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The s-d (or s-f ) interaction model is used to study the bulk and surface magnetic excitations of a

semi-infinite ferromagnetic semiconductor. A formalism is established to obtain Green functions

which provide the dynamic response of the system and from which the surface and bulk excitations

and their dispersion relations are calculated. Results are deduced for both narrow-band and wide-

band ferromagnetic semiconductors. The applicability to particular materials, such as the spinel-

type ferromagnetic semiconductors is discussed.

I. INTRODUCTION

There has been considerable interest in the study of
surface excitations in various magnetica11y ordered sys-

tems. It has been shown for insulators within the frame-

work of the Heisenberg exchange model that in addition

to the bulk spin-wave excitations there may be surface

spin waves whose amplitudes decay exponentially away

from the surface of the material toward the interior (e.g. ,

see Refs. 1—3 for reviews).
Surface magnetic modes have also been treated exten-

sively by macroscopic methods involving Maxwell's equa-

tions in cases where the effects of long-range dipole-

dipole interactions prevail over the short-range exchange
interactions. In the magnetostatic regime these surface

modes were studied in detail for ferromagnetic s1abs, and

this type of calculation has more recently been extended

to infinite and semi-infinite superlattices of ferromagnetic
and antiferromagnetic metals and semiconductors in vari-

ous geometries. The conditions for magnetostatic
theory can often be realized to a good approximation in

light-scattering experiments, " where excitations of
very small wave vectors are probed.

A microscopic approach to the surface spin waves in

itinerant electron systems has been recently addressed' '
in the context of the Hubbard model. In this case
different approximations introduced for the surface have

led to some differing predictions for the spin-wave spec-
trum of ferromagnetic metals.

In this paper we address the problem of obtaining the
surface excitations in magnetic semiconductors where a

clear distinction can be made between localized and

itinerant spins (e.g. , see Refs. 14—17 for reviews). We

present here a microscopic calculation of the surface and

bulk excitations in degenerate ferromagnetic semiconduc-
tors using the s-d (or s f) interaction mod-el which con-
sists of a Heisenberg ferromagnet interacting with the
itinerant spins of the conduction electrons via a contact-
type s-d (or s f) interaction. Som-e of the ferromagnetic
semiconductors of interest include europium chal-

cogenides (such as EuO and EuS) and spinels (such as

CdCr2S4, CdCr2Se4, and HgCr2Se4); others are listed in

Ref. 15. In some cases aspects of their magnetic proper-
ties have been studied experimentally by light scattering,
either by Brillouin scattering from low-frequency spin
waves or by spin-dependent Raman scattering from opti-
cal phonons (e.g., see Refs. 11, 18, and 19, and references
therein).

There have been some calculations applying the
s-d (or s f) m-odel to inftnitely extended ferromagnetic
semiconductors. In addition to the usual "acoustic"
spin-wave branch it has been shown ' that there is a
higher frequency (or "optical" ) spin-wave branch and the
Stoner-like continuum of magnetic excitations. Estimates
were given ' for the frequencies and relative intensities
for light scattering from the two spin-wave branches. In
the present work we show that there may also be local-
ized (or surface) spin waves in the case of semi-infinite

ferromagnetic semiconductors. Low-energy surface
states in semi-infinite ferromagnetic semiconductors have

previously been considered in the magnetic-polaron re-

gime
In Sec. II we introduce the Hamiltonian describing a

ferromagnetic semiconductor and obtain general expres-
sions for the magnetic Green functions within a matrix
formalism. A general solution of the problem is rather
diKcult analytically and so we proceed to consider some
special cases in more detail. In Sec. III we consider
narrow-band semiconductors (such as the chromium
spinels) with W ((IS, where W is the conduction band-

width, I is the contact interaction energy, and 5 is the
spin of the localized electrons. Some numerical illustra-
tions of the surface and bulk spin-wave spectrum are
presented in this section for the limiting case of 8 =O.
In Sec. I& we present some results for wide-band serni-

conductors (such as EuO) with W» IS where we use
linear response arguments to solve for the magnetic
Green functions. In doing so the transverse spin suscep-
tibility of the conduction electrons has to be evaluated
and our results are compared with some previous calcula-
tions. ' The general evaluation of the surface spin-
wave modes in this regime can only be done by numerical
means. In Sec. V we present some analytical results for
the case of narrow-band ferromagnetic semiconductors
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with a small but finite width. We present the conclusions
in Sec. VI and also provide in here some discussion of the
surface modifications to the Stoner continuum.

II. MATRIX FORMALISM FOR THE MAGNETIC
GREEN FUNCTIONS

ZX jim j'a gejjti Q Xs'
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(2)

&t= —QI S; s, . (3)
I

Here S; and S are spin operators for the localized spins
at sites i and j in the semi-infinite medium, J, is the
Heisenberg exchange interaction, assumed isotropic, and
HQ is a static magnetic field applied in the z direction (the

In this section we present calculations for obtaining the
magnetic Green functions for a semi-infinite degenerate
ferromagnetic semiconductor occupying the half-space
z ~0 and described by the s-d (or s f) in-teraction model.
The full Hamiltonian of the system is expressed as the
sum of three terms: a Heisenberg Hamiltonian &M for
the localized spins (of d or f type), a Hamiltonian &z
representing the kinetic and Zeeman energy of the con-
duction (s) electrons, and an s-d (or s f) intera-ction
Hamiltonian &t, where

AM= —
—,
' g J„S;S, —gPitHQ gS;,

((S, (t);S;(0))) = i0(t)(—[S,'(t), S;(0)]) . (4)

By constructing the frequency Fourier transform
((S;;S, )),

„

from the standard Green-function equation
of motion used in the random-phase approximation at
T &(T„weobtain the following equation:

direction of static magnetization). Also, t;, is a hopping
term and I, is a contact interaction energy. The spin
operators s; of the conduction electrons at site i can be
expressed as s, =a;+a, , s; =(a;+a, + —a; a, )/2,
where a, and a, are, respectively, the creation and de-
struction operators for an electron at site i and having a
spin index o (with tJ =+1 corresponding to up and down
projections of the electron spin with respect to z, the
quantization axis). We have denoted the Lande g factors
of the localized and conduction electrons as g and g„re-
spectively. It has been found' that the s -d interaction
may greatly modify g, from its free-electron value of 2.
We have neglected in Eq. (2) the direct Coulomb interac-
tion between the itinerant electrons (as would be included
in the Hubbard Hamiltonian). Instead, the itinerant elec-
trons have an indirect interaction via their coupling to
the localized spin system.

We now introduce the transverse magnetic retarded
commutator Green functions for the localized spin opera-
tors, defined in the conventional way as

&Qi gP IIo I—;(,& ) —S—g J„((S,+;S, ))„+Sg J;,((S,+;S, ))„=—5„I,S((s,+;S—, )) (5)

Here S is the averaged spin projection of the localized
electrons (assumed independent of the site at T ((T, ).
We exploit the translational invariance in the xy plane to
define the Fourier transform

((S;+;Sj )) =—g exp[ik~~ (r; —r, )]G „(k~~,Q7),
kll

(6)

where k~~=(k„,k~) is a two-dimensional wave vector
parallel to the surface, and m and n are positive integers
labeling the lattice planes (parallel to the surface) that
contain sites i and j, respectively. Hence n =1 is the sur-
face layer, n =2 the next layer, and so on. The normali-
zation constant X in Eq. (6) denotes the number of sites
in any of the lattice planes.

We now simplify Eq. (5) by assuming that the localized
spins are arranged in a simple-cubic structure with a as
the lattice parameter and with crystallographic axes
parallel to the coordinate xyz axes. (Note that the coor-
dination of the nonmagnetic ions in a compound semi-
conductor may generally be such as to make the overall
symmetry noncubic. ) We further assume for simplicity
only nearest-neighbor exchange interactions and take J,
to have the value J, if both spins i and j are in the surface
layer (n =1) and the bulk value J otherwise. We similar-
ly assume that the hopping term t, takes the value t, if

both the electrons at sites i and j are in the surface layer,
and otherwise it takes the bulk value t. We also assume
that the on-site contact interaction energy I; takes the
perturbed value I, only at the surface layer, but otherwise
it has its corresponding bulk value I. Finally we take, for
generality, (s,') to have the value (s,') only at the sur-
face layer and the bulk value of (s') in every other layer.
We can now rewrite Eq. (5), after using the Fourier trans-
form in Eq. (6), in terms of infinite-dimensional matrices
as

( AQ+DQ)G(k, l, co) = — IQ+ —l7! G'(klan, tQ)
1 I

aJ J
where the elements of the matrix G(k~~, Q7) are the Green
functions G „(k~,co) defined in Eq. (6) and the elements
of G'(k~„iQ) are similarly defined wave-vector Fourier
transforms of the Green functions ((s, ;S, ))„for the
conduction spin and localized spin operators. Also, Io is
the unit matrix, and R is equal to the unit matrix with
the (1,1) element replaced by v= I, /I. The quantit—y AQ
is a tridiagonal matrix

do —1 0
—1 d —10

—1 d —10
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where

do =(gptiHO+I (s') fi—co)/SJ +2+4[ 1 —y(k~~)],

y(k~~)=[cos(k a)+cos(k a)]/2 .

(9)

(10)

Do is a matrix whose only nonzero element is (Do)» =5O,
where

III. THE NARROW-BAND LIMIT (t =0)

If the hopping term t is small enough (compared with
I), the main effect of the conduction electrons is through
the interaction term %t of Eq. (3). In the case of t =0 it
is straightforward to construct the equation of motion
satisfied by the Green function 6'(k~~, co) to show that it

yields

G'(k„,co) = — R'G(k„,co)
I(s')

A~ —IS —g,P~HO
(12)

Here R ' is equal to the unit matrix with the (1,1) element
replaced by v', where we define

50= —1 —4[1—y(ki)](1 —J, /J)
—((s')I/SJ)(1 I, (—s,') /I(s') ) .

When I and I, are set equal to zero Eqs. (7)—(11) reduce
to those for a semi-infinite Heisenberg ferromagnet, and
the solution for G(ki, co) can then be expressed analytical-
ly since the inverse of a matrix having the form of Ao is
known analytically (e.g., see Ref. 28). In the present case
of a ferromagnetic semiconductor, however, we need to
set up another equation connecting the Green-function
matrices G(k~~, co) and G'(k~~, co). This is in general com-
plicated and we consider first some special cases.

The matrix elements of A ' are then given by

-1) (gm +n g~m
—

n~)/(g g
—1) (19)

The bulk spin waves correspond to values of the frequen-
cy co such that ~g ~

=1 whereas the localization condition
for the existence of surface spin waves is ~g~ & 1. For the
case of bulk spin waves we can write g as exp(ik, a),
where k, is a real wave-vector component perpendicular
to the surface, and the bulk spin-wave frequencies are the
solutions of

fico gp—„HO—2SJ [3—2y(ki) —cos(k, a)] I(s—')
I (s—')S/(fico IS —g,pic—Ho) =0 . (20)

This is consistent, as expected, with the dispersion rela-
tion for a spin wave with three-dimensional wave vector
k=(k~~~, Ic, ) in an infinite 'ferromagnetic semiconductor
in the limit of t =0. There are two branches to the bulk
spin-wave spectrum, and if I))J (which is typically the
case) they are well separated in frequency.

The surface spin waves in the semi-infinite ferromag-
netic semiconductor correspond to real values of g with

~g~ & 1. The spin-wave frequencies can be obtained
directly by noting from Eq. (17) that G(k~~, co) has poles
corresponding to the condition det(IO+ A D ) =0. This
gives g= —1/5, where 5 is defined in Eq. (16), and even-
tually it leads to the following expression satisfied by the
surface spin-wave frequencies:

fico gp&HD —2—SJ —4SJ [1—
y(k~~)]

—SJ(5+5 ')

I ( s') I —( s') S /(—fico IS g, ptt
—Ho —

)=0, (21)

[I,(s,')(fico IS g,psH—O)]—
[I(s')(f~ I,S —g,p, H—, )]

From Eqs. (7) and (12) we obtain

(A+D)G(ki, )= — I1

(13)

(14)

6 I

where A and D are defined similarly to the matrices Ao
and Do, except that the quantities do and 5O are replaced
by

d =do+I (s') /[J(fico IS g,pttHo)—], —

5=5O —I (s') /[J(fico IS g,ptiHO)]-—
+I, (s,') /[J(fico I,S g,ptiHO)]—, —

(15)

(16)

g+g '=d . (18)

respectively. We can now write the forma1 solution for
G(klan'co) as

G(kii, co)=( —1/itJ)(IO+ A 'D) 'A

Expressions for A ' can be written down by analogy
with earlier work on surface magnetic excitations. This
involves introducing the complex variable g which
satisfies

~ g~
& 1 and

FIG. 1. The spin-wave frequencies (in units of SJ/fi) plotted
against k a for a semi-infinite narrow-band semiconductor (with
t =0) in the low-frequency region. The parameter values are
I/J =200, 5 = 3, (s') = —', gp~Ho/SJ =0.3, and g, =g. The

bulk spin-wave region is shaded, and the labeling of the surface
spin-wave branches corresponds to 8', J, /J =0.5, I, /I =1; X,
J, /J =0.5, I, /I =0.2; 7, J, /J =2, I, /I =1; Z, J, /J =2,
I, /I =0.2.
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,' 65

bandwidth 8'is related to the bulk hopping parameter by
8'=12t for a simple cubic lattice. Also, for the limiting
case of 8'~0, we will see in the next section that the re-
sults obtained using these linear-response arguments
correctly reduce to those described in Sec. III ~ We reex-
press &t of Eq. (3) as a sum of a static part &t and a dy-
namic (or spin-flip) part Sf'. The static part can be in-

corporated into the Hamiltonian describing the conduc-
tion electrons and we can replace Eqs. (2) and (3) with

7T//2

Q

;Ja; a~
—

—,
' g (I,S+g,p&Ho)oa; a;

l, J, O' l, CT

%'t =At = —
—,
' Q I, (S;+s, +S, s,+) .

(22)

(23)

FIG. 2. AAs in Fig. 1, but in the high-frequency region. In
this case the labeling of the surface spin-wave branches corre-
sponds to A, J, /J=2, I, /I =1; B, J, /J=0. 5, I, /I=1; C,
J, /J =0.5, I, /I =0.98; D, J, /J =2, I, /I =0.98; F., J, /J =0.5,
I, /I =1.02; F, J, /J =2, I, /I =1.02.

provided the existence condition ~fi~ &1 is satisfied. We
note from Eq. (16) that 5 is tv dependent in the general
case of I,AI and/or (s,')A(s'), and Eqs. (16) and (21)
then have to be solved self-consistently in order to obtain
the surface spin-wave solutions. For simplicity we shall
henceforth assume (s,') to be the same as the bulk pa-
rameter (s'), although the general case is included in our
formalism.

Sorne numerical examples to illustrate the results for
the spin waves are shown in Figs. 1 and 2 for the low-
frequency and high-frequency excitations, respectively.
In each case A'co/SJ is plotted against k a for various

~ ~

combmations of the exchange and s-d interaction param-
eters J, /J and I, lI. We have taken approximate values
of the bulk parameters I and J appropriate to the S =—'

2

ferromagnet CdCrzSe4, which is usually considered to be
a narrow-band material. ' The bulk spin waves each ap-
pear as a continuum in each of these plots, with upper
and lower edges corresponding to k, =m. /a and k, =0, re-
spectively, while the surface spin waves appear as discrete
branches that may be above or below the continuum de-
pending on the ratios J, /J and I, /I. We note from Fig. 1

that, for the low-frequency excitations, the surface spin-
wave frequencies depend strongly on J, /J but only weak-

ly on I, /I. From Fig. 2 for the high-frequency excita-
tions it is apparent that the reverse applies.

IV. SOLUTIONS IN THE GENERAL CASE ( t %0)

The evaluation of the Green function G'(k~~, co) for gen-
eral values of t is rather complicated. However, we can
write down approximate solutions using linear-response
theory to take account of the interaction term %1 in the
Hamiltonian. This approach should be valid for the
wide-band semiconductors (where W )&IS), which were
excluded from the analysis in Sec. III. Note that the

f cv&) f(tv, )—
gJ N —

g N~ dNP
N N~+Np+ l F

Ji; (cv, )J;i+ (co~)

f (tv&)f (~v~)
(25)

where e is a positive infinitesimal, f (tv) are the Fermi dis-
tribution functions, and J,, (cv) are the single-particle
spectral functions for the electrons with spin proj t'in projec ion o.
cr= ). These spectral functions are directly related

(through the fluctuation-dissipation theorem) to the
single-particle Green functions. On introducing two-
dimensional wave-vector Fourier transforms as before we
obtain from Eq. (25)

0 = 2
g~„(k,~, M) — g f d&1 f d&2

f (tv, ) f (tv,)—
N~+N~+ l E,

x '
0x pnm + ~ q~~ Np ), (26)

where m and n are the layer indices corresponding to
sites i and j. The spectral weights p „(k~~,tv) are simply
the imaginary parts of the corresponding one-electron
Green functions'ons g „(k~~,co). These are evaluated by ob-
taining their standard equations of motion usin &zus&ng

reexpressing the resulting coupled equations in terms of a
tridiagonal matrix, and then solving by the techniques de-
scribed in the previous section. The results are

In the regime where Az is a small perturbation to the
Hamiltonian .&z describing the conduction electrons we

can apply linear-response theory to describe the time
evolution of the operator s;+ as

s,'(t) = —
—,
' g f I, ((s,'(t);s, (t'))), S,'(t')dt', (2&)

J

where the retarded Green function ((s;+(t);s~ (t') ))o is to
be evaluated with respect to the Hamiltonian gjz alone.

Since Az does not contain any spin-flip terms we can
write the frequency Fourier transform g ( ) f
t( +

N 0
( s ( t ) $J ( t '

) ))0 in terms of single-particle spectral func-
tions as (e.g. , see Ref. 26)
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1+x.' a.
gmncr {

2vrt (x —x )

(27)

where x is a complex variable with ~x
~

& 1 and defined

as

x +x ' =fico/t —4y(klan)+cr(IS+g, ptiHO )/2t

and

(2g)

=4y(k~~)(1 —t, /t) crIS—(1 I, /I—)/2t . (29)

We note here that the second term of Eq. (27} represents
the result for an infinitely extended system, whereas the
first term is like a reflection term due to the presence of

the surface. Equations (27)—(29) can now be substituted
into (26) and, if the integrations over cubi and coz are car-
ried out, we have an expression for the spin-spin Green
function g „(k,~, co). From this, together with Eq. (24),
we have a linear-response relation that can be used to re-
late the matrix Green function 6' and G in the formalism
of Sec. II and hence solve for the excitations of the sys-
tem.

However, before proceeding with this calculation for a
semi-infinite ferromagnetic semiconductor, it is helpful to
examine briefly the corresponding results for an infinitely
extended material. In this case the single-particle spec-
tral weight for an electron with a three-dimensional wave
vector k and spin projection 0. can be simply written as
the delta function —,'5[co—W, (k)+crIS/2], with W, (k)
denoting the band energy. When this is substituted into
the three-dimensional analog of Eq. (26) we find

f [ W, (q) —IS/2] —f [ W, (k+ q)+ IS /2]
g (k, co)=

2nN' Ace IS g, p—ttHO
——W, (k+q)+ W, (q)+iE

(30)

where q is a three-dimensional wave vector and X' is the
total number of spin sites. Using the linear response re-
sult in Eq. (24) and the Green-function equations of
motion for the localized spin operators as in Sec. II (but
applied now to an infinite system) we eventually obtain

co gpBHO —I(s') —2—SJ[3—2y(k~, )
—cos(k, a)]

7rSI g (k—, co)=0 (31)

for a simple-cubic material, where k =
(k~~, k, ). Hence

this approach correctly reproduces the expression previ-
ously derived '

(by other methods) for the excitation
frequencies in an infinite bulk system. Equation (31) im-

plies that the frequency of the lower spin wave at wave
vector k=o is simply gp~Ho, which is independent of

the interaction I as a consequence of the rotational sym-
metry of the Hamiltonian At. Thus the approximations
of our linear-response approach are consistent with this
symmetry requirement.

In the present case of a semi-infinite system we note, by
analogy with the discussion in Sec. II, that each of the
Green-function components g „(k~~~,co) for the itinerant
electrons provides a bulklike contribution for frequencies
such that ~x ~

=1. Also, provided an existence condition
is satisfied, there may be an additional surfacelike contri-
bution when ~x

~
& 1. In general, the corresponding

spectral weights in Eq. (26) will contain both bulklike and
surfacelike terms. The modified bulklike contribution to
the spectral weight, obtained after formally rewriting x
in Eq. (27}as exp(ik, a) with k, real, is

p~„~(k~~,co ) = [4n t sin( k, a ) ]

cos[k, a(m + )]n+2b, cos[k, a(m +n —1)]+5 cos[k, a(m +n —2)]
X cos(k, a~m —n~)—

1+26 cos(k, a)+6 (32)

where k, is related to the frequency co through Eq. (28).
The surfacelike contribution is obtained when x is real
and ~x ~

&1. The imaginary contribution to Eq. {27}in

this case comes from the vanishing of its denominator for
x = —6 . The corresponding spectral weight (provid-
ed that the existence condition

~
b,

~
) 1 is satisfied) is

where we denote

co' =4ty(klan) —t{b, +6 ') cr(IS+g,ptiHO)/2 . —(34)

p „(k~~,cu}= —
~

ti(~ cti ), (33}
2(x —x ')
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We can now substitute the above expressions for the
spectral weights into Eq. (26) to obtain g „(k~,co). We
can finally use this along with Eq. (24) to write the matrix
Green function 6'(k~~, a~) of Eq. (7) in terms of G(k„,a~) as

G'(ki, co) = i—rIg (k~, co)R G(k~„a') (3&)

Substituting this in Eq. (7) we can solve for the magnetic
Green function from the following formal expression:

J2
Ao+Do+it R go(ki, ai)R G(k~~, a') = — Io . (36)

derived before in the case of paramagnetic metals
(where I =0), and also as the zeroth-order Green func-
tion in the calculation of the Dyson series for ferromag-
netic metals using the Hubbard model. ' ' However, in
all these calculations t, was set equal to t, and hence the
only effect of the surface was that an electron at the sur-
face had fewer nearest neighbors compared with an elec-
tron in the bulk. Also b was equal to zero, so there was
no surfacelike contribution to the spectral weight as in

Eq. (33) and the modified bulk-mode contribution of Eq.
(32) was much simpler.

The bulk and surface spin-wave frequencies correspond
to the poles of G(k~~, a~) from Eq. (36). For general values

of the parameters t, t„I, and I„the matrix Green func-
tion g (k~~, co) is infinite dimensional and has all matrix
elements nonzero. In this case Eq. (36) can always be
solved numerically for G(k~~, co) by introducing a trunca-
tion approximation to reduce the dimension of the ma-

trices to a finite value. However, in the next section we
consider Eq. (36) in further detail for some particular
choices of the model parameters and we show that an an-

alytic solution is still possible in appropriate cases.
It should be pointed out here that the transverse spin

susceptibility of Eq. (26) in the semi-infinite case has been

V. EXPANSIONS FOR SMALL t

We now obtain some analytical expressions for the case
of the hopping parameter t being small. In order to fur-
ther simplify the problem let us consider the case of

~
& 1, where b, is defined in Eq. (29). If we assume

I, =I for the present (see later), then the inequality is
satisfied for all wave vectors k~ provided —,

' &t, jt & —,'.
This automatically rules out any surface-wave contribu-
tion to the spectral weight and we need to consider only
the bulklike contribution. By substituting Eq. (32) into
Eq. (26) and changing the integration variables from co&

and co2 to k, and k, +, respectively, we obtain

2

g „(k~~,co)= g J dk, J dk, + C „(k, , h )C„(k,+,5+)2' N
q

f [W, qadi
k, ) ISI2] f [—W(k~l

—+q, k, )+ISI2)
X

Ace IS —g p, H—, W, (k +q,—k )+ W, (q~~, k, +)+te
(37)

where the band energies are given by

W, (k~~, k, ) =2t [2y(kia)+cos(k, a)], (38)

and C „(k,, b ) are functions representing the combinations of cosine terms appearing within the curly brackets in

Eq. (32). If we assume t, =t in addition to I, =I, then b, vanishes and we have

C „(k,, A =0)=cos(k, a ~m n~ )
—cos—[k, a (m +n)] . (39)

If this is substituted into Eq. (37) and I is set equal to 0, we recover the previous result established for a paramagnetic
metal. Equation (37) with the full form of C „(k,, b. ) for b,,WO represents a generalization of this expression.

For small t such that t (( ~Ace IS g,psHo —we ca—n expand the denominator of Eq. (37) in a power series and carry
out the integrations over k, and k, + term by term. This leads to the following expansion, which is exact up to second
order in t (or t, ):

Z

g~„(k~~,co) = [5m „+2t'(Ac@ IS g, ptiHO)
'—(45~—„[1—y(k~~)]} 1 —[1—(t, It)']5m i }

ir(fiai IS g,p&HO )— —

+5 „,(2 —5, ) —5~ „,)+O(t )] . (40)

We notice from Eq. (40) that g"„(k~~,, co) is tridiagonal (up to order t ) and hence when it is incorporated into Eq. (36) we

obtain the following formal matrix equation:

(41)

where A, and D, are defined similarly to the matrices Ao and Do in Sec. II, except that the quantities do and 6o are re-

placed by
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d, =(1+b) 'tdo+I (s') /[J(fico I—S —g, pIiHO)]+2b [3—2y(k~)]I )

(1+b) i(5O "[ + [ y klan ][ (i / ) ]I )

where

b =t [2I (s')/J(fico IS—g,—piiHO) ] .

(42)

(43)

(44)

We can now solve Eq. (41) by following the same matrix inversion method as described in Sec. III. The bulk spin-

wave frequencies in the semi-infinite ferromagnetic semiconductor are obtained as the solutions of

&cu gps—HO —2SJ [3—
2y(k~~)

—cos(k, a)]—I(s')
I'S&s')

%co IS g pg Ho

2,t

Ac@—IS —g, p~HO

2

[3—
2y(k~~)

—cos(k, a)] =0, (45)

where k, is a real wave-vector component perpendicular to the surface. The same result can, in fact, be deduced from a
small t expansion of Eq. (31), for an infinite ferromagnetic semiconductor. The surface spin-wave frequencies satisfy the
equation

fico gpiiH—O
—2SJ [3—2y(ki)] —SJ(5,+5, ') I (s')—

I'S &s'), 2i
Ace —IS —g,pz Ho Ace —IS —

ge pg Ho
[3—

2y(kill + 5 +5, ')/2] =0, (46)

provided the existence condition ~5, ~

& 1 is satisfied. We
notice immediately that when t and t, are both set to zero
in Eqs. (45) and (46) we recover the results of Sec. III for
the case of I, =I.

Some numerical examples to illustrate the results for
tWO are given in Fig. 3, where we plot iiicu/SJ against k~~~~ci

for various combinations of the parameters J, /J and t, /t
(taking I, /I=1). The surface and bulk spin-wave fre-

4
U

3

quencies are shown just for the low-frequency excitations,
since the small t expansion is good in this regime. The
effects of taking nonzero t and t, values can be seen by
comparing Fig. 3 with Fig. 1.

We now briefly discuss the case of a small t and IXI, .

In this case it can be seen from Eq. (29) that
~
b,

~
will be

greater than unity, unless I and I, are very close in value.

Hence, in general both the bulk and surface parts of the
spectral weights [see Eqs. (32) and (33)] have to be taken
into account in the calculation of g (k~~, co). There will be
four terms to evaluate in Eq. (26), one involving the bulk-
like parts of the spectral weights, one involving the sur-
facelike parts, and two cross terms. However, there is a
simplification in the limit when t and t, vanish, giving

It may be verified that the cross terms vanish
and Eq. (26) reduces to

(s )5. ,5„,
g „(k,cu)=

ir(fico I,S g, ps HO —)—
&")(5.„—5. ,5„,)
~(e~ IS —g,Z H )— (47)

FIG. 3. The spin-wave frequencies (in units of SJ/A) plotted
against k a for a semi-infinite narrow-band semiconductor (as-

suming t WO) in the low-frequency region. The parameter
values are I/J=200, i/J =10, S=3/2, I, /I=1, &s')= i,
gp&HO/SJ=0. 3, and g, =g. The bulk spin-wave region is

shaded, and the labeling of the surface spin-wave branches cor-
responds to A, J, /J =0.5, t, /t = 1.5; 8, J, /J =0.5, t, /t = 1; C,
J /J=05, t /t=05; D, J /J=2, t /t=l 5; E, J /J=2,
t, /t =1;F,J, /J =2, t, /t =0.5.

where the first and second terms arise from the surface-
like and bulklike parts of the spectral weights, respective-
ly. When Eq. (47), which is valid as i~0, is substituted
into Eq. (36) we correctly recover the results of Sec. III.
Thus we conclude that the methods described in Sec. IV
are quite general and are applicable for both wide-band
( W » IS) and narrow-band ( W ((IS) semiconductors.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have concentrated on evaluating the
spin-wave excitations. However, the poles of the two-
particle Green functions g (k~~, cu) provide the collective
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modes in the system. In an infinite bulk system they give
rise to the so-called Stoner continuum which is a super-
position of electron-hole excitations of opposite spin. We
now indicate briefly how these excitations would be
modified in the presence of a surface. It is apparent from
Eq. (26) that the poles of g (kl, co) occur at co= A(k~, , q, ),
where

n(k~, q~~)
= ', (k~~+q~~)

— '=, (q~~) . (48)

The superscripts 8 and S refer to the bulklike and sur-
facelike contributions to the one-particle excitation fre-
quencies, respectively. %'e have

cu (kl)=2t[2y(kii +cos k,a)]—tz(IS+g, iu~HO)i2,

(49)

semiconductors) for a spin wave would be for it to decay
into a Stoner-type excitation of the same frequency.

We have obtained the dispersion relations for the spin
waves in a semi-infinite ferromagnetic semiconductor de-
scribed by the s-d (or s f) -interaction model, extending
earlier work on infinite ferromagnetic semiconductors.
The results in the case of narrow-band materials, such as
the chromium spinels, have been emphasized. Several ex-
tensions of the present work are possible. These include
further work on wide-band materials, for which we al-

ready have formal results in Sec. IV, to obtained detailed
numerical applications to specific materials such as EuO
or EuS. Other extensions of this work include the study
of surface excitations in antiferromagnetic semiconduc-
tors and in certain diluted magnetic semiconductors.

and cu is given by Eq. (34). All the various combinations
of bulk- and surface-type terms in Eq. (48) are possible,
provided the existence condition

~

b
~

& 1 for a surface ex-
citation is satisfied. A more detailed investigation of the
spectrum of Q(k~~, ql) would be relevant if we wished to
study the lifetimes of the spin-wave excitations, because a
possible decay mechanism (as in infinite ferromagnetic
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