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Quantum susceptance and its effects on the high-frequency response
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We have made the first direct measurement of the quantum susceptance that arises from the non-
dissipative part of quasiparticle tunneling in a superconductor-insulator-superconductor tunnel
junction. The junction is coupled to an antenna and a superconducting microstrip stub to form a
resonator; the resonant frequency is determined from the response of the junction to broadband ra-
diation from a Fourier-transform spectrometer. A 19%%uo shift of the resonant frequency, from 73 to
87 GHz, is observed, which arises from the change of the quantum susceptance of the junction with
dc bias voltage. This shift is in excellent agreement with calculations based on the Werthamer-
Tucker theory, which includes the quantum susceptance. We also demonstrate that it is essential to
include the quantum susceptance in our theoretical computation to explain the photon-assisted-
tunneling steps, which have negative dynamic conductance. Such steps are observed when the junc-
tion is pumped at slightly below the resonant frequency of the capacitor and the stub. The quantum
susceptance should exist in all tunnel devices whose nonlinear I- V characteristics are due to elastic
tunneling.

I. INTRODUCTION

Tunneling is a quantum-mechanical phenomenon. One
of the consequences of such processes is that the current-
voltage relation is usually not instantaneous in the pres-
ence of an ac drive, provided the driving frequency is
higher than the inverse of the lifetimes of the eigenstates
involved. This noninstantaneous current-voltage relation
consequently gives rise to a reactive component' of the
tunneling current in addition to a dissipative, resistive
one. If the tunneling processes are elastic, then the I-V
curve contains direct information about the density of
states in the two sides of the junction. In this case, the
resistive (dissipative) tunneling is given by the dc I-V
curve of a tunnel junction. The reactive (nondissipative)
component is related to the resistive component through
a frequency Kramers-Kronig transformation, as required
for any causal, linear response. Therefore, the high-
frequency response of the junction can be completely de-
duced from the dc I-V curve. Consequently, the
frequency-dependent conductance which is associated
with a nonlinear elastic tunneling I-V curve should give
rise to a susceptance. The subject of this paper is the
effect of this susceptance, called quantum susceptance
herein, on the response of superconductor-insulator-
superconductor (SIS) junctions to high-frequency radia-
tion.

It is well known that there are two types of charge car-
riers that tunnel across a SIS junction: Cooper pairs and
quasiparticles. They arise from the superconducting con-
densate and the excitations, respectively. Due to the

noninstantaneous current-voltage relation, the tunneling
current from each carrier contains two components in
the presence of an ac drive. The in-phase component is
dissipative (resistive) while the out-of-phase one is nondis-
sipative (reactive). For Cooper-pair tunneling current,
the in-phase component is the Josephson cosP term, ' '

while the out-of-phase component is the Josephson sing
term. ' ' For quasiparticles, the in-phase component is
given by the dc quasiparticle I-V characteristic, while the
out-of-phase component is the quantum susceptance or
quantum reactance. ' The reactive quasiparticle tun-
neling current is a result of quantum sloshing. If the en-

ergy difference of the initial and final states on two sides
of the junction is different from the photon energy, no
photon-assisted tunneling can take place. Instead, the
quasiparticles slosh back and forth between the two sides
by absorbing and then emitting photons of the same fre-
quency.

Werthamer derived an expression for the response
function of both Cooper pairs and quasiparticles. ' The
real parts of the response functions correspond to the
reactive components of the tunneling currents, and the
imaginary parts correspond to the resistive components.
Using Werthamer's theory, Harris analyzed the response
of a SIS junction to a rf radiation in the small-signal lim-
it. He correctly predicted the effect of the quantum sus-
ceptance at zero dc bias voltage. %'bile Josephson tun-
neling and quasiparticle resistive tunneling have been ex-
tensively studied, quantum susceptance has been largely
ignored. This is because the contribution from the quan-
tum susceptance to the tunneling current is only
significant at frequencies high enough that the voltage as-
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sociated with a quantum of radiation, V= irido/e, is larger
than the voltage scale on which the I-V characteristic of a
SIS junction is nonlinear. Josephson-efect devices origi-
nally showed greater promise as useful high-frequency
devices, so the effects of both sing and cosP terms on the
response of Josephson junctions have been studied exten-
sively. ' The quasiparticle tunneling was originally stud-
ied as a measure of the density of states for excitations.
This measurement is done essentially at zero frequency so
the quantum susceptance makes no contribution. This
situation has changed since the invention of SIS quasipar-
ticle direct detectors and SIS quasiparticle mixers which
utilize quasiparticle tunneling for high-frequency opera-
tion. Tucker Srst studied the reactive quasiparticle tun-
neling at arbitrary dc and rf bias voltages. He predicted
that a SIS mixer which has a noninstantaneous current-
voltage relation may have a mixer gain greater than uni-

ty. In contrast, a classical resistive mixer, whose
current-voltage relation is instantaneous, has a maximum
mixer gain of unity. It was speculated that this mixer
gain is due to a parametric ampli6cation from the non-
linear quantum susceptance. However, a detailed
analysis' indicated that the effect of the quantum suscep-
tance is quite subtle and is not responsible for the predict-
ed mixer gain. It was further argued that, like the
Josephson cos(() term, " the quantum susceptance should
be difficult to detect experimentally.

In this paper, we report experimental evidence for the
quantum susceptance from a measurement of a shift of
the resonant frequency of a superconducting microstrip
stub resonator which contains a SIS junction. This shift
of the resonant frequency is due to the change of the
quantum susceptance as a function of dc bias voltage.
We also present an analysis of dc J-V curves of a SIS
junction pumped with sufficient rf power so that the
photon-assisted-tunneling steps are clearly seen. In an
earlier work, we demonstrated that the quantum suscep-
tance is essential to the explanation of the negative
photon-assisted-tunneling steps observed when the junc-
tion is pumped at frequencies slightly below the resonant
frequency. ' This paper is organized as follows: the
theoretical background will be introduced in Sec. II, the
experimental details will be described in Sec. III, the
comparison between the theory and the experiments will
be discussed in Sec. IV, and finally the conclusion will be
drawn in Sec. V.

II.THEORETICAL BACKGROUND

Based on a perturbation theory using a tunneling Ham-
iltonian, ' Werthamer' derived an expression for the
tunneling current as a function of time in the presence of
both dc and ac bias:

I(t)=Im f fdeed~'[W(co)W'(co')e ' "j (co'+eVO/fi)+ W(co)W(co')e ' + "+'~j (co'+eVO/fi)],

where jqp and j are the response functions of quasiparti-
cles and Cooper pairs, respectively. The erst term in Eq.
(l) is the quasiparticle tunneling current. The second
term is the pair tunneling current which depends on the
phase difference P between the superconducting ground-
state wave functions on the two sides of the junction.
The real parts of the response functions correspond to the
reactive components, and the imaginary parts correspond
to the resistive components. W(co) is the Fourier fre-
quency component of the time-varying phase factor
caused by the ac bias voltage:

exp i f d—t'[—V(t') —Vo] =f" de W(~)e
fi QO

(2)

For BCS-like superconductors, j and j can be calculat-
ed using the density of states of quasiparticles and Coop-
er pairs. However, the calculation is quite complicated.
The following shows that the quasiparticle response func-
tion j can be measured directly from the dc I-V curve.
When the bias voltage V(t) contains only a dc component
Vo, then W(co) =5(0), and from Eq. (I) we have

I ( t) = Im[ jq&(coo) ]+Re[jz (coo) ]sing+ Im[ jz (coo )]cosP,

(3)

where coo=eVO/fi Since bo.th the sing and cos(() terms
oscillate at the Josephson frequency coJ=2eVO/A', the
only dc component in Eq. (3) is the first term. Therefore,
Im[j pe Vo/4)] is equal to the dc quasiparticle I-V curve

Jdc( Vo).

Im[jq (coo)]=Id, ( Vo) .

Equation (4) implies that the imaginary part of the
quasiparticle response function at frequency coo=eVO/iit'

is equal to the dc tunneling current at bias voltage Vo.
Because of the absence of Re[j (coo)] in Eq. (3), it is clear
that the reactive part of the quasiparticle response func-
tion has no contribution to the tunneling current when
the bias voltage is time independent. In contrast to the
quasiparticle response function, both the real and imagi-
nary parts of the pair response function contribute to the
tunneling current at dc bias. The real part of jz gives rise
to the familiar Josephson sin(() term, while the imaginary
part ofj gives the Josephson cosp term.

The real and imaginary parts of both quasiparticle and
Cooper-pair response functions are related through a fre-
quency Kramers-Kronig transform, as required by any
causal and finite response. For j (co), 3



10 252 QING HU, C. A. MEARS, P. L. RICHARDS, AND F. L. LLOYD

Im[j (co')]—irico'/eR„
Re[jqp(co)] =P

=ItcK( V}

d V' Io, ( V') —V'/R„=P
7T V' —V

(5)

In Eq. (5), we have used Eq. (4) to replace Im[j (co'}]
with Id, ( V'), eV'/%=co', and eV/Pi=co. We subtract an
ohmic term from the quasiparticle I-V curve to prevent
divergence of the integral. This is allowed because only
the nonlinear portion of Io, (V) gives rise to a reactive
component. The frequency-independent ohmic response
corresponds to an instantaneous current-voltage relation
and thus does not contribute to the reactive component.
It can be shown from Eq. (1) that all measurable quanti-
ties depend only on difFerences between values of ItcK( V)

and not on its absolute magnitude. In Figs. 1(a) and 1(b),
we plot an experimentally measured I-V curve of a SIS
junction and the voltage Kramers-Kronig transform cal-
culated from Eq. (5). The peak of E~tt at the gap voltage

Vg corresponds to the sharp nonlinearity of the dc I-V
curve Id, (V) at Vs. At T=O, for an ideal SIS junction
whose quasiparticle density of states is given by the BCS
theory, the peak in I&K diverges logarithmically at
V 1 —4

g'
Equations (4) and (5) suggest a very powerful way of

deducing the frequency-dependent response function of
quasiparticles. The dc current Id, ( V) as a function of dc

I(t)=cto+ g [2a cos(mcot)+2b~sin(mcot)] .
m=1

(6)

bias voltage gives the imaginary part of the response
function as a function of frequency; its voltage Kramers-
Kronig transform gives the real part of the response func-
tion. Therefore, the dc I-V curve, which can be easily
measured, contains all the information about the
response of the quasiparticles in a SIS junction at high
frequencies. Two conditions must be satisfied for this
statement to be valid. First, the quasiparticle tunneling
must be elastic within the tunnel barrier so that the dc I-
V curve gives direct information about the density of
states of the quasiparticles in the two sides of the junc-
tion. Second, tunneling probability must be small enough
so that the tunneling does not significantly change the
density of states on either side. These two conditions are
met for SIS junctions with modest current densities 10
A/cm and high-quality tunnel barriers which are free
from impurities and imperfections.

We will focus on the quasiparticle tunneling in this pa-
per. The efFect of the Cooper pairs can be minimized ei-
ther by applying a magnetic field, or by biasing the SIS
junction at a voltage high enough that the Josephson
current oscillates at a frequency high enough to be
effectively shunted by the junction capacitance. In the
presence of a time-dependent bias voltage,

V(t) = Vc+ V„coscot,

the quasiparticle tunneling current as a function of time
is given by
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FIG. 1. (a) Measured dc I-V curve of the SIS junction studied
in this paper, the junction temperature is about 4.5 K. (b)
Kramers-Kronig transform of the Id, calculated using Eq. (5).
(c) Quantum conductance G& at co/2m=77 GHz calculated
from Eq. (ga) using the Id, ( V) in Fig. (a). (d) Quantum suscep-
tance 8& at 77 GHz calculated from Eq. (8b) using the I« in
(b) ~

Here, Id, and IttK are the same as in Eqs. (4) and (5), J„
is the nth Bessel's function, and a=eV Acu is the dimen-
sionless rf voltage. Equations (6) and (7) indicate that
many harmonics of the drive frequency co exist in a SIS
junction. The amplitudes of these current components
have a nonlinear dependence on the rf drive voltage V .
Equations (6) and (7} also indicate that there exists an
out-of-phase reactive component since' as well as an in-
phase component coscut. We wi11 show later that the
current amplitude of the two components can be compa-
rable. It should be noted that the dc I-V curve
Io, (VO)=ao of a voltage-pumped SIS junction is com-
pletely independent of the real part of the quasiparticle
response function IKtc. Therefore, Re(j ) cannot be
measured from the dc I-V curves of a voltage-pumped
SIS junction. This is in contrast to the pair-response
function, whose real'part Re(j ) (Josephson sing term)
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[Id, ( V0+Aco/e) Id, ( V0——~/e)],
2AN

Bg(co)=Im[ Yg(co)]

e
[IKK ( VO + fico /e ) ~IKK ( VO )

+IKK( V, —a~/~)] .

(8a)

(8b)

Gg and Bg are called quantum conductance and quan-
tum susceptance, respectively, in this paper and in a pre-
vious work. ' In the limit of low frequency, the quantum
conductance Gg(co) reduces to the classical limit dI/dV
as expected for any system whose characteristic frequen-
cy is much higher than the driving frequency. In the lim-
it of high frequency, Gg(co) approaches the inverse of the
normal-state resistance I/R„at frequencies far above the

gap frequency. This implies that the response of a SIS
junction is like a classical diode at 1ow frequencies and
becomes ohmic when the photon energy is much greater
than the gap energy. In a previous work, ' we showed
that the quantum conductance G& and the quantum sus-
ceptance Bg defined in Eqs. (8a) and (8b) are related
through a frequency Kramers-Kronig transform, as re-
quired for any causal, linear response,

contributes to a dc current at some discrete voltages
which correspond to Shapiro's steps. From the width of
those Shapiro's steps as functions of rf voltage amplitude,
Re( j~) can be measured as a function of frequency. '

The analysis of the response of quasiparticle tunneling
current to a large-amplitude rf radiation i.s very compli-
cated since multiphoton nonlinear processes are involved.
In general, numerical computation is required and it is
diScult to gain an intuitive understanding of the physics
involved. However, in the small signal limit a &&1, only
the one-photon process is significant, so the problem is
linear. If we define an admittance Yg(co) as the ratio of
the induced rf quasiparticle current and the rf voltage
Yg(co) =I /V, then, from Eqs. (6) and (7) to the leading
order of a, the real and imaginary parts of Yg(ro) are
given by

Gg(co) =Re[ Yg(co)]

)4E

A eV,

capacitive value at one-photon voltage Ace/e below the
gap voltage V and the largest inductive value at V . In
Fig. 1(c), we also plot the quantum conductance Gg as a
function of bias voltage. G& is largely only within one-
photon voltage Ace/e below and above V, which corre-
sponds to the voltage where a quasiparticle can tunnel to
the other side by absorbing or emitting one photon.

It is easy to understand that the quantum conductance
G& comes from the photon-assisted tunneling. It is less
straightforward that the quantum susceptance 8& comes
from a sloshing back and forth of quasiparticles. We will
use the semiconductor model in Fig. 2 to help to under-
stand both the photon-assisted tunneling and the quan-
tum sloshing. The superconducting energy gap 24 splits
the density of quasiparticle states into two separate
bands, the conduction band and the valence band. At
T=O, all the states in the valence band are full and all the
states in the conduction band are empty. The dc bias
voltage Vo shifts the relative Fermi levels on the two
sides by e V0. Consider a SIS junction in the presence of a
photon field with photon energy %co Co.nservation of en-
ergy allows transitions to take place only between two
states whose energy difference is %co. Also at T=O,
Pauli's exclusion principle requires that if one state is in
the valence band then the other state must be in the con-
duction band.

The tunneling between states A and 8 in Fig. 2, which
satisfies the condition E„+Ace =E&, is the photon-
assisted tunneling' which gives rise to a steplike struc-
ture on the dc I-V curve of a pumped SIS junction. This

dpi' Gg(0i')
Bg(co)=P (9)

E
f

This approach is simpler than the one we used here.
However, in this paper, we are interested in the case of
arbitrary signal strength, so we started with Eqs. (6) and
(7) which apply to the general case.

Expression (8b) for the quantum susceptance Bg can be
interpreted geometrically. Bg(0i) is a measure of the cur-
vature of the three points IKK( V0+iri0i/e), IKK( V0), and
IKK(V0 —A'co/e). When the curvature is upward, Bg is
positive and capacitive, when the curvature is downward,
B& is negative and inductive. It can be seen from Fig.
1(b) that, as we change the dc bias voltage V0 from zero,
the curvature of IKK changes from positive to negative
and back to positive. This implies that the quantum sus-
ceptance changes from capacitive to inductive and back
to capacitive as shown in Fig. 1(d). Bg has the largest

D (E)

«Il~
D (E)

FIG. 2. Semiconductor model of a SIS junction. The energy
difference between state A on the left-hand side and state 8 on
the right-hand side is Ace, where ~ is the angular frequency of
the rf drive. The tunneling between states A and 8 can be as-
sisted by the photons in the rf signal. The tunneling between
state A and any states other than 8 cannot be completed be-
cause of the energy conservation law. The quantum sloshing be-
tween state A and states above 8 gives a capacitive component,
while the sloshing between state 3 and states below 8 gives an
inductive one.
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G2 ((co ) coy"
I+(ro —coz () r (10a)

co( coz ( co )r
»-((~) "~x'"

1+(co—c02 I)
(10b)

Here ~ is the lifetime of the quasiparticle concerned.
From Eq. (10b},at ro&oiz „8i ( is negative and the sus-

tunneling can also be assisted by absorbing more than one
photon if the photon field is strong enough. The tunnel-
ing of a quasiparticle in an initial state A to final states
other than B cannot occur because it violates conserva-
tion of energy. However, this does not imply that the
tunneling between two such states can never take place.
A quasiparticle in state A can absorb a photon Ace tem-
porarily to tunnel to a state on the right-hand side other
than state B, then emit a photon of the same frequency
and tunnel back to state A. This movement has been
called "quantum sloshing" and its primary effect is to
alter the phase of the photon field and leave the total
photon number unchanged. Therefore, the contribution
of this quantum sloshing to the quasiparticle tunneling
current is the reactive component, which is what we
called quantum susceptance. As pointed out by Tucker,
this susceptance is a consequence of the noninstantaneous
current-voltage relation in the quantum-mechanical tun-
neling.

The sign of the susceptance contributed by the quan-
tum sloshing between two states with energies EL and Ez
depends on whether the energy difference ~Ea EI ~

is-
larger or smaller than the energy of the photons Rro of the
rf drive. If!El( EL ~

& fic—o, then the susceptance is capa-
citive, if ~Ea EI ~

&fico, t—he susceptance is inductive.
When the energy difference between the two states is
equal to the energy of the photons, the tunneling is purely
resistive. These results can be understood if we model
the SIS as a superposition of two-level systems.

Consider two quasiparticle states, one on the left-hand
side and the other on the right-hand side of a SIS junc-
tion whose energy difference is Acoz I. The transition be-
tween these two states is analogous to the transition be-
tween two levels in an atom. Following Yariv's deriva-
tion, ' the electrical dipole moment P(t) induced by such
a transition can be characterized by the "atomic" suscep-
tibilityy=y'=iy", such that

P(t) =Re(e~Ee'"'),
where E is the external electrical field. The current asso-
ciated with this time-varying dipole is the time derivative
of the electrical dipole moment,

I(t) ~ dP(t)ldt =Re(i rue&gEe' ') .
Since the rf voltage V„ is proportional to the electrical
field E, the rf admittance I'2 t(ro) is proportional to
(iroeo)(} Here the s.ubscript "2—i" is to emphasize that
this admittance is the contribution only from the tunnel-
ing between these two specific states. Then, from Eqs.
(8.1)—(8.19) in Ref. 17, we obtain the expression for the
quantum conductance and susceptance which arise from
these two states in the absence of inelastic scattering dur-
ing the tunneling,

ceptance is inductive, and at co&co2 &, B2 I is positive
and the susceptance is capacitive. Finally, at co=co&

B2 I is zero and the admittance is purely resistive and
the conductance 62 I takes a maximum value. If we as-
sume that the quantum sloshing processes are uncorrelat-
ed, ' the total quantum conductance G&(co}and the quan-
tum susceptance 8&(ro) are coinputed by integrating
62 I and B2 I over all the quasiparticle tunneling pro-
cesses allowed by Pauli's principle. These results can also
be understood qualitatively from the behavior of a classi-
cal harmonic oscillator with an intrinsic frequency co2

When the drive varies slowly with time, co & co2 I, the dis-
placement, which is proportional to the dipole inoment,
follows the drive, i.e., P ~ E. %hen the drive varies rap-
idly with time, co & co2 I, the displacement is 180 out of
phase with the drive, so P ~ —E.

Returning to the formal theory, we plot in Fig. 3 the
calculated quantum conductance G&(co) and the quantum
susceptance 8&(ro), using Eqs. (5) and (8) and the Iz, and

Izz in Fig. 1, as functions of frequency at a fixed dc bias
voltage Vo =2.50 mV. The peak of 6& at 62 GHz occurs
when the photon energy is equal to the energy difference
between the edge of the conduction band on one side and
the edge of the valence band on the other side of the junc-
tion. This frequency is a simple function of dc bias volt-
age, fo

= ( Vs
—

Vo }lb. At this frequency, the quantum
susceptance B vanishes just as what we expect for a
two-level system. At frequencies below fo, 8& is positive
and the quantum susceptance is capacitive; at frequencies
above fo, 8& is negative and the quantum susceptance is
inductive. The plot in Fig. 3 is strikingly similar to Fig.
8.2 in Ref. 17, where the real and imaginary parts of the

0.06—

0.04—

0.02—

-0.02—

80 120
f (GHz}

200

FIG. 3. Quantum conductance G& and quantum susceptance
B& calculated as functions of frequency at a dc bias voltage
VO=2.50mV using Eq. (g). The frequency fo at the peak of G&,
62 GHz, corresponds to the energy difference between the edges
of the valence band and of the conduction band on two sides of
the junction, i.e., fo=e(V —Vo}/h. At this frequency, the
quantum susceptance B& vanishes.
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atomic susceptibility g'~B2 &/co and g" ~62 &/co are
plotted as functions of frequency. This strong similarity
suggests that a SIS junction can be approximated as a
voltage-tunable two-level system whose energy difFerence
is e {Vg

—Vo). This approximation is valid because of the
singularities of the quasiparticle density of states at the
gap energy so a large portion of the quasiparticles occupy
the states near the gap.

Using the discussion in the last two paragraphs, we can
provide a detailed physical explanation of the voltage
dependence of the quantum susceptance. At
Vo( Vs

—Ace/e, the energy dilference between all the
states in the conduction band on one side and all the
states in the valence band on the other side is greater
than the photon energy, i.e., co2 &

& co. Therefore,
Y2 t(co) from all possible quantum sloshing events are
capacitive. As Vo increases from zero to V —Ace/e, the
difference (ai2 &

—to} becomes smaller, so the denomina-

tor in Eq. (10b) decreases. This results in a maximum
capacitive value of the quantum susceptance 8& at

Vg
—Ace/e, as shown in Fig. 1(d). As the bias voltage Vo

increases from V fico/e, t—here will be states in the con-
duction band with energy less than Ace greater than some
of the states in the valence band on the other side. For
these pairs of states, toi i (co, so their contribution to the
quantum sloshing is inductive. This explains why the
quantum susceptance B& becomes more inductive as Vo

increases from V —Ace/e, and has the largest inductive
value at the gap voltage V, as shown in Fig. 1(d).

Although the above discussion was carried out at T=O
for simplicity, the results are still valid at finite tempera-
ture. Two modifications should be introduced in the
above discussion at finite temperatures. First, the super-
conducting energy gap is reduced. Second, the states in
the valence band are not completely filled, the occupation
probability is given by the Fermi distribution f (E). Simi-

larly, the states in the conduction band are not complete-
ly empty, and the unoccupied probability is given by
1 f(E). These—two modifications at finite temperature
afFect the dc I-V curve in the same way as they affect the
high-frequency response of the SIS junction. Therefore,
the rf admittance of a SIS junction is still given by Eqs.
(Sa} and (Sb} as long as its dc I-V curve at TAO is still
due to elastic tunneling.

In the general case, a=eV /iiito can be any value and

we must consider a complicated nonlinear solution of Eq.
(7) to analyze the response of a SIS junction to rf radia-
tion. We can still define an admittance Y(co)=I„/V„,
where I and V are the current and voltage at frequency
co. In this case, Y(co) will be a function of V„as well as a
function of Vo and co. Numerical computation is re-

quired for detailed analysis. However, some of the quali-
tative features discussed above in the hnear limit will still

apply as long as a is not so much greater than unity that
multiphoton processes dominate the one-photon pro-
cess. ' One of the important features is that the quantum
susceptance takes its maximum capacitive value at one-

photon voltage below the gap Vs
—%co/e, and changes to

an inductive value as the bias voltage increases to the gap
voltage V . We will show later in Sec. IV that this

feature is responsible for the photon-assisted-tunneling
steps with negative dynamic resistance which were ob-
served at drive frequencies slightly below the resonant
frequency of a microstrip stub resonator.

III. EXPERIMENTAL DKTAIIA

As discussed in Sec. II, the reactive part of the quasi-
particle response function or, equivalently, the quantum
susceptance B& has no contribution to the tunneling
current when the bias voltage is purely dc, i.e., V(t) = Vo.
Also, the quantum susceptance B& has no effect on the dc
I-V curve of a SIS junction pumped by a rf voltage source
whose amplitude V is independent of dc bias voltage.
Consequently, the quantum susceptance cannot be mea-
sured in a dc voltage-biased SIS junction, or from the dc
I-V curves of a rf voltage-biased SISjunction.

The most straightforward and convenient way to mea-
sure a reactive element is to measure the resonant fre-
quency of a resonator which contains the element to be
measured. In a less direct way, the quantum susceptance
B can be measured from the shape of the I-V curves of a
SIS junction pumped by a rf source with a nonzero out-
put impedance. The first method gives a direct and
definitive measurement of the quantum susceptance. The
second method gives an independent check and can also
help in understanding the role of the quantum suscep-
tance in the rf impedance match, especially in the large-
signal limit. This impedance match is crucial for many
SIS devices, such as SIS direct detectors, ' SIS hetero-
dyne mixers, ' and SIS parametric amplifiers. We de-
scribe both ways of measuring the quantum susceptance
in this paper.

We have constructed a millimeter wave resonant cir-
cuit by using a superconducting microstrip stub and a SIS
junction. This resonator is quasioptically coupled to the
radiation source by a planar antenna and several lenses. '

A photograph and a schematic drawing of the junction
and microstrip stub located at the center of a log-periodic
antenna are shown in Figs. 4(a) and 4(b). The response of
this resonator to a rf signal can be analyzed using the
equivalent circuit shown in Fig. 4(c). The signal and the
antenna are represented by a rf current source in parallel
with its source admittance Y„. The SIS junction is
represented by the parallel combination of the quantum
conductance G&(t0), quantum susceptance B&(co), and the
geometric capacitance C. The admittance of the super-
conducting microstrip stub is essentially reactive and can
be represented by a susceptance B„„b{co).The loss of the
stub at rf can be modeled by a conductance in parallel
with B„„b(co). This loss does not a(feet the value of the
susceptance B„„b{co)to first order, and therefore it is
unimportant in the determination of the resonant fre-
quency of the resonator.

In order to measure the quantum susceptance B&, we
need to know the imbedding susceptance B; b, which is
the total susceptance that is independent of dc bias volt-
age. In the equivalent circuit in Fig. 4(c), the imbedding
susceptance B; b is the sum of the susceptances of the
junction capacitance AC, and of the microstrip stub
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[a)

y„GQ BQ
]-

stub

where e, is the relative dielectric constant of the sub-
strate. Use of a self-complementary antenna greatly
simpli6es the characterization of the imbedding admit-
tance. In this experiment we have used a circular-
toothed log-periodic antenna which was measured to
have a high antenna eSciency (-60%) and a nearly
Gaussian antenna beam pattern. As shown in Fig. 4(a),
the antenna is self-complementary. We have used a fused
quartz substrate, which has a relative dielectric constant
e„=3.85 at millimeter wave frequencies. This gives an
antenna admittance of Yz =8.3 X 10 0

We have used a superconducting microstrip stub with
the stub made out of Pb-In-Au alloy and the ground
plane of Nb. As shown in Figs. 4(a) and 4(b), the stub
contains two sections, a narrow section 1 and a wide sec-
tion 2. The widths and the lengths of the two sections are
mi =6 pm, m~ =40 pm, li = 135 pm, and Ig =260

1
™

The phase velocity within the microstrip line is
u = l(L, C, )'~z, where

L, =(po/km)[t+A, ,coth(t, /~, , )+Azcoth(tz/kz)]

(c)

FIG. 4. (a) Picture of a log-periodic antenna with a micro-
strip stub. The SIS junction is located at the center of the an-

tenna at one end of the stub. (b) Schematic of a two-section mi-

crostrip stub. The A,/4 section which is open circuited at point
A produces a short circuit at point B. (c) Equivalent circuit of a
resonator which includes a microstrip stub with susceptance
B t„b, a junction capacitance C, the quantum susceptance BQ,
and the quantum conductance GQ. The variable signs on BQ
and GQ indicate that they are functions of dc bias voltage. The
radiation source and the antenna are represented with a rf
current source in parallel with the antenna admittance Y&.

B„„b(co},and of the antenna Im( Y„). The resonance of
the equivalent circuit of Fig. 4(c) corresponds to the con-
dition

8„,=Bg(co)+8; b(co)=0 .

Without the quantum susceptance 8&, the resonant fre-
quency would be independent of bias voltage. However,
since 8& changes rapidly with dc bias voltage Vu as
shown in Fig. 1(d), we expect that the resonant frequency
will change as Vo changes.

The susceptance of the capacitance is simply cue, and
the susceptance of the stub B„„b(co)can be calculated us-

ing formulas in a standard microwave engineering text-
book. The expression of the susceptance of an antenna
can be quite complicated in general. However, for a spe-
cial class of planar antennas called "self-complementary
antennas, " in which the pattern of the metallic part is the
same as that of the dielectric part, the admittance of the
antenna is real and independent of frequency. The an-
tenna admittance is given by

Y~ =(1+a„)' 3 74X10 'Q

is the inductance per unit length, and C, =ke„cow/t is
the capacitance per unit length. t and e, are the thick-
ness and the dielectric constant of the insulating layer
(SiO in our case), t, z and A, , z are the thicknesses and the
London penetration depth of the ground (Nb) and top
(Pb-In-Au) plane, and k is a fringing factor close to uni-

ty. Usinl' the designed values, e„=5.7, t=3000 A, t,
=2000 A, tz =4250 A, ANb=850 A, Apb-'„-A„= 1450
A, the phase velocity is u=(0.30+0.01}c. The length of
the wider section is —,

' of the wavelength at 87 GHz, so
the wider section transforms a rf open circuit at point A
to a rf short circuit at point 8 in Fig. 4(b). This two-
section stub has a slower variation of the susceptance as a
function of frequency than a one-section open-ended
stub, so the e6ect of the quantum susceptance is more
profound. The length of the narrow section is —,

' of the
wavelength at 85 6Hz which transforms the rf short to
an inductive admittance The total susceptance of the
two-section stub is given by

Y, [Yz tan(Plz )+ Y, tan(Pl, )]B„„b(~)=
Y~

—Yztan(Pl& )tan(Plz)

where P=co/u, Y& z =(C,
& z/L» z)' are the characteris-

tic admittances of section 1 (narrow) and section 2 (wide)
of the stub, Y') =0.124Q ', and F2 =0.6370 '. We
have shown that the expression of the susceptance of the
stub B„„b(co}remains the same when there is a small rf
loss in the stub.

In order to measure the small-signal frequency
response of the junction-stub resonator, the rf power cou-
pled to the resonator must be less than 10 pW so, for
6&=0.010 ', a=eV /fm«1 at 75 GHz and Eq. (8)
applies. Consequently, we need a very sensitive detector.
A.iso, the frequency dependence of the detector must be
known in order to separate the frequency response of the
resonator from that of the detector. We have used the
internal detection mechanism in the SIS junction to mea-
sure the frequency response of the resonator. SIS direct
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detectors are known to be among the most sensitive 4.2-
K video detectors at millimeter wave frequencies, and
they have been proved to be very useful in measuring the
frequency response of millimeter and submillirneter wave
resonators. The frequency-dependent responsivity of
the SIS direct detector can be easily calculated from
Tucker's theory. There is also a major advantage of this
scheme: because of the proximity of the SIS detector to

the resonator, there is no Fabry-Perot interference be-
tween them. The output of the SIS detector as a function
of rf is the product of the frequency response of the reso-
nator, the spectrum of the source, and the frequency-
dependent responsivity of the SIS detector.

The current responsivity SJ of a SIS direct detector,
defined as the induced dc current per unit rf power ab-
sorbed, as a function of frequency is given by

AId& e Id&( Vp +flee/e) 2Id ( Vp ) +Id&( Vp flcole)
s,(~)=

P fico Id, ( Vp+fico/e) Id,—( Vp
—fico/e)

(12)

AId,
=Si(a)) 1—

p I

2

Y~+ YJ
(13)

where Y JG&+i(B&+coC+B„„b) is the total admit-
tance of the SIS junction and the stub, and Si(pi) is the
current responsivity defined in Eq. (12). The second fac-
tor on the right-hand side of Eq. (13) is the rf coupling
coefficient C,& defined in previous publications. ' C,&

is
the fraction of the available rf power which is delivered
to the dissipative element G&. Equation (13) implies that
the induced dc current is the product of the rf coupling
coefficient C,&(co) and the current responsivity Si(co).
Since Sz(co} is a smooth function of frequency except at
e ( Vg

—
Vp ) /A', the frequency dependence of the rf-

induced dc current EId, is mainly determined by the fre-
quency dependence of C„i(co). Therefore, the frequency
which corresponds to the maximum LDd, is mainly deter-
mined by the resonance condition of the resonator; that
1S,

Im( YJ ) =Bg+coC+B„„b=0 .

%'hen this condition is met, the rf coupling coefficient C„&
has the maximum value.

We also need to know the power spectrum of the rf
source. We have used both a tunable coherent millimeter
wave source which utilizes the Gunn eff'ect ' and an in-
coherent source from the output of a Fourier-transform
spectrometer (FTS). Calibration of the coherent power
incident upon the resonator was difficult due to Fabry-

Here P =Re(I V„'/2} is the rf power actually dissipat-
ed in the SIS junction. Note the absence of the reactive
quasiparticle response function I„K in Eq. (12), which
implies that the quantum susceptance 8& does not affect
the responsivity. As pointed out by Tucker, Si(co)
reduces to a frequency-independent classical current
responsivity (d I/d V )/2(dI/d V) at low frequencies,
and approaches a quantum limit e/Ace at frequencies so
high that the voltage associated with one photon A'co/e is
larger than the width of the current rise at the sum gap
voltage. The induced dc current per unit available rf
power P„ in the SIS junction as a function of rf is then
given by

Perot resonance within the source. These resonances
have sharper peaks than that of the stub-junction resona-
tor so they dominated the measured response. The short
coherent length of the radiation from the FTS eliminates
most of this problem. In this paper, the resonant fre-
quencies and the widths of the resonances of the stub-
junction resonator were measured using the FTS. The
coherent source was used to study the shape of the
photon-assisted-tunneling I-V curves.

The FTS used in this experiment is a far-infrared
Michelson interferometer operated in the step-and-
integrate mode. The output spectrum of the FTS is the
blackbody radiation from a Hg arc lamp at 500C',
modified by the efficiency of a 250-JM, m-thick Mylar beam-
splitter. Since the antenna-coupled SIS direct detector is
sensitive to only a single electromagnetic mode, and the
source is in the Rayleigh-Jeans limit, the power spectrum
of the source is given by a constant multiplied by the
beamsplitter efficiency gb, which is a smooth function of
frequency. For 250-JMm-thick Mylar film at 45' to the
beam with a relative dielectric constant e, =3, the beam-
splitter efficiency gb is slowly increasing with frequency
in the frequency range of interest.

The experimental apparatus used in this work is essen-
tially the same as was used in our quasioptical SIS mixer
experiment. ' The output of the FTS is connected to the
cryostat through a l-m-long, ll-mm-diam light pipe.
The cryostat has a 25-mm-diam window which is covered
with a 25-pm-thick polypropylene window, which should
transmit almost 100% at millimeter wave frequencies.
Within the cryostat, the signal beam is focused by a
f/0. 85 TPX lens, and then further focused by a hy-
perhemispherical quartz lens to a f/0. 5 converging beam
whose beam waist occurs at the flat side of the hy-
perhemispherica1 quartz lens, where the log-periodic an-
tenna with the junction and the resonator is centered.
The quartz lens is heat sunk to the hquid-helium tank
through a copper support. The temperature of the SIS
junction is estimated to be 4.5 K for an unpurnped helium
bath. Under unpumped conditions, the liquid helium in
the cooling tank can last about 10 h as compared to -5 h
when the helium is pumped. The longer hold time allows
us to improve the signal-noise ratio by using longer in-
tegration times. Therefore, all the results reported in this
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paper were obtained at 4.2-K bath temperature. This
temperature is cold enough for our experiment since our
all-Nb SIS junctions have a relatively high T, (-9 K) so
the operating temperature is about half of the transition
temperature.

The SIS junction used in this experiment was fabricat-
ed at the National Institute of Standards and Technology
at Boulder. It is a Nb/A1203/Nb sandwich made using
the trilayer process. The critical current density of the
SIS junction is about 500 A/cm . The normal resistance
of 70Q is approximately matched to the antenna im-
pedance. The I-V curve of the junction shows a low-
leakage current and a sharp gas structure even at 4.5 K,
as shown in Fig. 1(a). The sharp gap structure causes a
dramatic peak in I~K(V) at the gap voltage Vs. This
peak, and the associated large values of curvature, are
essential to observe the effects of the quantum suscep-
tance as discussed above. The junction has been thermal-
ly cycled between room temperature and liquid-helium
temperature over 30 times, and the I-V characteristic has
not changed. The junction area is estimated to be
2.5X2.5 pm, which gives a geometric capacitance of
0.28+0.03 pF if we assume a specific capacitance value of
45+5 fF/ium . 4 This capacitance value gives a suscep-
tance of 0.14Q ' at 80 GHz. Figure l(d) indicates that
the change of the quantum susceptance is as large as
0.05Q between 2.4 and 2.7 mV, which is significant
compared to that of the junction capacitance. Therefore,
the change of the quantum susceptance as a function of
dc bias voltage should have a very noticeable efFect on the
resonant frequency of the stub-junction resonator.

IV. DATA ANALYSIS

In this section we will discuss the procedures for mea-
surement and the comparison between the experimental
data and the theoretical calculations. Two types of data
will be presented: One is the measured resonant frequen-
cy and the width of the resonance peaks as functions of
dc bias voltage. These data were obtained from spectra
measured in the small-signal limit using a Fourier-
transform spectrometer. The other is the I-V curves
pumped by a coherent rf signal with suScient power that
photon-assisted-tunneling steps are clearly seen. The fre-
quencies of the rf pump is close to the resonant frequency
of the imbedding admittance so the efFect of the quantum
susceptance is significant in afFecting the shape of the I-V
curves. In both types of data, the quantum susceptance
proved easily measurable.

A. Frequencies and widths of the resonance pe&~

The interferograms in this experiment were obtained
from the rf-induced dc current EId, as defined in Eq. (13)
as a function of the dilerence between the two optical
paths of the &IS. These interferograms were measured
in the step-and-integrate mode, with the integration time
typically —1.5 sec. The spectra were obtained by Fourier
transformation of the product of the interferogram and
the apodization function. We chose to use an apodiza-
tion function with a form of [I+cos(xm/x, „)]/2, where
x is the path length difference and x,„ is the maximum

of the path length dilerence used in the experiment. This
apodization function lowers side peaks of the spectrum at
the expense of a moderate increase of the width of the
resonance peak. Figures 5(a) and 5(b) show interfero-
grams taken at two bias voltages, V0=2.350 and 2.500
mV. At V0=2.350 mV, the value of the quantum con-
ductance 6& is low as shown in Fig. 1(c), so the Q value
of the stub-junction resonator is high and the peak of the
resonance is narrow. Consequently, the fringe amplitude
decreases slowly as the path difFerence increases as shown
in the interferogram in Fig. 5(a). At V0=2.500 mV, the
value of the quantum conductance 6& is high due to the
onset of the photon-assisted tunneling, so the Q value of
the stub-junction resonator is low and the peak of the res-
onance is broader than that measured at V0=2.350 mV.
Consequently, the fringe visibility in the interferogram
decreases rapidly as the path difference increases as
shown in Fig. 5(b). The corresponding spectrum shown
in Fig. 5(d) shows a broader peak than that in Fig. 5(c).
Besides the apparent difFerence in the widths of the reso-
nances in the two spectra, the frequencies which corre-
spond to the peaks of the two spectra difFer by a notice-
able amount.

In order to improve the signal-noise ratio of the mea-
sured spectra, we have co-added 5-10 spectra measured
at a given bias voltage. After normalizing these spectra
to the beamsphtter emiciency gb, we obtain the resonant
frequencies by least-mean-squares fitting the top 50%
part of the resonance peaks with second- to fourth-order
polynomials. The degree of the polynomials in the fitting
is determined by the asymmetry of the peak. The error
bars on the measured resonant frequencies are chosen as
the frequency ranges in which the fitting polynomials are
over 90% of their peak values. The result is plotted in
Fig. 6(a) as a function of dc bias voltage Vo. Below 2.150
mV and above 2.650 mV, the signal-noise ratio of the
spectra is very poor due to the rolloff of the current
responsivity Sl of the SIS direct detector. Therefore, no
data are plotted outside of this range. The error bars are
twice as large for Vo ~ 2.450 mV as those for (2.450 mV
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FIG. 5. Interferograms measured with a Fourier-transform
spectrometer (a) at 2.35 mU and (b) at 2.50 mV. Spectra after
correcting for beamsplitter e%ciency corresponding to the
above interferograms (c) at 2.35 mU and (d) at 2.50 mU. The
dashed lines in (c}and (d) are the computed spectra.
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because the peaks are broader for Vp ~ 2.450 mV due to
the sharp increase of the quantum conductance 6&.
Fabry-Perot fringes appear on these broad peaks if we
keep the resolution of the FTS the same as for the narrow
peaks. These Fabry-Perot fringes probably arise from the
standing waves between the SIS junction and the TPX
lens. In order to average over those Fabry-Perot fringes,
we have used a lower resolution of 0.3175 cm ' in our
FTS which resulted in large error bars for the measured
resonant frequencies above 2.450 mV. The experimental-
ly measured resonant frequencies clearly show a s~ooth
shift as the dc bias voltage changes. The most dramatic
change of the resonant frequency takes place within the
voltage range from 2.400 to 2.650 mV, it changes from 73
to 87 GHz. From Fig. 1(d), we can see that the quantum
susceptance 8& changes rapidly from capacitive to induc-
tive in exactly the same voltage range.

In order to make accurate comparisons between theory
and experiment, we obtain the theoretically calculated
resonant frequencies using the same method used to ob-
tain the experimental resonant frequencies. First, we
compute the rf-induced dc current as a function of rf us-

ing Eq. (13). Second, we convolve these computed spec-
tra with the Fourier transform of the apodization func-
tion which was used in the Fourier transformation of the
experimental interferograms. Third, we chose the same
number of computed data points at the same discrete fre-
quencies as we did from the experimental data. Finally,
for each spectrum, we fit these discrete computed points
with a polynomial with the same degree as was used in
fitting the experimental data. The theoretically calculat-
ed curve for the resonant frequency as a function of Vp is
shown in Fig. 6(a) as the solid line, and it is in excellent
agreement with the experimental results. We would like
to emphasize that the values of two key parameters, the
junction capacitance C=0.275 pF and the phase velocity
v=0.286c, which were used in our theoretical computa-
tion, are essentially the same as the ones we estimate
from the geometric dimensions 0.28+0.03 pF and
(0.30+0.01)c. As a comparison, the dashed line, which is
essentially Hat and obviously differs from the experimen-
tal results, is the theoretically calculated resonant fre-
quency as a function of Vp without including the quan-
tum susceptance 8&. The weak voltage dependence of
the dashed line is due to the change of the current
responsivity Si(co) with Vo. Clearly, these results provide
decisive evidence for the quantum susceptance.

We have also investigated the effect of Josephson oscil-
lation on the shift of the resonant frequency by applying
a magnetic field to change the Josephson critical current.
From Eqs. (1) and (2), we can see that the pair tunneling
current also contains a reactive component, the sing
term. This reactive component from the pair tunneling
may also affect the resonant frequency of the stub-
junction resonator. If there is any significant effect from
the pair tunneling, then this effect should be changed as
we modulate the Josephson critical current with a mag-
netic field. We did not measure any change of the reso-
nant frequency within our experimental accuracy up to a
field corresponding to several quanta of magnetic Aux in
the SIS junction. This is probably because, at bias volt-
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ages from 2.15 to 2.65 mV, the Josephson current oscil-
lates at frequencies above 1 THz, which is completely
shunted by the junction capacitance.

We discovered a strong signal at the output of the SIS
detector at V0=0.158 mV, which corresponds to a 77-
GHz Josephson oscillation. The level of this strong sig-
nal is comparable to the largest signal obtained in the
voltage range from 2.100 to 2.650 mV using quasiparticle
direct detection. This detection is a result of a Josephson
homodyne detection in a self-pumped mode. In this
mode, the Josephson current, which oscillates at
coj /2n =2eVolb =77 GHz, and which coincides with the
resonant frequency of the microstrip stub resonator,
mixes with the rf signal at the same frequency and pro-
duces a dc output. We found that the signal level at the
output of the detector is a very sensitive function of the
dc bias voltage. At voltages below 0.150 mV and above
0.170 mV, the signal level decreases to essentially the lev-
el of the broadband noise. Similar detection mode was
reported by Richards and Sterling, in which the Joseph-
son detector exhibited a very narrow frequency response
at the resonant frequency of a cavity. The interferogram
obtained in this detection mode is very similar to those
obtained using quasiparticle direct detection. The peak
frequency of the resonance is the same as the Josephson
oscillation frequency, 77 CxHz. We would like to point
out at this low bias voltage, the curvature of IKK ( V) is al-

I 5o),/e+
0 I i I i I

2.0 2.2 2.4 2.6 " 2.8
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FIG. 6. (a) Resonant frequency as a function of dc bias volt-

age. The solid circles are the experimentally measured results,
the sold line is theoretically calculated, the dashed line is the
calculated result without including the quantum susceptance.
Note the dashed line is essentially flat vs Vo. (b) Linewidth of
the resonance as a function of Vo. The solid circles are the ex-
perimental results and the solid line is the calculated result.
The resonant frequency of the imbedding susceptance without
the quantum susceptance is coo/2~=77 GHz.
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Photon-assisted-tunneling steps appear on I-V curves
of a pumped SIS junction. We will focus on the first step
below the gap voltage because this is the voltage region
where a SIS heterodyne mixer is usually biased. Also, the
quantum susceptance has a significant effect on the dy-
namic conductance of this step when the rf is close to the
resonant frequency of the imbedding admittance. ' Here
we will provide an explanation of how the quantum sus-

ceptance affects the dynamic conductance.
Following Smith and Richards, the dynamic conduc-

tance can be divided into two parts,

dId, ( Vo, V„)

c}Id,( Vo+ n fico/e)
J„(cc)

Qo 0

+ g J„(a)Id,( Vo+ naia)/e),
dcx

dv, aa„ (14)

where Id, (VO, V ) is the dc I Vcurve of a pu-mped SIS
junction defined in Eqs. (6) and (7), Id, ( Vo+ n Ace/e) is the

most zero, as can be seen from Fig. 1(b). So the quantuin
susceptance is negligible compared to that of the imbed-

ding structures. In addition, the susceptanee of the
Josephson sing term is negligible at this low rf power lev-

el. Therefore, the measured resonant frequency should
be the resonant frequency of the microstrip stub and the
junction capacitance. The coincidence of this measured
resonant frequency and the calculated one without in-

cluding the quantum susceptance [dashed line in Fig.
6(a)] is an additional verification of the values of the junc-
tion capacitance C and the phase velocity U which are
used in our calculations.

In Fig. 6(b), we plot the 3-dB linewidths b,f of the reso-
nance peaks as a function of the dc bias voltage. The ex-
perimental value of b,f were obtained from the best-fitted
polynomials. The solid line is calculated using the same
apodization function used in the experiment. Again, the

agreement between experiment and theory is excellent.
This comparison provides an additional verification of
the values of C and U in our calculations. The sharp in-
crease of hf at 2.450 mV corresponds to the sharp in-
crease of the quantum conductance 6& at one-photon
voltage %co/e below the gap voltage Vs. Note from Fig.
1(d) that the quantum susceptance has the largest capaci-
tive value at this voltage, Vs

—%co/e, so the resonant fre-

quency is the lowest as shown in Fig. 6(a). There is some
disagreement between the theoretical and experimental
values of 5f at Vo ~ 2.45 mV. This discrepancy arises be-
cause the quantum conductance 6& depends on the I-V
curve around Vo+fico/e which, at Vo ~ 2 45 mV, lies just
above the sum gap voltage. Our junction exhibits a nega-
tive resistance in this region due to this proximity
effect. This is not correctly measured by our I-V curve
measurement system. The effect of the proximity effect
on the high-frequency response of a SIS junction is
currently under investigation.

B. I- V curves of the rf-pumped junction

dc I-V curve of an unpumped SIS junction evaluated at a
bias voltage Vs+nfico/e, a=eV„/fico is the dimension-
less rf voltage.

The first part of Eq. (14}is simply the dynamic conduc-
tance of the rf voltage-pumped I-V curve. This is almost
always positive except at near the gap voltage for a junc-
tion with a pronounced proximity-effect-induced super-

gap structure. We will ignore this case. The second
part is due to the change in rf pump voltage with dc bias
voltage. It can be either positive or negative depending
on the bias conditions and the imbedding admittance. In
order for steps of negative dynamic conductance to
occur, this second term must be negative and with an am-
plitude larger than the first one. We have measured
about 40 SIS junctions with millimeter wave stub resona-
tors which show negative steps at frequencies slightly
below the resonant frequencies of the imbedding admit-
tance. The resonant frequency ranges from 70 to 270
GHz. ' We have shown that, for junctions with
moderately sharp gap structures, this is primarily due to
the change of the quantum susceptance as the dc bias
voltage Vo is changed. ' It is this systematic and con-
sistent behavior that first drew our attention to the possi-
ble effect of the quantum susceptance on the high-
frequency response of SISjunctions.

The equivalent circuit in Fig. 4 can still be used to ana-
lyze the response of a SIS junction to a rf signal with a
large amplitude (a= 1}. However, the quantum conduc-
tance 6& and the quantum susceptance B& cannot be ex-

pressed in a simple form such as that in Eq. (8). They are
now dependent upon the rf pump voltage V and must be
evaluated self-consistently at each dc bias point. Values
of V„can be obtained by using V as a fitting parameter
in Eqs. (6) and (7) to calculate the dc current of a pumped
junction at a particular dc bias voltage Vo. The induced-
rf current I at frequency co can then be calculated from
Eqs. (6) and (7). G& and B& can be calculated from the
real and imaginary parts of the ratio I„/V .

Two different imbedding admittances are used to illus-
trate general trends. One imbedding admittance
Y; b =13.5 —j 6.0 mQ, is the estimated imbedding ad-
mittance which includes the antenna, junction capaci-
tance, and the stub at 73 GHz. This frequency is 4 GHz
below the resonant frequency fo=77 6Hz at which the
imbedding susceptance is zero. The other imbedding ad-
mittance, Y; b

=8.0+j 40 mQ ', is the calculated
imbedding admittance at 83 GHz, which is at 6 GHz
above fo. Notice that, in Figs. 7(c}—7(f}, the shapes of
the curves of the quantum conductance and the quantum
suseeptance for both cases are similar to those in srnall-

signal limit, as shown in Figs. 1(c) and 1(d). The quan-
tum conductance is relatively constant on a step, but
changes rapidly between steps. The quantum suscep-
tance, however, changes rapidly on the first subgap and
supergap steps. It is this change that is responsible for
the rapid change of the rf pump voltage across the first
step as shown in Figs. 7(g) and 7(h). When the imbedding
admittance is inductive, Y; b =13.5 —j 6.0 rnfL, the rf
driving voltage is larger at a lower dc bias voltage where
the quantum susceptance is capacitive, and smaller at
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FIG. 7. (a) and (b), dc and pumped I-V curves. (c) and (d),
quantum conductance 6&. (e) and (f), quantum susceptance 8&.
(g) and (h), dimensionless rf pump voltage a=eV„/fico. All

quantities are shown with two different imbedding admittances.
One, 13.5 —j 6.0 mQ ', is the estimated value at 4 GHz below
the fo=77-GHz resonant frequency of the imbedding admit-

tance; the other one, 8+j 40 mQ ', is the estimated value at 6
GHz above fo. The available rf power is 2.48 nW for (a), (c), (e),
and (g), and 17.6 nW for (b), (d), (f), and (h).

higher bias voltage where the quantum susceptance is in-
ductive. Conversely, when the imbedding admittance is
capacitive, Y; b =8.0+j 40 mQ, the rf drive voltage is
smaller at lower dc bias voltage than at higher bias volt-

age. The large negative values of da/dVo in Fig. 7(g),
caused by the effect of the quantum susceptance on the rf
drive voltage, is responsible for the negative photon-
assisted-tunneling steps observed in most of our experi-
ments.

Keeping the available rf pump power P„constant as
the dc bias voltage is changed, we compute I-V curves for
two values of imbedding admittance. At 13.5 —j 6.0
mQ ', the higher photon-assisted-tunneling current at
lower bias voltage forms a step with a negative slope. At
8+j40 mO ', the capacitive quantum susceptance at
lower bias voltage lowers the rf drive voltage, resulting in
a more positively tilted step. The agreement between
these computed I-V curves and the measured ones at the
same frequencies are essentially perfect as shown in Figs.
7(a) and 7(b). We have also computed I Vcurves without-
including the quantum susceptance B&. The slope of the
first step is quite different from that of the measured I-V
curve, especially for the one with an inductive imbedding
admittance. Negative steps are obtained from the com-
putation which does not include B& only for an unrealist-
ically small value of imbedding conductance of 0.0010
which is —

10%%uo of our estimated value. Even using such

a small imbedding conductance, only the negative con-
ductance appeared at the extreme low bias voltage end of
the first subgap step, in a region that is actually between
the first and the second steps. We have never experimen-
tally observed negative dynamic conductance in this re-
gion.

We therefore conclude that the quantum susceptance is
essential in the production of steps of low or negative dy-
namic conductance in junctions with moderately sharp
sumgap current rises. The frequency region where the
negative steps occur is slightly below the resonant fre-
quency fo of the imbedding admittance so the imbedding
admittance is inductive. This result provides a very
effective way to identify whether the imbedding suscep-
tance B; b is inductive or capacitive based on the shape
of the photon-assisted-tunneling steps. Since the op-
timum imbedding susceptance for a double-side-band SIS
mixer is usually B; b =0, ' this method has proved very
useful in searching for the optimum frequencies of SIS
mixers coupled to tuning elements. '

In order to obtain an excellent fit between the theoreti-
cal and the experimental results, we need to use a value of
the imbedding conductance of 12.0 mQ ' at 73 GHz.
This value is about 45% larger than that of the log-
periodic antenna on a quartz substrate. We suspect that
this extra imbedding conductance arises from the micro-
strip stub which becomes lossy at millimeter wave fre-
quencies. This loss can come either from the surface im-

pedance of the superconducting film or from the dielec-
tric insulating layer. When we cool the SIS junction from
-4.5 to -2.5 K, the amount of the extra imbedding con-
ductance remains roughly unchanged. This suggests that
the loss does not come primarily from the superconduct-
ing films since their loss should decrease rapidly as the
temperature is decreased. The loss in the dielectric lay-
er, which is a 3000-A amorphous SiO layer deposited by
thermal evaporation, can be significant at millimeter
wavelengths. Empirically, we can model this loss by in-

troducing a parameter y which characterizes the rf loss
per unit length. For small losses yl «1, where I is the
total length of the stub, the susceptance of the microstrip
stub is still given by Eq. (11). Therefore, the above
analysis of the quantum susceptance based on the model
of a lossless stub is still valid. The conductance of the
lossy microstrip stub, however, is nonzero at frequencies
below fo. Since the frequency dependence of y is un-

known, we deduce the actual imbedding admittances by
fitting the theoretically calculated I-V curves to the ex-
perimental ones.

V. CONCLUSIONS

Quantum-mechanical tunneling usually results in a
noninstantaneous current-voltage relation if the time
scale of the modulation is shorter than the lifetime of the
quasiparticles involved. This noninstantaneous current-
voltage relation will consequently give rise to a nondissi-
pative reactive component as well as a dissipative, resis-
tive component in the tunneling current. Such a reactive
component, which is called the quantum susceptance,
should exist in many types of tunneling devices. In a spe-
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cial case in which the tunneling is elastic so the quasipar-
ticles emitted from one side of a junction reach the other
side at the same energy level, the high-frequency response
function can be simply measured from the dc I-V curve.
SIS tunnel junctions with high-quality tunnel barriers are
one of the examples. Other devices, such as quantum
well resonant tunneling devices in which electrons tun-
nel through a double-barrier quantum well, may also ex-
hibit similar behavior.

The effect of the quantum susceptance is usually com-
plicated at low frequencies because the experimentally ac-
ceptable signal-noise ratio requires that the dimensionless
rf voltage a=eV„/fico»1. In this limit, multiphoton
processes dominate so the system is highly nonlinear. In
a linear scheme in which a && 1, the effect of the quantum
susceptance can be predicted analytically. However,
a ((1 requires sufficiently high frequency so V„ is large
enough for an acceptable signal-noise ratio. %e have ob-
tained definitive experimental evidence for the existence
of the quantum susceptance. by studying the response of a
SIS junction to a weak rf radiation at millimeter wave-
lengths. We have measured the shift of the resonant fre-
quency of a resonator which contains a SIS junction. The
observed 19% shift, from 73 to 87 6Hz as the dc bias
voltage is changed from 2.40 to 2.65 mV, is due to the
change of the quantum susceptance with bias voltage.
This is in excellent agreement with Werthamer-Tucker
theory and is a direct experimental evidence of the ex-

istence of the quantum susceptance. Our result has
therefore, for the first time, directly verified one of the
important aspects of this theory. %e have also studied
the effect of the quantum susceptance in the large-signal
limit by studying the photon-assisted-tunneling steps with
negative conductance. This negative conductance is due
to the larger rf drive voltage caused by the capacitive
quantum susceptance at lower bias voltage. The agree-
ment between the I-V curves calculated including the
quantum susceptance and the experimental ones is essen-
tially perfect. This result provides an effective way to
identify whether the imbedding admittance is inductive
or capacitive by observing the slope of the photon-
assisted-tunneling steps. This method has proved to be
very useful in searching the optimum frequencies for SIS
mixers coupled to tuning elements.
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