states belonging
to different levels are decoupled. The result is three in-
dependent sublattices: (1) bonding molecular chain, (2)
atomic chain, and (3) antibonding chain. They have re-
normalized nearest-neighbor bonds

(c)

2
M' tt'

2T.,
'

2

3
W

T2'
S

—T2
IL'

(3.2)
500

n
1000

FIG. 2. Energy spectrum for a tight-binding model on a
quasicrystalline chain. The chain has 987 sites and fixed-end
boundary conditions; n labels the eigenstate with energy E„.
The eigenenergies are plotted from left to right in increasing or-
der. (a) Case A, Fibonacci sequence of two hopping transition
amplitudes with T„,=1, T, =5, with T more numerous. (b)
Case 8, same as before, but now with T, more numerous. (c)
Case C, QP sequence of two on-site energies V, = —5 and
V, = +5, and uniform hopping amplitude T = 1.

respectively, all arranged in a Fibonacci sequence as

I T, T, I was in the original lattice. In the subsequent
steps of the RG, each of the sublattices is renormalized
again into three sub-sublattices, and so on.

A direct consequence of this RG analysis is that the
spectrum should have a hierarchical pattern: three major
clusters, each of which is trifurcated into three subclus-
ters, and so on. The middle subclusters correspond to the
atomic sublattices, and they are narrower by a factor of

~
T /T, ~

than the side subclusters sharing the same
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parent cluster. The relative spectral weights of the three
subclusters from a given parent cluster is

(a)

1 1 1

72
' 73 '

72
(3.3) (b)

as can be obtained by counting the relative number of
sites involved in a sublattice.

After this summary we consider in detail the three
cases described in Sec. III A.

IV. BRANCHING PATTERNS
OF THE ELECTRONIC SPECTRA

(c)

FIG. 4. Schematic representation of the decimation pro-
cedure for the central subclusters of the energy spectrum of the
off-diagonal Fibonacci lattice, case A. This decimation pro-
cedure favors the atomic sites. The double (single) lines denote
the strong (weak} effective bonds.

A. Case A

Figure 2(a) is a typical plot of the energy spectrum for
this case. One of the goals of our RG, as described
below, is to explain the trifurcating pattern exhibited in

the spectrum.
In the absence of the weak bonds (T =0), the Fibonac-

ci lattice is broken into isolated sites (atoms) and double
sites (molecules). The spectrum then consists of three
infinitely degenerate levels: E=O for the atomic states
and E =+T, for the bonding and antibonding molecular
states. As we take the weak bonds into account, these
states are coupled together. However, the dominant
effect is the resonant coupling among the states of the
same energy.

In the following we will only keep the first few terms in

Eq. (A7), just to couple the states in a given level togeth-
er. Also, energy shifts (which are absent for the E =0
level) of the same order as the renormalized weak bond
are neglected in order to simplify the description of our
RG, although they can be included in all steps of the re-
normalization.

For the level E =0, the renormalized lattice consists of
the atomic sites in the original lattice. These sites are
connected by the effective bonds —T /T, and T„/T, .
The former is for pairs of atoms separated by one mole-
cule, and the latter is for those pairs of atoms separated
by two neighboring molecules. These bonds are arranged
in a Fibonacci sequence, and so the structure of the new
lattice is the same as its mother lattice (see Fig. 4).

For the level E=T„ the basic units of the renormal-
ized lattice are the bonding molecular states

Finally, for the level E = —T„we have a new lattice of
antibonding molecules:

(4.2)

where ( ~i ), ~i + 1) I are again the pairs of strongly cou-
pled sites in the original lattice. The new effective bonds
are —T,„/2 and T„,/(2T, ) arranged in a Fibonacci se-

quence. This completes the first step of our RG analysis.
In the second step of our RG analysis, we first remove

the weaker bonds in the new lattices obtained in the first
step. We are then left with the isolated units (supera-
toms), and bonding and antibonding double units (super-
molecules). The three levels E =0 and +T, are then each
split into three sublevels. For each of these sublevels we
can construct a Fibonacci lattice, using the method of
resonant coupling. This decimation procedure is
schematically represented in Figs. 4 and 5.

This procedure continues on and on, and eventually we
obtain a spectral pattern of three main clusters ("bands"),
each of which consists of three subclusters (subbands),
and so on. In general, the middle cluster (or subcluster)
is narrower than the side clusters by a ratio of order

~ T„,/T, . Also, the number of states in the central clus-
ter is 1/r times that in a side cluster, according to (3.3).
This explains the trifurcating structure of the spectrum
numerically observed by many authors. If the number of

(a)

—(~i )+~i +1&),1

v'2
(4.1)

where I ~i ), Ii +1) ) are the pairs of strongly coupled
sites in the original lattice. These units are connected by
the effective bonds T /2 and T„,/(2T, ). The former is

between the bonding states of neighboring molecules in

the original lattice, while the latter is for the bonding
states of molecules mediated by an atomic site. Again,
the arrangement of the bonds is a Fibonacci sequence,
giving the new lattice the same structure as the original
one (see Fig. 5).

(c)

FIG. 5. Decimation procedure favoring the bonding molecu-
lar states. The double (single) lines denote the strong (weak)
effective bonds. The sites in chain (b) correspond to the bonding
states in chain (a). Similarly, the sites in chain (c) correspond to
the bonding states in chain (b). This procedure works also for
the antibonding states.
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Ep+ I

(T, =l) bonds. The weak bonds have not been drawn,
but their locations are indicated by their strength t, while
the strong bonds are indicated with single lines. The en-
ergy levels corresponding to the strongly coupled three-
site clusters (triatomic molecules) I~i &, ~i+1&, ~i +2&)
are E=O, I-&2, with wave functions, respectively, given
by

(4.3)

(4.4)

f2

while for the dimers (diatomic molecules) I ~k &, ~k+1& ),
E =+1,with wave functions given by

—(lk &+lk+») .
2

(4.&)

FIG. 6. Level-splitting pattern for the otf-diagonal QP case A

corresponding to the energy spectra in Figs. 2(a) and 3(a), and
the decimation procedures in Figs. 4 and 5. The first bonding
and antibonding energy levels have an energy splitting of the or-
der of t & 1, while the central level splits as -t'. The next step
produces energy-level splittings as indicated. Note that the side
(either top or bottom) clusters are wider than the corresponding
central cluster.

states in a cluster is a Fibonacci number F„,then the cor-
responding three subclusters will have the following num-
ber of states: F„2,F„3,and F„2[see Figs. 2(a) and 6J.

It must be emphasized that our RG approach is only
exact in the limit of ~T /T, ~

&&1 [or ~T/(I't Vq)l &&1
in case C, to be studied later]. However, as can be
verified numerically, even ~T /T, ~

=0.5 can be regarded
as «1, for the purpose of giving qualitative predictions.
When

~
T /T, ~

& 0.2, predictions about the spans of the
clusters become very accurate.

Therefore, when t =0 we have five infinitely degenerate
levels in the system as is illustrated in Fig. 8.

Because of the energy gaps between the five degenerate
levels, the coupling among them due to the weak bonds is
negligible for t «1. However, the weak bonds will play
an important role in splitting each of the degenerate lev-
els. Let us focus our attention on the levels E=+v'2.
The constituent states are the bonding states of the tria-
tomic molecules. These states are schematically shown as
rectangles in Fig. 7(b). There are two types of couplings
among them: the direct ones, T,

' = t /4, and those
through the dimers, T' =t /4. One can check explicitly
that the distribution of these two types of bonds form a
Fibonacci sequence, with the weak ones more numerous
than the strong ones. This is exactly case A, studied in
the last subsection.

A careful study of the other degenerate levels shows
that they are all equivalent to Fibonacci chains of case A,
with the pairs of coupling parameters listed in Table I.

B. Case 8

We now consider the off-diagonal case 8 Figure 7.(a)
shows the QP sequence of weak (T:t &1) and strong—

(a)

L&

2(ts)

t2 (b)

I
(t)

FIG. 7. Decimation procedure favoring the states in the edge
clusters E=+&2 of the spectrum in case B. In chain (a) the

hopping elements within the indicated groups are 1, and those
between the groups are t &1. The open rectangles in (b)

represent the bonding states of the triatomic molecules in (a),
and t, t are the new coupling energies between them. The
strongly coupled units in (b) form the units in (c).

FIG. 8. Energy-level-splitting diagram for the off-diagonal
case B. The energy levels group in five clusters, each one of
them trifurcating indefinitely. The levels enclosed by the circle
have been magnified and presently separately on the right side.
The gap sizes are indicated for the edge clusters and, inside the
parenthesis, for the central cluster.
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4
t

2

2

2
t

4

TABLE I. Renormalized couplings for case 8: The five ener-

gy levels obtained in the first approximation are shown in the
first column.

T T'
T:= T'=

V, —V,
' "'

(V, —V, )' (4.6)

white sites are directly coupled to first order in T, and
some of them are coupled through the dark sites to
second order in T. A simple calculation gives the two
types of coupling parameters as T,

' = T and
T' = T'/( V, —V, ). They are arranged in the same order
as in case A.

In a similar fashion the dark sites in the degenerate lev-
el E= V2 are found to be coupled by the two types of
nearest-neighbor bonds:

Consequently, all the five degenerate levels will trifurcate
indefinitely in the manner described in the last subsec-
tion. Figure 8 shows the level splitting pattern.

In summary, in case B the Fibonacci lattice breaks into
biatomic molecules and triatomic molecules, if we ignore
the weaker bonds. There are five levels in the first ap-
proximation: E =+T, for the bonding and antibonding
biatomic molecules, and E =0,+&2T, for the three nor-
mal modes of the triatomic molecules. An effective Ham-
iltonian can be constructed within each of the degenerate
levels. But the resultant sublattices have only isolated
units and double-unit molecules in a further approxima-
tion. Therefore, the previous arguments apply for the
subsequent analysis. So the spectrum should consist of
five main clusters, each of which trifurcates indefinitely
[see Figs. 2(b) and 3(b)].

C. Case C

Let us now consider the diagonal QC Hamiltonian
(case C), in which the off-diagonal hopping elements are
all equal to T, and the on-site energies V, , V2 are distri-
buted quasiperiodically. This lattice is represented
schematically in the top chain of Fig. 9.

We are interested in the situation
~ V, —

V2 ~
))T.

Then, to a first approximation, we may neglect the hop-
ping energies. The resulting energy spectrum consists of
two degenerate levels E= Vi and E= V2, with the wave
functions localized at the corresponding sites.

In the next approximation we take into account the
couplings within each degenerate level due to the hop-
ping energies. Consider, for instance, the level of E = V,
corresponding to the white sites in Fig. 9. Some of the

Again, these bonds are distributed as in case A.
In summary, in case C the first approximation of ignor-

ing the bonds results in two degenerate levels. An
effective Hamiltonian can be constructed for each of the
levels. It can be shown that the resultant sublattices have
the same structure as the Fibonacci lattice in case A.
Thus the whole spectrum should consist of two main
clusters, each of which trifurcates indefinitely [see Figs.
2(c) and 3(c)].

U. %'AVE FUNCTIONS

Our RG scheme gives a natural coding of the wave
functions, by a symbolic string p, p2p3

. . The p s take
values of t, c, and b, meaning top, central, and bottom, re-
spectively. For instance, if the energy belongs to the cen-
tral cluster, the top subcluster of the central cluster, etc. ,
then we associate with it a string ct . If the string has
a periodic tail, then we call the state a rational state. It is
not difficult to see that for a rational state, the wave func-
tion should have a self-similar behavior. Chaotic behav-
ior of the wave functions may appear for irrational states.

Consider the state with an energy in the center of the
spectrum. This state is coded by the symbolic stringcccc, meaning that the energy belongs to the central
cluster, the central subcluster of the central cluster, and
so on. According to the RG analysis, in each step of
specializing into a sublattice, the wave function gets
enhanced by a factor of ~T, /T ~, while the average dis-
tance between the sites, L, gets enlarged by a factor of ~ .
We therefore have

(5.1)

—C G—W &—C 0—W G--C

(b)

where L is a distance along the chain.
Next, we consider a state at the edge of the spectrum.

This state is coded as sss, meaning that the energy
belongs to a side cluster, a side subcluster of side cluster,
and so on. In this case the average distance between the
sites gets enlarged by a factor of r by renormalization.
Therefore,

FIG. 9. Decimation procedure for the diagonal Fibonacci
chain, case C. The two values of the on-site energies are respon-
sible for the splitting of the energy spectra into two clusters. If
we decimate one type of sites in (a), say, the dark ones, we ob-
tain a chain of sites of equal on-site energy, but with a Fibonacci
sequence of strong and weak nearest-neighbor bonds, exactly as
in case A.

(5.2)

These results have also been obtained using trace-map
formulas. '

Finally, we consider a state coded by a string of mixed
s's and c's. If the concentration of the c's is p, and that
of the s's is p, , then we should have
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I 2p +3p

(5.3)

This is, to our knowledge, a new result.
In order to verify the results of our RG approach fur-

ther, we plotted the probability density (PD)

(5.4)

summed over the states belonging to certain clusters and
subclusters in the spectrum; n represents the site position
along the chain. In Fig. 10(a) the PD over the central
cluster is plotted as a function of n. The PD is uniformly
peaked on the isolated sites, which corresponds to the re-
normalized lattice obtained in the first step of our RG
analysis for the E =0 level. The PD over the central sub-

cluster of the central cluster [Fig. 10(b)] is uniformly
peaked on the sites corresponding to the "superisolated"
atomic states in the second step of our RG analysis. As
we narrow the range of the spectrum toward the center,
we see a very clear hierarchical structure in the succes-
sive PD's [Figs. 10(c) and 10(d)], exactly corresponding to
what the RG suggests. On the other hand, as we plot the
PD's over the top cluster [Fig. 11(a)], top subcluster of
the top cluster [Fig. 11(b)], and so on [Figs. 11(c)—11(e)],
we see another type of hierarchical structure correspond-
ing to the bonding molecular states, bonding "super-
rnolecular" states, and so on. It is important to note that
lattices (a), (b), and (c) in Fig. 4 correspond, respectively,
to (b), (c), and (d) in Fig. 10. Also, lattices (a), (b), and (c)
in Fig. 5 correspond, respectively, to (c), (d), and (e) in

nh'h'nn eh~h nn 'n 4h'. nhlnl'lnn'nn (I'nn'n h~ 'f~n. 'n nn h'nn hh v nn nn n .nn n nn nn n nn nh

h 3 hMAM IUUUI hMMD h ~ IUUUI h ~M IUUUI h A. A Jl ILA A il CRATE h A h 4 h lLA A IUUUI. )t A A il )UUUI IL~ AA ~ hAVI h AA 9 )UUUI )h

Ad)IA W A Akh A ~MhA w m. Mdh A

200
Position Along Chain, n

A Ah&

400

FIG. 10. Probability density P„=g,ec~g„"~' of states in a central cluster C vs site position n along the chain. The results are for
the off-diagonal case A. In (a), C=C, l„ the central main cluster around F. =0. In (b), C=C„,, the central subcluster of C, l, . In (c),
C=C(3) the central subcluster of C 2, . And in (d), C=C,4„ the central subcluster of C(, ). It is remarkable that the lattices of Figs.
4(a), 4(b), and 4(c) correspond to the probability densities shown in (b), (c), and (d), respectively.
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G(n, n';z) =Go(n, n', z )

1 —EGo(a, a;z )

XGo(n, a;z)G(a, n';z) .

The poles of 6 are given by

=1Go(a, a;z) =—,

(6.2)

(6.3)

that includes this gap. This cluster corresponds to a n-
step renorrnalized chain whose "sites" consist of L„sites
in the original chain. Then L„ is the natural length scale
associated with the gap under consideration. The locali-
zation length of the gap state in it should be of order L„.

The length L„can be determined from the code string

p&p2 p„according to Sec. V. Suppose the string con-
sists of n, number of s's and n, number of c's, with
n, +n, =n. Then we have

or 3n +2n
C

tl (6.7)

Suppose Ho represents the Hamiltonian of a quasicrys-
talline system. It is known that Ho has, in general, a
Cantor-set-like spectrum. I.et us assume that z lies in a
gap. At the edges of the gap, the density of energy levels
diverges. Thus Go(a, a;z) will be positive infinite as z ap-
proaches the left edge, and it becomes negative in6nite as
z approaches the right edge (see Fig. 12). Also, Go(a, a;z)
monotonically decreases within the gap. Thus Go(a, a;z)
must go through the values 1/6 at some point in the gap.
This point is the energy of a gap state. ' This gap
state must be exponentially localized since

1
gk(n)gk(n')= c~ ~dz G(n, n', z)

2~~' '0

Go(n, a;zo)Go(a, n';zo)

(d jdzo)Go(a a;zo)

(6.5)

(6.6)

Q(a, a; z)

Gap
edges

zo

FIG. 12. Unperturbed Green's function vs energy z in a gap
of the spectrum. At the edges of the gap, the density of energy
levels diverges, so that Go also diverges there. The energy zo is
that of an exponentially localized gap state.

where Go(a, n;zo) and Go(a, n', zo) are exponentially
small when n and n' are far from the site a, respectively.

In summary, within each gap of the original chain,
there will be an impurity or gap state localized about
n =a. Because there are an infinite number of gaps, there
must also be an infinite number of impurity states.

The earlier a gap appears in the RG procedure, the
more localized is the gap state in it. Consider the small-

est cluster (to be coded as pipz p„) in the spectrum

Finally, let us consider the special case of b, ~ oo, then

G(n, n';z)=Go(n, n', z)

Go(n, a;z )G(a, n ';z )
(6.8)

Go(a, a;z)
There are three possible behaviors of the gap states
Pk(n): (i) Pi, (n) is identically zero for n a, while it is
finite for n )a. (ii) gi, (n) is identically zero for n a, but
it is finite for n (a. (iii) 1(&(n) is finite on both sides.

In cases (i) and (iii) the impurity state is also a surface
state for the right part of the chain. On the other hand,
case (ii) contributes nothing to the right part of the chain.
Generally speaking, case (iii) is very unlikely, unless the
original chain is symmetric about n =a. Thus, under
general circumstances, there will be a fraction of these
impurity states that actually correspond to the surface
states of the right part of the chain.

VII. CONCLUSIONS

We have presented a RG analysis on the spectral and
wave-function properties of quasicrystalline and
hierarchical chains. We have shown how the trifurcating
or bifurcating structure of the spectrum is directly related
to the self-similarity of the underlying lattices. The RG
scheme also gives a natura1 coding of the wave functions
according to their positions in the spectrum, from which
the scaling structure of the wave functions is easily
characterized.

Our RG theory is based on a novel real-space decima-
tion procedure. The usual decimation technique is to
eliminate all but a chosen subset of sites, resulting in re-
normalized coupling parameters which are energy depen-
dent. The energy dependence makes the subsequent
analysis very difficult, and numerical computations are
indispensable. In our case the decimation is through a
block diagonalization of the original Hamiltonian. Each
block represents a decimated chain with renormalized
coupling parameters that are energy independent. The
trace-map technique is an alternative powerful tool to
study the spectral and wave-function properties on lat-
tices with inflation symmetry. Unfortunately, this
method has only given analytical results at a few points in
the spectrum.

The global multifractal analysis of the spectrum has
been carried out by Zheng, ' using the analytical formu-
las in the present RG theory. His result agrees with the
numerical results of Ref. 15 asymptotically as T /T, ~0.
Such an analysis has so far not been done for the wave
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functions using the analytical tools of the present RG
theory.

We have so far only studied four cases using the RG
theory. It is also possible to apply the method to other
1D systems. One point should be emphasized. In the
present work we initially constructed a RG theory, which
is then numerically verified by plotting the probability
density over the clusters, subclusters, and so on. For a
general quasiperiodic system, it might not be easy to find
a RG theory beforehand. Thus, in a numerical approach,
we suggest that one should find not just the energy spec-
trum, but also the probability density of the clusters, sub-
clusters, and so on. There should be an intimate relation-
ship between the behavior of the densities and the energy
ranges of the clusters. By doing so, one can gain deeper
insight into the problem. With luck, one may even be
able to find a RG theory afterwards. The probability
densities may also be plotted in momentum space, which
could be useful for nearly free quasiperiodic systems. In
this case the wave function peaks in momentum space,
but not in real space.

The possibility of applying the present RG theory to
higher-dimensional lattices has not been explored
sufficiently; however, we estimate it to be unlikely. One
major difficulty is the proliferation of more and more
coupling parameters under renormalization. This is an
unfortunate feature shared by other RG theories.
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Thus the effective Hamiltonian for the degenerate level is

1
H pHo+'QH]Q+QH, P PH, Q

0 1

(A6)

The previous expression may be further expanded in
powers of H, as

1H„=gaoQ+QH, Q+QH, P PH, Q
0

+QH, P PH, P PH, Q+1 1

(A7)

which generalizes the Brillouin-Wigner perturbative ex-
pansion. In practice, we only need to keep the leading
nonzero terms in this expansion.

We then substitute it into (A2) to obtain an equation for
Q~q) only:

(E —Ho)glq&= Qa, Q Qlq&

This research was supported by the Physics Depart-
ment of the University of Michigan and the University of
California, Santa Barbara, by the U.S. Office of Naval
Research Grant No. N00014-84-K-0548, U.S. Depart-
ment of Energy Grant No. DE84ER45108, and National
Science Foundation Grants No. DMR-87-03434 and No.
PHY-89-04035, supplemented by funds from U.S. Na-
tional Aeronautics and Space Administration NASA.

APPENDIX B: COMPUTATION
OF THE RENORMALIZED COUPLINGS

Our goal here is to calculate in detail the effective cou-
plings of a renormali. zed chain. Let us consider, for in-
stance, the four-site chain shown in Fig. 13. It consists of
two strongly coupled pairs of sites separated by a weak
coupling given by T„,.

The original basis t ~
1 ), ~2), ~

3 ), ~4) I consists of four

APPENDIX A: DEGENERATE
PERTURBATION FORMALISM

Our goal now is to obtain a generalized Wigner-
Brillouin perturbative expansion appropriate to a degen-
erate level. Let us denote by Ho the Hamiltonian in the
absence of weak bonds, and by H, the perturbation to Ho
due to the weak bonds. Let Q and P = 1 —Q denote the
projection operators onto and off the subspace of a given
degenerate level of Ho, respectively. By definition, Q and
P commute with Ho and with each other, and they satisfy

Q = Q and P =P. By acting with Q and P on our eigen-
value equation

Ts
(~~
[z&

Tw Ts

~) Q

+ E=+Ts

14,+&

(E —Ho) I y) =a,
I q), (Al)

we obtain two coupled equations for Q ~g) and P ~g) as

(E —Ho)glt& =Qa Q Qlg&+QH, P.Plt&,
(E Ho)Pjq) =Pa, g.g—~q)+PH, P P~q& . (A3)

From (A3) we have

E= Ts

14, &

FIG. 13. Computation of the renormalized couplings for the
top chain with four sites. The weak bonds have a negligible
effect in mixing the bonding (E= T, ) and antibonding
(E = —T, ) levels. However, they can have a big effect in split-
ting the degenerate levels.
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and its effect on the antibonding level is given by

(B6)

T„/P T,

E=+Ts

E= —Ts

These considerations have taken into account the leading
two terms in H,~ given in Appendix A. Higher-order
terms are negligible.

Next, we will consider a more complicated case, in
which the next-higher-order term of H,z must be kept.
Figure 14 shows a five-site chain, with two strong bonds
and two weak ones.

The unperturbed Hamiltonian H0, due to the strong
bonds, is diagonalized in the following basis:

(I»+12&),
2

FIG. 14. Computation of the renormalized couplings for the

top chain with five sites. The corresponding bonding (E =T, )

and antibonding (E= —T, ) degenerate levels, and the only non-

degenerate (E =0) level, are shown. The effect of the weak cou-

plings is to lift the degeneracy of the antibonding states. The
effective coupling among states that belong to the same degen-

erate subspace is indicated.

normalized site states. The Hamiltonian has one term H0
due to the presence of the strong coupling Ts and a per-
turbation H, due to the weak coupling T„. The only
nonzero matrix elements of H0 are given by

& IIH012& =&2IHo I & =&3IH014& =&41H013&

(Bl}

—(14&+I & &),
2

(B7)

In this expression we have E = T„and

(B9)

Clearly, Holy,
+-

&
=+T, I 1(&,

+—
& (i =1,2}and Ho p3 & =0.

We wish to obtain the coupling between the two degen-
erate bonding states 1(,

+
& and If&+ &. The first term in

perturbation theory vanishes, i.e., QH, Q =0. The
second-order term in H,z provides the leading nonzero
contribution to the coupling

&02'IH, trip;&= Q,
+ H, P PH, 1(,

+ . (B8)
1

0

while the only nonzero matrix elements of H, are
&21H, 13& =&31H, 12& =+T . Ho is diagonalized in the
following basis:

The only nonzero term of (B8) is

( 42 I H1 03 & (IP3 03
s 0

(B10)

—(I»+ 2&),1

(13&+14&) .v'2

which gives

T2
gfflg)' =

e2 T V2 2 TS S

(B1 1)

The two bonding states Ig&+ &, It(&z & are degenerate and
have the energy T„while the antibonding states are also
degenerate with energy —T, .

Because of the large gap, H, has a negligible effect in
mixing the bonding and antibonding levels. However, H&

can have a big effect in splitting the degenerate levels.
Since

Similarly, the coupling between the two antibonding
states is given by

(B12)

where now E = —T„and

and

T
H, ly+-, &

=+
v'2 (B3)

P =
I q,
'

& & q,
' I+ I q,

'
& & q,+ I+ lq, & & &31.

The only nonzero term in (B12) is

(B13)

( 4z IHi IA&(4'| ~ H 6)(AIH|14j & &&&&4&

0

the effect of H, on the bonding level is given by
which gives

(B5) efl' & ~2 T
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