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We develop a microscopic theory of surface diffusion of adatoms using the Mori continued-

fraction formalism. Along the surface plane, the adatom motion is extended leading to diffusive be-

havior, while motion perpendicular to the plane is assumed bounded and oscillatory. In the high-

friction limit, we find a novel analytic solution for the diffusion tensor in terms of generalized adia-

batic potentials. %e show how the inclusion of vertical motion can cause large quantitative changes

in the values of the diffusion coeScients, while keeping the universal properties of surface diffusion

in the high- and low-temperature limits qualitatively unaltered. We explicitly compute the diffusion

tensor for a variety of different lattices and potentials. In the high-temperature limit, the theory re-

covers the diffusion of a Brownian particle in a viscous medium. In the low-temperature limit, we

demonstrate how the Arrhenius form of activated diffusion and the geometric random-walk form of
diffusion anisotropy arise from the theory.

I. INTRODUCTION

The classical diffusive motion of a particle in an exter-
nal potential which is either random or periodic consti-
tutes an important problem central to many different
areas of physics. ' Recently, analytic theory to the
diffusive motion of a classical particle interacting with an
inhomogeneous background has been developed by
Ying. In this approach, the various time-dependent
correlation functions associated with the motion of a
classical particle are expressed as a continued-fraction ex-

pansion via the Mori projection-operator formalism. In
the high-friction limit, it was found that the continued
fraction could be truncated and an analytic expression
obtained for the diffusion constant of a particle in a
square lattice. For other more complicated symmetries,
the diffusion tensor D can be calculated by inverting a
matrix, which is infinite in terms of a set of reciprocal-
lat tice vectors.

This existing theory is formulated for the extended
motion of a particle in all dimensions. When applied to
surface kinetics, this implies that the motion of an ada-
tom has to be treated as strictly two dimensional. This
restriction has some shortcomings. First and foremost,
by eliminating the vertical motion of the adatom, we lose
the most readily observable normal vibrational mode of
the adatom. Moreover, at a quantitative level, it has been
shown that the coupling of the parallel motion to the
vertical motion has also important consequence on the
rate of diffusion. Technically, the dii5culty arises from
the fact that, for a chemisorbed atom, the vertical motion
is bounded and oscillatory in nature, while the motion
parallel to the surface is extended. The extended basis
function for describing the parallel motion is impractical
for the description of the vertical motion.

The present paper has two main objectives. The first is
to generalize the existing theory explicitly to the case of
surface adatoms by including the case of vertical motion.

In Sec. II, we outline the formalism for this more general
case. A localized basis set is introduced for describing
the spatial dependence of the adatom in the normal direc-
tion, as contrasted with the ~'.ane-wave basis used for the
parallel extended motion. For calculation of the diffusion
tensor, the inclusion of vertical motion eventually results
in a renormalized friction and an effective adiabatic po-
tential. In Sec. III we examine in some detail how D is
influenced by the vertical motion for several different
values of the coupling parameter connecting the vertical
and parallel motions. More itnportantly, the present for-
malism facilitates future studies of the vibrational fre-
quency of an adatom as relaxation of the mode involving
motion perpendicular to the surface. This is often the
most accessible mode in the experimental study of ada-
tom vibrational excitations.

The second main objective is to focus in detail on the
universal properties of classical surface diffusion, in par-
ticular, as regards the temperature dependence and an-
isotropy of D. The Arrhenius form of activated tempera-
ture dependence D =Doe ~, where Do is a prefactor
and 6 is a prefactor and 6 an energy barrier, is almost
universally accepted and used in the interpretation of ex-
perimental data for surface diffusion. For the anisotropy
of the diffusion tensor, the simple geometric random-walk
model is often evoked. ' To date, most theoretical stud-
ies of these questions are based on molecular-dynamics
simulations. ' A highly successful approach to the nu-
merical study of surface diffusion has concentrated in us-
ing dynamical corrections to the phenomenological
transition-state theory (TST). ' " Simulations have
shown that, at low temperatures, corrections to TST are
small. The TST picture of diffusion, in which the particle
performs series of uncorrelated, activated jumps across
the classical saddle-point barrier, is then a good approxi-
mation of the true diffusion process. These simulations
thus provide a justification for both the Arrhenius form,
and a simple geometric random-walk picture of the an-
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isotropy of D. However, as temperature increases, trajec-
tories not included in the TST become important and one
expects deviations from the random-walk picture. The
present theory makes no assumptions about particular
diffusion trajectories, but expresses the diffusion tensor in
an inverse friction expansion. In the high-friction limit,
we have studied in detail how the diffusion anisotropy
changes as a function of temperature. In a previous
work, ' we have reported briefly how universal features
such as the Arrhenius form, random-walk limit, and the
high-temperature limit of Brownian motion arise as limit-

ing cases of our theory. In Sec. III, we will examine these
universal features in more detail for a variety of different
symmetries and model potentials.

components. It is also convenient to change the variable
from z to u so that

A, = e' 'QJ(u)
p

(2 5)

u =(Pc)' [z —zo(r)] .

In the following, we will set pc = 1 for simplicty.
Next, we introduce a set of orthogonal variables { A„ I

and their corresponding projection operators {P„]of the
diffusing particle:

Ao=[e' 'QJ(u)],

II. ANALYTIC THEORY OF SURFACE DIFFUSION

A. Basic Hamiltonian and variables

We start with a general Hamiltonian describing the
adatom and substrate as

A„=(1—P„)—P„2)Pb A„

Here, the G's stand for the set of two-dimensional
reciprocal-lattice vectors appropriate for the substrate,
and

p2H= + V(R, {Rl ] )+H, ,
2M

where
p2

H, = g +W({R)I) .
1

2

(2.1)

(2.2)

1
1 J ' )/2 ~ 1/2(2Jm j!}

are eigenfunctions proportional to the jth-order Hermite
polynomials which have been normalized such that

f du f (u)P. ,(u)e " =5

Pbw=z-) g fdP, fdRIe "A . (2.3)

—13H„
Here Z=g& f dP& f dR& e ". It is also useful to in-

troduce an adiabatic potential V„(R) defined in the fol-
lowing way:

—PV~ (R) —PV(R, !R) ) )
(2.4)

The first two terms in H describe the kinetic and poten-
tial energies of the adatom and its interaction with the
substrate. The second part of the Hamiltonian H, in-

cludes all the kinetic and potential energies of the sub-
strate. For a classical adatom, the kinetic energy P /2M
factors out in a trivial manner and it is convenient to
define a reduced Hamiltonian H„=H, + V(R, {RI ] ). We
now introduce a projection operator Pb. When operated
on an arbitrary variable A, Pb corresponds to taking the
partial thermal average over the background degrees of
freedom, i.e.,

Note that, in our definition, each basic variable A„has
actua11y an infinite number of components corresponding
to different reciprocal-lattice wave vectors, Cartesian
coordinates of the momentum vector, and the order of
the functions g . In (2.5), the projection operators are
defined as

P„A= Ay„„'( A„, A)

with

(2.6)

y„„=(A„, A„),
where the scalar product (A, B) is defined as the thermal
average of A *B. It is easy to verify from these
definitions that the A's are orthogonal to each other.
With these definitions of the basic variables and the pro-
jection operators we can now apply the standard Mori
formalism to obtain a formal equation for the Laplace
transform of the correlation functions P, (co) defined as

This adiabatic potential represents a potential experi-
enced by the diffusing particle at point R averaged over
the background vibrational degrees of freedom. Under
normal conditions in the study of surface diffusion, the
motion of the adatom perpendicular to the surface in-
volves only small-amplitude oscillations. Denoting the
coordinate vector parallel to the surface as r and the nor-
mal coordinates as z, we can expand the potential Vz (r,z)
around the local minimum zo(r) as

V„(r,z)= V, (r)+c[1+V2(r)][z —zo(r)]

Here V, (r} and V2(r) are periodic functions of r with the
latter defined such that it contains only nonzero Fourier

,(co)=f e'"'$,(t) dt .

The resulting equation for P(co) is

[

icily

'+b+ X(co—)]$(co)= 1

with

b=iy '( A, L A)y

and

X(co)=y ' QL A, QL A
co L

(2.7)

(2.8)
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In this equation, Q is the projection operator into the
space orthogonal to that spanned by the basic variables
I A„I,

verse friction expansion. In the high-friction limit, we
can drop all the B„(m) in the continued-fraction expan-
sion for n & 1, the result for P»(co) is then the simple ex-
pression

Q=l —g P;
i=0

(2.9)
ff i i(~)= [a,(co)—b,Dao '(co)bo, ] (2.16)

and I. is the Liouville operator.
The set of equations in {2.8) is equivalent to the

Kramer's equation. However, since we start from a lat-
tice dynamic Hamiltonian, there is an additional bonus
here in the fact that, instead of a phenomenological
damping constant, we have a memory function X(co)
which contains the damping efFects. As we shall see in
the next section, the memory function can be related to
the vibrational properties of the background.

B. Inverse friction expansion

Starting from the general equation (2.8}for the correla-
tion functions P«(co), we can develop a continued-
fraction expansion for {{}»(co)which is directly related to
the difFusion constant. As we shall see below, this expan-
sion is actually an expansion in inverse powers of the fric-
tion. The leading term corresponding to the high-friction
limit has a very simple form. Let us deSne

Equation (2.16} is a formal solution in the high-fraction
limit and so it is equivalent to a solution of the corre-
sponding Smoluchowski equation. The important
feature of the present method is that we also have a mi-
croscopic expression for the frictional force. Equation
(2.16) can be simplified further. First, we note that

kBT
+11 ~ +Oo~aP s

and hence

(2.17)

(2.18)

Next, we show in the Appendix that the matrix ele-
ments of

F(co)=—b,Dao '(co)bo,

appearing in (2.16) are given by

a;(co)=— icky,;—'+X;;(ra) .

Then, from (2.8), we obtain the set of equations

Moi{oi }+boil'»(oi) =0

biol'oi{~}+aieli(oi)+b124'21(~}=I

(2.10)

{2.11)

F ~{s,s', co}= G goo'(G, G', j, j')6&
6)

F (s,s'; ei) = ——[(j+ 1)(j'+ 1)]'

Xyoo'(G, G',j+I, j'+1),
f 2( ~+ 1 )11/2

F '(s, s', co) = ' ' 6~goo'(G, G';j, j'+1),
{2.19)

—1{( —i, 1()+a f{ 1(~)+b, +14 + i, 1(~)

for n&1.
F' (s,s', a))= 6'goo'(G, G",j+I, j'),&2(j+1)

CO

Now we introduce the functions B„(co)defined as

{() l(~)=B.-I(~)4 —1, 1(~) . (2.12)

for a,p=x,y. Here s:—(G,j), and we have listed the in-
dices in goo in detail. In terms of F, we finally have the
general result for the frequency-dependent velocity-
velocity correlation function:

Then we have from (2.10)

{(tii(co) =[ai —bioao 'boi+ bi2Bi{oi)l

and for n ) 1

B„ i(co) = —[a„+b„„+iB„(co)] 'b„„

(2.13)

(2.14)

Pi i(o))= ia) —5 ~00 +Xii(oi)+F(o))
B

C. Density and the memory function

{2.20)

Equations (2.13) and (2.14) together constitute a
continued-fraction expansion for the correlation function
f»(co}. Note that the diffusion tensor, which is the zero-
frequency limit of the Laplace transform of the velocity
autocorrelations function, is given in terms of {f)»(co) by
the expression

D p= V t VpO dt
0

= lim [p,~i(G=O, j=0;G'=0,j'=0; )] . {2.15)

In the limit m~O, the a s are proportional to the friction
memory function X;;(co). Therefore, the continued-
fraction expansion (2.13}and (2.14) is equivalent to an in-

The two fundamental matrices needed in the evalua-
tion of P»(co) through Eq. (2.20) are goo' and X»(co). We
shall show here how they are related to the density of the
adatom and the substrate vibrational properties. First, it
is easy to see from the definition of goo and the adiabatic
potential V„(R) in {2.4) that

goo(s, s')= Jdr Jdu n(r, u)gi(u)f {u)e.,
(2.21}

1
—I V~(r, u)

Here n(r, u)=Z 'e " ' [P=(ksT} ' and—pvZ = Jdr /du e "] is just the average density of the
adatom. However, since
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V„(r,u)= V, (r)+kqT[1+ Vq(r)]u

the density function n ( r, u) can be simplified to

n(r, u) = n(r, u)e

with

—P[ Vl(r) + V~ir)P 'u ] „2

(2.22)

(2.23)

From (2.24), we can easily accomplish the inversion of
the matrix g00 to obtain

goo'(s, s')= f dr f du n '(r, u)g ( u)1( (u).,

A0
—u —i(G —G') rXe e (2.25)

being the reduced density. Note that the boundary con-
dition that the motion is bounded in the z direction im-

poses the restriction Vz(r) (1. Substitution of (2.23) into
(2.21) results in the following expression for goo.

goo(s, s')= fdr f du n(r, u)Pi(u)g. ,(u)e " e

(2.24)

V„(R)=g v' (R—RI),
1

(2.29)

where v' is the thermally averaged pair interaction of
the adatom with the substrate atom at position R1. The
expression for y can then be simplified to

serves to separate out the regular force on the adatom
due to the interaction with the substrate at the equilibri-
um position I RI J. There is one limiting case when y can
be simplified considerably. This is when the time scale of
the diffusive motion is much longer than the time scale
for the vibrational motion of the background. Under this
circumstance, the time dependence of the coordinates of
the diffusing particle can be neglected in the memory
function and replaced by its initial value. This is the ini-
tial value approximation. ' In this approximation, y
decouples into the product of averages involving the ada-
tom and the substrate atoms separately.

To simplify the memory function further, we now con-
sider the case of a pairwise interaction potential, and uti-
lize the harmonic approximation for the background vi-

brational motion. In this case the adiabatic potential
V„(R) is given by the expression

kBT
&»()=

M
x»'y()x»'

with

(2.26)

In (2.25), the integration dr is over the unit cell with area
A0.

The memory function contains the details of the cou-
pling of the adatom motion to the background vibration.
Here we examine the most important component —the
(1,1} element of the memory function X in detail. From
(2.8}we have

—u —i(G —G') rXe e (2.30)

where

g ~(r, u;to)= g Cr, (tv)vQ(R —R, )
1

B 11';y6

Xvg(R —R, , ) . (2.31)

In (2.31),

y ~(co)= fdr f du n(r, u)g (Ju)g, ,(u) ri~(r, u;cv)

y(tv)= dt e' '(QLPA, e '~ ~'QLPA ) .
1

Cr,'(co)= "dt e' '(u e 'gag'u )11' 0
1yt (2.32)

QLPAO= —(1 —Pb) e' 'QJ(u) . (2.28)

The G=O, j=0 component of (2.28) corresponds simply
to the frictional force on the atom due to the vibrational
motion of the substrate. The projection operator Q

(2.27}

It is easy to see that, to lowest order in the displacement
of the substrate atoms, we have

and R=(r, z). The variable ui denotes a spatial a com-
ponent of the lattice displacement at site I. The time
dependence of the substrate correlation function in (2.32)
is still governed by the complicated Liouville operator
QLQ. In the weak-coupling approximation, we can
neglect the influence of the diffusing particle on the vibra-
tional motion of the background. This amounts to re-
placing the operator QLQ by the simpler operator L
describing the dynamics of the substrate alone. Substitu-
tion of (2.27) into (2.26) and using (2.17) and (2.25) finally
yields the expression for X

& &
as

X,~i(s, s', tv)= fdr du tt '(r, u)vP~(r, u;co)f ( )gu(u)e " e.,a,'k, T
7

M
a2k, T fdr f du q ~(r, u;tv)f (u)t)'j. ,(u)e " eJ j' (2.33)
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D. Analytic solution for special symmetries

To solve for the diffusion tensor in the most general case, one has to use Eq. (2.20) and invert the matrix on the right-
hand side numerically for a given finite set of reciprocal-lattice vectors and Hermite polynomials, and verify conver-
gence. However, for the special case of lattices with square or simple rectangular symmetry, it is possible to achieve the
inversion analytically in a closed form. Denoting the set of G vectors for these lattices as

27Tn 2Am

a a
(2.34)

where a, and a are the lattice constants, it follows immediately that the diagonal elements of the diffusion tensor are
given by

D,„=[X",", (G,G', j,j'; =0)]
G —G —O, J —J —0

(2.35)

D„=O .

Using the simplified initial value form of the memory function, its inverse can easily be found and (2 35) leads to the fol
lowing result:

a Q

D = Z 'fdx&f du fdx e ' e '
r) (r, u;co= 0)

7r
(2.36)

where a and P refer either to the x or y direction, and
x,x& denote x,y or y, x.

Integrals of x and y in (2.36) are over the unit cell with
area A 0

=a, a . For the square lattice case, D is fully iso-
tropic and the order of the spatial integration variables in
(2.36) does not matter. In the limit where the coupling
constant ciao, and Vz~O, e " /&n is proportional to
5[z —zo(r)]. The formula (2.36) then reduces to the same
form as the earlier two-dimensional result by Ying. We
note that the zero-frequency diffusion constant D„al-
ways vanishes, as the motion in the vertical direction is
bounded.

III. DIFFUSION ON SURFACES
WITH DII FKRENT SYMMETRIES

In this section we shall apply the microscopic theory of
Sec. II to study diffusion in a variety of two-dimensional
lattices. To this end, we will consider model systems and
compute D as a function of temperature. In these sys-
tems, both the adiabatic potential V„(R) and the friction
tensor r) ~(R;co=0) are chosen to be simple functions
which nevertheless correctly obey the underlying symme-
try of the lattice. On a square lattice, our simple analytic
formula Eq. (2.36) allows us to study the effect of the
bounded vertical oscillations on diffusion. For lattices
with more complicated symmetries, we compute 0 using
(2.20). In this work, we shall concentrate on such funda-
mental questions as the validity and emergence of the Ar-
rhenius form of activated diffusion and the random-walk
limit of diffusion, and the role of multiple, physically dis-
tinct, saddle points in determining diffusion anisotropies.

A. The square lattice

For a square lattice, the analytic formula (2.36) reduces
to an isotropic form. As we have shown earlier, ' in the
low-temperature limit, the Arrhenius form D=Doe
follows, where Do is a prefactor and 6 is the difference
between the saddle point and the minimum of V~. In the
opposite high-temperature limit, (2.36} recovers the iso-
tropic form of diffusion of a Brownian particle in a
viscous medium, with D =(kz T)/M7), where r)' is a re-
normalized friction. Thus, the microscopic theory
correctly incorporates the universal features of diffusion
at all temperatures.

To study the effect of the vertical motion to diffusion,
we will next consider the following simple forms for the
potentials V, and Vz, as discussed in (2.22} of Sec. II:

V, (r)= Vo[cos(G, o r)+cos(GO, r)],
Vz(r) = Vo[cos(G, O r)+cos(Go, .r)],

(3.1)

where we vary the ratio Vo/Vo. For the case where

Vo
—=0, we get the exact result

D = [Io(p Vo)]
Mg

(3.2)

assuming a constant, isotropic friction tensor. Equation
(3.2), in which Io denotes the hyperbolic Bessel function
of order zero, is a generalization of the corresponding
one-dimensional solution. In Fig. 1 we show this solution
for Vo= —,'. When Vo )0, we have to integrate (2.36) nu-

merically. In Fig. 1 we further display results for two
cases, for which Vo/Vo is —,

' and —,', . When the ratio ap-

proaches unity, the effect of the vertical oscillations be-
come quantitatively rather large. First, the friction in the
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O
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tX:n-
(0
Ct

+ n
CQK

&o
C

(0

sity increases, and the value of X required for conver-
gence is correspondingly larger. Typically, N must be of
the order of 300—400 for the lowest-temperature results
presented below.

To incorporate temperature-dependent substrate effects
into the calculation of surface diffusion, we have to exam-
ine the temperature dependence of the friction tensor g.
From the continuum theory of lattice vibrations, we can
see that the factor PC)&, in the friction tensor (2.31) is in-

dependent of temperature. ' Within this approximation,
the main temperature dependence left then comes from
the Debye-Wailer correction factor in the effective poten-
tial v, tr(R —RI ). ' Within the harmonic approximation,
this factor can be written as'

(3.3)

where

Cb

CO

Cb
I

3h2z 2 8D/T
w(G, )=, iG, i'f dx

8 MksHD O e"—1
(3.4)

0.100 2.575 5.050 7.525 10.000

FIG. 1. Effect of the coupling of the vertical motion to
diffusion oa a square lattice. Upper solid line indicates the ex-
act solution given by (3.2) without vertical motion, while the
two other curves are for Vo/Vo =

—,
' (dashed line) and —,o (dash-

dotted line).

for each reciprocal-lattice vector 6; using standard De-
bye theory. Here 8D is the Debye temperature of a given
substrate. In the spirit of our model calculations, we will

simply use expression (3.3) and multiply each Fourier
component of the adiabatic potential and the friction ten-
sor by d and d, respectively.

In Fig. 2 we show the general geometry pertaining to
the centered rectangular lattice. The simplest periodic,
effective potential can be written down as

Brownian form of uniform diffusion is renormalized by
V2. Also, at intermediate temperatures, a finite V2

changes the effective diffusion barrier. In the low-
temperature limit, the barrier will be determined by V,
alone; however, the prefactor Do decreases with increas-
ing Vo, leading to reduced diffusion rates. For example,
at Pb =10, D for VO=O is about a factor 2.4 larger than
for Vo jV~= —,', . Thus, we can conclude that bounded

vertical motion can cause substantial quantitative
changes in D. On the other hand, the universal features
exhibited by the theory in the limits of very small or large
temperatures compared to the effective barrier, remain
qualitatively unchanged.

with

V, (r}=Vo[cos(G, r)+cos(G2 r)],

(iso)
)1 v

B. The centered rectangular lattice

For a lattice for which the set of lattice vectors (R& I

forms a centered rectangular lattice, the analytic solution
(2.36} is no longer valid. To solve for D, we have to cal-
culate the matrix elements of poo Xli and F, and find
the inverse of the right-hand side of (2.20). As we have
seen in the previous section, the universal properties of
difFusion are unaltered by the oscillatory vertical motion.
Thus, in this and in the following sections we will set
V2=0 which will not change the qualitative features of
our results. Consequently, we consider the case for
which the matrix index s contains only reciprocal-lattice
vectors, i.e., s =(G,j=0), and the convergence of the re-
sults is determined by the number N of G vectors kept.
As the temperature decreases, the corrugation in the den-

(OOI )
X

FIG. 2. Geometry of the rhomboidal lattice used in diffusion
calculations. For the case of a W(110) lattice with centered rec-
tangular symmetry, cotO=&2. The adiabatic potentials are
chosen such that the long bridge sites L correspond to potential
minimum, while classical saddle points are located at short
bridge sites S. Gl and G& denote the two basic reciprocal-lattice
vectors.
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G, = (cos8, sin8)G&,

G2 = ( —cos8, sin8}Gc,

tures corresponding to P6-10, the anisotropy ratio of
diffusion D «/D„„ tends towards a universal limit

and yy =cotze, (3.5)

Gc =n. /(a cos8sin8),

where a is the separation between nearest-neighbor
atoms. The choice of axes in Fig. 2 corresponds to the
principal axes of diffusion, in which D is diagonal. The
adiabatic potential possesses identical saddle points locat-
ed at the short bridge sites S between atoms, while the
minima are at the long bridge sites L. This geometry is
believed to describe the diffusion of oxygen adatoms on
W(110) surface, which has been studied both experimen-
tally and theoretically. ' For this surface, cot8=&2.

In Fig. 3, we show results of our numerical calculations
for a simple choice of the friction tensor, namely
ri""=ri««=1, ri"«=xi«"=0 To .include the Debye-Wailer
factors, we have used (3.4) and set 8D =240 K and b, =1
eV. This choice, in which the Debye temperature corre-
sponds to the known value for the W(100) surface, ' and
for which the barrier is very large, produces relatively
large Debye-Wailer correction factors at higher tempera-
tures. Even with these parameters, the effect of this
correction is rather small for Pb, ) 5, compared to our
calculations with d:—1.

In the high-temperature limit, the solution depicted in
Fig. 3 correctly captures the isotropic limit of a Brownian
particle. At low temperatures, both D and D„„cross
over to an Arrhenius form at about Pb, —5, which
correctly includes the energy barrier 6 as given by the
difference between the saddle point and minimum of the
effective potential. In addition, at and below tempera-

CV

~~ co-

CQK

which, for the W(110) surface, is two. This is precisely
the value obtained using the simple random-walk theory
in which atoms execute a random walk between the long
bridge sites L. ' An anisotropy ratio of two has also
been experimentally measured for the 0/W(110) system.
However, as our calculations demonstrate, the anisotropy
ratio is very sensitive to temperature corrections of the
diffusion prefactors in addition to the barrier, and thus
the geometric limit generally appears at temperatures
much lower than the beginning of the activated regime.

Another model potential, which we have used in our
numerical calculations, is a temperature-dependent form
given by

A p X

(3.6)

In Figs. 4(a) and 4(b), we show this potential at two
different temperatures, with a„=12, a =4. Figure 4(c)
shows calculations of D for this potential using the same
Debye-Wailer factors as above and a friction tensor
ri'"=ri «=1, ri"«=ri«'=0 Again. , this result recovers
both the correct Arrhenius form, with an asymptotically
temperature-independent energy barrier b =1, and the
universal ratio (3.5) at the limit of low temperatures. For
this potential the anisotropy ratio approaches its low-
temperature limit very fast due to a strong temperature
dependence of the curvature around the saddle point, see
Fig. 4(b). Our further calculations varying the adiabatic
potentials and including spatial dependence in the fric-
tion tensor' always reproduce the universal low-
temperature behavior. However, we note that the de-
tailed form of D at intermediate temperatures is model
dependent.

To verify the universal nature of the geometric result
(3.5), we have done additional calculations using the
geometry of Fig. 2, with 0=30'. This corresponds to a
slightly different rhomboidal lattice. We have again per-
formed numerical calculations using a simple cosine po-
tential. In Fig. 5 we show results for D using the friction
tensor ri""=ri «= ,', ri"«= rf""=—0. The Debye-Wailer
correction was the same as for the centered rectangular
lattice. The results are also very similar, except that now
the ratio D««/D„ tends to cot 8=3 for this geometry.

C. The simple rectangular lattice

0.2 2.4 4.6 6.8 9.0

FIG. 3. D „(lower solid curve) and D» (upper solid curve) vs

Ph for the centered rectangular lattice of Fig. 2, using a simple
cosine potential. The dashed line denotes the anisotropy ratio

Dyy /D„„, which tends to the universal value cot 8=2.

V, ( r }= V„cos(G,c r ) + Vs cos( Go, r }, (3.7}

where Vz W Vs generates two distinct saddle points along

The simplest case in which the possibility of physically
different saddle points arises naturally, is the simple rec-
tangular lattice. Using our analytic formula (2.36) and
the potential
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we can incorporate the two dilerent energy barriers seen
in the experiments into the calculations. To obtain a
quantitative fit, we have set the energy barriers 5 =1,
b, =2.13 (in normalized units, in which b,„=3125 K),
and used a constant anisotropic friction tensor with
ri""/g» =0.0064, g"»= rf'" =0 .Setting the absolute
values of ri"" and rP will then determine D in real units
corresponding to the experiments. Additionally, the
Debye-Wailer parameters were set to correspond to
8D=240 K, and the corresponding energy barriers for
each spatial direction. In Fig. 7(b), we display the results
of these model calculations which match with the experi-
mentally observed curves very well. However, at higher

CQ
C4
Cb

C4

ID~ 0
V) CI
Q o
Z ' 0

CC

o 4-
C4 0

Z

IX ~
tt: R-I- n
CQK

Co~O
CO (a)

l0'
Cb
Cb
Cb
C4
Cb

I

Cleon W(2ll) ~ ll

AJ
10.002.650.20 5.10

FIG. 5. D„„(lower solid curve) and D» (upper solid curve) vs

ph for the rhomboidal lattice of Fig. 2, with cotl9=&3. The
dashed line denotes the anisotropy ratio D»/D„„which tends

to the universal value cot'8=3 for this case.

10"—
8

gy barriers. ' This involves the self-diffusion of Tungsten
on a clean W(211) surface. In Fig. 7(a), we show the ex-
perimentally measured components of the diffusion ten-
sor. To illustrate the applicability of the microscopic
theory presented here, we have done model calculations
for this system. Using model potential of the form (3.7),

l
0-l2

1

l.8

s]ioooT (K )

2.0l.4

O
CV (b)

I
I

'~

O
'~0

0—CO
I

O

O

M O

8

O

O

O

O
0.0 0.5

I
'

l

1.0 1.5 2.0 2.5 3.0

1llOOOT (K )
CO

I

6.54.91.7

FIG. 6. Numerical solution for D „(upper curve) and Dyy
(lower curve) vs Ilk„ for a simple rectangular lattice. Without
the Debye-Wailer correction factors, these curves can be ob-
tained from the analytic result (3.8).

FIG. 7. (a) Experimental results of Tringides and Gomer
(Ref. 17) for self-diffusion on the W(211) surface along two or-
thogonal directions. (b) Results of model calculations of W
diffusion based on a simple rectangular lattice, as described in
the text. D„„(solid line) corresponds to the direction with the
smaller barrier 6„=3125 K.
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temperatures we expect the simplified model used here
not to be quantitatively correct. '

IV. DISCUSSION AND SUMMARY

The microscopic theory we have presented in this pa-
per allows a systematic and well-controlled theoretical
study of surface diffusion. By extending the previous
theory to include motion in the direction normal to the
surface, we have developed a complete picture of classical
adatom diffusion. We make no assumptions about ac-
tivated diffusion jumps or particular diffusion trajectories,
but express the diffusion tensor in terms of an inverse
friction expansion. The present paper studies the high-
friction limit, in which we present results at all tempera-
tures. Even in the high-temperature limit, the theory re-
covers the universal Brownian motion result. Answers to
the two fundamental questions we have addressed in this
work, namely the emergence of the Arrhenius form of ac-
tivated temperature dependence and the applicability of
simple geometric random-walk picture, emerge in a natu-
ral way from the theory in the high-friction limit. In the
low-temperature limit we always recover the Arrhenius
form corresponding to the classical saddle-point barrier.
One of the nontrivial results obtained from our general
approach is the relatively larger sensitivity of the
geometric random-walk anisotropy to temperature. The
geometric limit for the anisotropy ratio is usually ap-
proached only at temperatures much lower than where
the Arrhenius form is already a very good approximation
for the temperature dependence of D. ' Deviations from
the geometric limit arise from gradua1 increase in
diffusion paths which do not follow the exact TST trajec-
tories. Eventually, at high temperatures, this contribu-
tion becomes large enough to cause deviations from the
activated behavior, and a crossover to Brownian behav-
ior. All these results are uniuersal (within the high-
friction limit) in the sense that neither small oscillations
in the vertical direction nor the detailed form of the adia-
batic potential or the friction tensor change this picture
qualitatively. This is well demonstrated by the excellent
agreement with experiments obtained with a simple mod-
el of W diffusion on a simple rectangular lattice of Sec.
III.

The existing theory can also be used to compute gen-
eral frequency-dependent correlation functions, which
can be related to the vibrational properties of adatoms on
surfaces. It is also relatively straightforward to continue
the continued fraction expansion of Sec. II and study the
correlation functions beyond the high-friction approxi-
mation, although much of the transparency of the analyt-
ic result (2.36} is lost. This will certainly infiuence the de-

tails of the crossover behavior in temperature, but is not
expected to drastically change the universal properties of
diffusion discussed here. Work in these directions is al-
ready in progress.
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APPENDIX

In this appendix we want to show that the spatial ma-
trix elements of F=b,oaz '(or)bot are given by (2.19).
First, by definition,

and

1

ao (ar}= Zoo
N

(A 1)

(A2)

the spatial matrix elements of c„can be written as

clo«G';i J')=GpX11«G',j j')
—t(2j )'"xif«G', J j' —1»

and

c(oG, G', j,j ') =G&yg~(G, G',j,j ')

(A3)

+i&2j g, (G,G',j—1, j') . (A4)

Using the result y„=(kz T/M)yz&5 &
from (2.17), we get

k T
clo(G G j j }= G xoo(G G'J J }

k, T
c', (Go, G', j, j')= i (—2j )' goo(G, G';j, j' —1)

(A5)

and

k~T
c,,(G, G', j, j')= G.y~(G, G', j, j'),

k~T
(cGo, G'; j, j')=i &2j goo(G, G',j—1, j'),

M

(A6}

for a=x,y. The final result follows immediately by sub-
stituting these equations together with (Al) to the
definition of F.

where c„—:( A„,l. A ). Using the definition of the slow
variables and the identity

dg (u)
=&2jg, (u),
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