
PHYSICAL REVIEW B VOLUME 42, NUMBER 16 1 DECEMBER 1990
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We investigate the thermal properties of s = —and 1 antiferromagnetic Heisenberg spin chains by

an expansion in finite lattices. The expansion is based on expressing the quantity of interest, in the

thermodynamic limit, as a sum over contributions from different length scales. The first few terms

in the expansion, obtained by diagonalizing chains of length up to 13 for s =
—, and length up to 9 for

s = 1, provide an accurate estimate for the internal energy and specific heat for T/J & 0.25 and 0.35,
respectively. At lower temperatures, by studying the exponential decay of the various terms in the

expansion, we estimate the correlation length (. We get good estimates for g down to T/J=O 06.
for s =

2' and T/J=0. 02 for s =1. We find that for s = 1 g increases much more slowly than for

s =
z' and is consistent with a value of /=7 at T =0.

I. INTRODUCTION

Finite-size studies of quantum spin Hamiltonians have
proved very valuable in extracting the thermodynamic
properties of the system. At T =0, they have been used
to determine the ground-state energy, the excitation spec-
tra, and various correlation functions of the spin chains,
while at finite temperatures they have led to estimates for
the internal energy, the specific heat, and other thermo-
dynamic quantities. ' Much of the extrapolation has
relied on the assumption that an extensive quantity PI,
for a chain of length /, takes the form PI =/p +q, where p
is the bulk density in the thermodynamic limit and q is
the contribution from the boundary. A plot of PI versus /

was used to estimate p. In this extrapolation scheme, the
effects of correlations are ignored. Hence, the extrapola-
tion becomes unreliable when the correlation length is
comparable to the size of the largest system considered.

In this paper we consider a different scheme to obtain
the thermodynamic quantities of interest by studying
finite chains. It is based on a technique first developed in
Ref. 4 and later in Ref. 5 for lattice gauge theories. The
idea behind this scheme is to express the various thermo-
dynamic quantities for the infinite chain as a sum over
contributions associated with increasing length scales.
The contribution to a given length scale / is obtained
from the thermodynamic properties for chains with free
boundary conditions up to length 1 (1+1 spins) and it ac-
counts for correlations of that length in the infinite sys-
tem. This method enables a systematic study of the con-
vergence of various thermodynamic quantities and also
allows us to extract the correlation length.

For the s =
—,
' chain, calculations are performed exactly

up to 1=13 and for the s =1 chain it is done up to 1=9.
From this, 13 terms for s =

—,
' and 9 terms for s = 1 are ex-

tracted in the above sum. The results for the infinite lat-
tice are obtained by observing convergence in the sum.
In particular, for the specific heat, we find excellent con-
vergence for T/J~0. 25 for s =—,

' and T/J~0. 35 for
s =1. For the s =

—,
' chain, there is a peak around

T/J=0. 45 and for the s =1 chain the peak is around
T/J=0. 8. Thus, we have excellent convergence well

below the peak.
At low temperatures, where we do not observe good

convergence, it is still possible to extract useful informa-
tion. Since, the /th term in the sum is associated with
correlations at length /, the sequence of terms will fall ex-
ponentially with / with the rate of decay being the corre-
lation length g. The relationship of this correlation
length to the usual spin-spin correlation length is not a
priori obvious. To estimate g it is sufficient to study
chains up to lengths 1 =), while, to get an accurate esti-
mate of the thermodynamic quantities, it is necessary to
study chains up to lengths several times g. We calculate
g down to a temperature of T/J=0. 06 for s =

—,
' and

T/J =0.02 for the s = 1 chain. For s =
—,', the correlation

length was calculated by Kamieniarz by studying the
spin-spin correlation function. We find that our esti-
mates agree rather well with that of Kamieniarz. This
agreement is quite interesting because our study does not
involve any explicit calculation of correlation functions.
It suggests that there is only one dominant length scale in
the problem. We find that g, for the s =1 chain, in-
creases at a much slower rate compared to the s =

—,
'

chain. It is consistent with, and suggestive of, a finite
correlation length at T=O. This result is in agreement
with Haldane's conjecture.

The plan of the paper is as follows: In Sec. II we dis-
cuss the expansions for the thermodynamic properties in
terms of finite lattices. The contribution from different
length scale is defined. Section III deals with the ap-
propriate calculations for the s =

—,
' and 1 chains. In Sec.

IV we calculate the thermodynamic properties including
the internal energy and the specific heat. In Sec. V we
analyze the contribution to the internal energy from
different length scales and hence estimate the correlation
length as a function of temperature. Finally, we present
our conclusions in Sec. VI.

II. FORMULATION OF THE EXPANSION

In this section an expansion is developed in terms of
finite-size chains. The formulation exactly parallels Refs.
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4 and 5. The Hamiltonian for the spin chain of length l
and free boundary conditions is

I

&,=JQS; S;+, . (2.1)

The superscripts denote the components of the spin vec-
tor. Let P& denote a generic local operator summed over
the whole chain. The expectation value of this operator
on the finite spin chain is

TrP& exp( —P&& )

Tr exp( —P%& )
(2.3)

Note that positive values of J in (2.1) correspond to an
antiferromagnet. The thermodynamic average density of
this operator is

1p= lim —P! (2.4}

We now develop an expansion for p. The idea behind the
expansion is to write the expectation value in the infinite
chain as a sum of terms corresponding to correlations of
a certain length contained in the chain. Toward that end
we define another function P& on a finite chain. P& is the
contribution to p that comes from a chain of length l that
is not already present in any smaller chain:

1

P(=P( —g (l —m +1)P~ . (2.5)
m=1

(l —m +1}is the number of ways a chain of length m can
be placed in a chain of length l. Equation (2.5), when
substituted into (2.4), gives the following expansion for p:

(2.6)

S, is the spin operator at site i and it satisfies the follow-

ing commutation relation:

(2.2)

III. DESCRIPTION OF THE CALCULATION
ON A FINITE CHAIN

In this section we would like to outline our scheme for
diagonalizing chains of finite length with free boundary
conditions. A natural basis for the Hilbert space is the
direct product of states denoted by

e, is,'&,

where s take values +—,
' for spin- —,

' and 0 or +1 for spin-

one chains. Each of these basis states will be called a pat-
tern. Since the Hamiltonian commutes with the total
spin operator, the Hilbert space naturally splits into sec-
tors with different values of S;=g,.s,.'. It is enough to
consider the sector of S;=0 (for spin- —,

' chains with an

odd number of sites, the relevant sector is S;=—,
' ), provid-

ed the total spin of each eigenstate can be evaluated. We
shall discuss this point later.

The Hamiltonian can be further block diagonalized by
using additional symmetries. For the finite chain with
free boundary conditions, we use two such symmetries.

(1) Reflection about the midpoint of the chain. For a
chain of length I this amounts to the transformation
s ~s1'+2;. Let R denote the operator which performs
this transformation. Given a pattern ia ), the pattern on
reflection about the midpoint is R ia ).

(2) Spin inversion. This amounts to the transformation
s ~—s . We shall call the spin-inversion operator I.
For a spin- —, chain with an odd number of sites, this sym-

metry is not useful.
It is obvious that both these operators have eigenvalues

+1, and they commute with each other. The Hamiltoni-
an in the S,'=0 sector is therefore split into four sectors,
denoted by a, =+1 and a; =+1, where a„and a; are the
eigenvalues of R and I, respectively. Given a pattern
ia ), we can construct an eigenstate of the operator R and
I by taking the linear combination

In the case of one dimension, there is a simplification
which reduces (2.5) to

(1+a„R)(1+a; I)
(3.1)

and

P1 =P1 —2P1 -1+P1-2

1

Pi i ~

(2.7)

(2.8)

JV', is the normalization factor. Let the number of dis-
tinct patterns in (3.1) be n, (n, takes values 1, 2, or 4).
Then,

(3.2)

As l gets larger, P1, accounts for contributions to p from
longer-range correlations. Therefore, P1 is expected to
get small quite fast as I increases, provided the calcula-
tion is not done near a critical point. In fact, at a fixed
temperature, one expects P& to fall off as exp( —lip) for
large l, and g is the correlation length at that tempera-
ture. This expansion scheme has two advantages. One is
that it is possible to observe convergence in (2.6} by add-
ing more and more terms. For small values of g, P& falls
rapidly and the convergence is very fast. Secondly, it is
possible to extract g from P&, even in the temperature re-
gion where the convergence is not good.

na

By convention, only one of these patterns, viz. , ia ), will
be called the generating pattern and the other distinct
patterns obtained from ia ) by operating with R, I, or RI
will be called derived patterns. One should note that this
state only contributes to n, out of the four sectors. In the
other sectors it vanishes identically. The number of gen-
erating patterns that contribute to a given sector is the
dimension of the corresponding Hilbert space.

The next step involves the calculation of the Harnil-
tonian matrix in a given sector. We begin with the ex-
pression
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&@,~~~iamb)
= &a~(1+a„R)(1+a;I)~(1+a„R)(i+a;1}lb).1

a b

(3.3)

Since R and I commute with the Hamiltonian and
R =I =1, this leads to

IV. THERMODYNAMIC PRGPERTIKS

&q. /w/e, ) = 4 &a~(1+a„R)(1+a,I)&.~b) .
In this section we analyze the internal energy and the

specific heat for the antiferromagnetic s =
—,
' and 1 chain.

These quantities are defined as

(3.4)

Since the states la ) and ~b ) are in the basis where the S,.'
operators are diagonal, it is natural to write

E= lim —&%,),1

I-~ I

dE
dT

(4.1)

(4.2}

s,. s, =s,.'s;+-,'(s,+s,-+s,-s,+ ), (3.5)

where S;* are the usual raising and lowering operators.
The z part connects the state j+b ) to itself, and is easily
seen to be & b

~
S S'~ b ) . To evaluate the matrix element

corresponding to the second term in (3.5), we first find all
patterns I ~b ) ) that are generated by that term acting on
~b ). For each ~b ) there is an associated generating pat-
tern and this is one of the possible choices for ~a) in
(3.4). Note that ~a ) could quite well be ~b). If the ~a )
so chosen does not contribute to the sector under con-
sideration, i.e.,

(1+a„R)(1+a;I)~a ) =0,

then it is discarded. In general, there could be more than
one way to derive ~b ) from the generating pattern ~a ).
Let the number of ways be N (N ~ 4), and one of the ways
be ~b~) =R I"~a ). Then the contribution to
&%, ~%~%b) from —,'(S;+S, +S; S,+) is

(a„) (a;)"&b I-,'(S,.+S,;+S,.-S,.')la) .
a b

The Hamiltonian so constructed is diagonalized using
standard procedures. Let the energy level be denoted by
e„and the corresponding eigenstate be ~n ).

The next step is to find the total spin eigenvalue of
these energy eigenstates. To this end we calculate the
matrix

and a similar definition can be given for C„. Note that,
from (2.6), E =limi „Ei and a similar limit holds for C.

In Fig. 1, EI, /=10, 11,12, 13 for the s =
—,
' chain is

plotted. We find excellent convergence for T/J~ 0.2.
The asterisk denotes the correct answer at zero tempera-
ture and is bracketed by EI even from below and for todd
from above.

In Fig. 2, Ci, 1=10,11,12, 13 for the s =
—,
' chain is

plotted. We find excellent convergence for T/J~0. 25.
Note that the convergence is weaker in the specific heat
than in the internal energy. However, there is good con-
vergence well beyond the peak in the specific heat which
occurs at T/J=0. 45. The results of previous finite-size
extrapolations by 81ote are shown by an asterisk. We
find that his results are close to ours; however, there is
deviation even at T/J as large as 2.0. Since our results
do not show any noticable change when going from
I =10 to 13 for T/J ~ 0.4, it is a more accurate estimate

0.0 I I I

)

I I I I

)
I I I I

i

I \ I I

As in (2.5}, let P& and C& denote the contribution to the
total quantity arising from the chain of length l. We find

that the contributions from the chains of odd and even
lengths are opposite in sign. To account for this odd-
even alternation, we define

E„+E
IZ, +g-™1

&m~S, S, ~n),

where S, =Q,.S; is the total spin operator. If there are no
accidental degeneracies of the Hamiltonian, then this
should be a diagonal matrix with eigenvalues s (s + I ),
where s =0, 1,2, . . . . We do find occasional degeneracies
and then the spin matrix in that subspace is diagonalized
to obtain the corresponding eigenvalues. That the eigen-
values of this matrix agree with some s (s + 1) and the to-
tal number of states in each spin sector come out as ex-
pected, serves as a check on our calculations.

The result of this calculation is a set of eigenstates la-
beled by the total spin s„and energy e„. It is now
straightforward to calculate the thermodynamic quant;-
ties such as free energy, internal energy, and specific heat.
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-0.5
0

dots: up to
dashes up
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to 12 s&tes

I
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I
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0.75 1

FIG. 1. Internal energy for the s =
2

chain.

1.25
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FIG. 2. Specific heat for the s =
2

chain. FIG. 4. Specific heat for the s = 1 chain.

of the quantity in the thermodynamic limit. From the
finite-temperature Bethe ansatz, ' the specific heat is
known to be linear at low temperature with deviations ex-
pected above T/J =0.1. Since we have convergence only
up to T!J=0.25, we cannot trivially extrapolate the re-
sult here to match with a linear plot for small T/J.

In Fig. 3, EI, l =6,7, 8,9 for the s =1 chain is plotted.
We find excellent convergence for T/J ~ 0.3. By analogy
with the s =

—,
' chain, we expect E& for I even to bound the

ground-state energy eo from below and for l odd from
above. This would imply that —1.3992 e —1.3850.
Judging from the pattern of convergence, we expect the
number to be closer to the lower bound. However, the
earlier estimates for the ground-state energy have been
approximately —1.402 and are outside the bracketed re-
gion.

In Fig. 4, CI, l=6,7,8,9 for the s =1 chain is plotted.
We find excellent convergence for T/J ~ 0.35. Note
again that the convergence is weaker in the specific heat
than in the internal energy but extends beyond the peak

which occurs at T/J=0. 8. The behavior of the specific
heat is quite similar to the s =

—, chain in the temperature
region where we have good convergence. Here again the
results of Blote are shown by an asterisk. The conver-
gence properties are similar to the s =

—,
' case. Assump-

tion of a gap implies that C -exp( 6/T) w—ith a
temperature-dependent prefactor. Any fit of our results
in the region around T/J=0. 4 seems to be quite sensi-
tive to the choice of the prefactor. If we do not choose
any prefactor, then we get a gap that is consistent with
the zero-temperature estimates of 0.4J.

The specific heat of the quasi-one-dimensional (1D)
s =1 chain CsNiC13 has also been studied experimental-
ly. " This system has J/kii =27 K and Neel temperature
for three-dimensional ordering of 4.8 K. Therefore, a
comparison with the experiment can be done only for
T/J~0. 2. In the experiments, the magnetic contribu-
tion to the specific heat was separated and a comparison
was done with Blote's results. The low-temperature data
were fitted to a linear T dependence as expected for a
gapless system. Our studies here suggest that, to distin-
guish between the presence or absence of a gap, the
specific heat of a quasi-1 D chain should be measured at
temperatures at least as low as T=0.1J.
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FIG. 3. Internal energy for the s =1 chain.

V. ANALYSIS OF THE CORRELATION LENGTH

In the previous section the analysis of internal energy
and specific heat did not show good convergence at low
values of T/J. This is because the correlation length in
the system is getting large and longer chains have a
significant contribution. Even though the convergence
for the thermodynamic quantities is not good, it is still
possible to extract a correlation length.

We concentrate on 2& and view it as function of 1 at a
fixed T/J. We expect it to have an exponential decay,
and in view of this, lnio~k&~ is plotted as function of l.
The magnitude is to take the alternating sign into ac-
count.

In Figs. 5(a) and 5(b), we find a good straight line fit for
large l. The negative of the slope of the line is the inverse
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FIG. 6. Correlation lengths for the s =
~

and 1 chains.

0.2

of the correlation length. This analysis is not relevant at
large T/J since the correlation length is very small. The
analysis will not give reliable results below a certain T/J
since the correlation length is large and we have not gone
to long enough chains. But we get good estimates in the
range 0.06 & T/J & 0.2 for s =

—,
' and in the range

0.02& T/J &0.2 for s = l. This is the region where the
thermodynamic quantities analyzed in the previous sec-
tion did not show good convergence. This is because the
correlation length is above two or three lattice spacings
and so chains of length not considered in the calculation
here will have a significant contribution.

In Fig. 6 we plot the results of our analysis. The corre-
lation length for s =

—,
' was calculated previously by Kam-

ieniarz through the second moment of the spin-spin
correlation function. His estimates are shown by squares.
We find that our results agree quite well with his, sug-
gesting that there is a single dominant length in the prob-

lem. We are not aware of any calculation of the correla-
tion length for the s =1 chain at finite temperatures. We
find that, for s =1, the correlation length rises much
more slowly as T/J decreases when compared to the
s =

—,
' chain. A crude estimate for the zero-temperature

value is approximately 7 which is in agreement with oth-
er numerical studies at T=O. This the only clear
difference between the s =

—,
' and 1 chains in our study. It

also seems to indicate that it is easier to observe the effect
of the gap in the spin-spin correlation function than in
the specific heat.

VI. CONCLUSIONS

In this paper we have developed an expansion for the
thermodynamic quantities of the Heisenberg spin chains.
Each term in the expansion is obtained from an exact di-
agonalization of a finite chain with free boundary condi-
tions. It accounts for the contribution to the infinite sys-
tem from that particular finite chain which has not been
accounted for by any smaller chain. This enables a sys-
tematic study of the contributions from various length
scales. We have fully diagonalized all spin chains up to
l =13 for s =

—, and I =9 for s =1. From these results we

get 13 terms in the expansion for s =
—,
' and 9 terms in the

expansion for s =1. Our calculation of the specific heat
shows excellent convergence for T/J ~ 0.25 and
T!J~0.35 for s =

—,
' and 1, respectively. Our expansion

procedure enables us to extract the correlation length
even in the region where we do not get good convergence.
Analysis shows that the correlation length rises sharply
in the case of s =

—,
' as the temperature decreases, con-

sistent with an infinite correlation length at zero tempera-
ture. For the s =1 chain, the increase in the correlation
length with decrease in temperature is less dramatic and
is consistent with a finite correlation length at zero tem-
perature. These conclusions are in agreement with
Haldane's conjecture.
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