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One-particle excitations in strong-coupling superconductors: A new realization of the ¢-J model
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We study the one-particle excitations in strong-coupling superconductors described by a
negative-U Hubbard Hamiltonian. We show that the problem of single-particle excitation can be
mapped onto that of a hole in a polarized antiferromagnetic Heisenberg model. We discuss—using
a self-consistent diagrammatic approach—the distortion of the superfluid order parameter in the
vicinity of the quasiparticle and the connection with the pairing-bag problem.

The discovery of high-T, superconductors has renewed
the interest in a number of old ideas and has also trig-
gered the proposal of new unconventional ones. In the
quest for the understanding of high-T, superconductivi-
ty, one faces there main lines of thought:"? (a) new pair-
ing mechanisms leading essentially to BCS-type super-
conductivity, (b) condensation of bosons (holons,’ bipola-
rons,* etc.) preexisting above 7, (c) superconductivity due
to g?uge forces with excitations obeying fractional statis-
tics.

In the context of pairing theories, it has been proposed
by Weinstein® that one-particle excitations in strong-
coupling superconductors are the so-called “pairing
bags.”’ A pairing bag is an excitation corresponding to a
quasiparticle self-trapped in a region where the order pa-
rameter is locally depressed. This effect is realizable in
small coherence length systems, where the order parame-
ter can vary within small distances. This idea is appeal-
ing for the new superconductors where the coherence
length is of the order of the distance between particles
(holes in cuprate superconductors). Systems with such a
short coherence length are however halfway between
BCS and Bose condensation.® In the latter case the col-
lective excitations involve phase modes without pair
breaking.* In the intermediate-coupling regime it seems
natural, therefore, to think of bags in which both the
phase and the amplitude are modulated.

In this article we will concentrate in the strong-
coupling case, with the hope that a good understanding
of this limit could give us an insight about the more in-
teresting intermediate regime. We show that bags can be
built by local variations of the phase of the order parame-
ter, in close analogy with spin polarons in the #-J mod-
el®~!2 For intermediate particle densities the superfluid
excitations strongly renormalize the one-particle spec-
trum.

We will be concerned with the negative-U Hubbard
Hamiltonian which in the usual notation reads

H=—13 CLCi\y=UZ nyn;, . (1
Cij) i

In the strong-coupling limit (U >>¢) the Hamiltonian
in Eq. (1) can be mapped onto a Heisenberg model given
by

H=J 3 SiS;—4(S;*S7+578) (2)
ij)
with J=4t2/U.

In Hamiltonian (2) the spin-up and spin-down state at
site i correspond, respectively, to an empty and doubly
occupied state of the fermions in (1). The longitudinal
antiferromagnetic term SS; describes a repulsion be-
tween nearest-neighbor doubly occupied sites, while the
transverse ferromagnetic term accounts for the hopping
of the composite boson (electron pairs) through a virtual
pair-breaking excitation. This Hamiltonian can be
transformed into one involving purely antiferromagnetic
interactions by means of a canonical transformation. The
particle density n is related to the total magnetization
through (S?)=(1—n)/2. In the spin-wave theory the
ground state of Hamiltonian (2) corresponds to an or-
dered state of tilted spins plus zero-point fluctuations (see
Fig. 1). The angle 0 between the z direction and the spins
is fixed by the density. This ordered phase corresponds
to a superfluid phase of the composite bosons. The
superfluid order parameter is given by the magnetization
in the x-y plane. The orientation of (S *) is the phase of
the superfluid order parameter. In the unpolarized half-
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FIG. 1. (a) Classical spin image of the superfluid ground
state. (b) Fermion in an otherwise undistorted superfluid back-
ground. (c) Fermion plus a superfluid distortion caused by the
jump of the fermion from site i to site j. (d) Nagaoka-like state
in which the fermion kinetic energy is minimized.
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filled case this phase is degenerated with the density wave
phase. This is clearly seen in the positive-U case through
the exact mapping between the U >0 and U <O situa-
tions discussed by Nagaoka.!* The superfluid phase and
the density wave phase map onto an antiferromagnetic
ordered phase in the x-y plane and in the z axis, respec-
tively. Clearly, in the positive-U case these two types of
order differ by a rotation and are therefore degenerate.'’
In what follows we will simply use the spin language to
refer to empty and doubly occupied sites. It is well
known that the ground state in the mean-field approxi-
mation of Hamiltonian (2) corresponds to a BCS approxi-
mation of Hamiltonian (1). The dispersion relation 2, of
the collective excitations (“sound waves”) is linear for
small g.

We consider the case of a single unpaired particle
(hereafter referred to as the fermion). This case occurs if
one works with an odd number of particles. The excita-
tion spectrum of the fermion will govern the behavior of
a single particle injected in the superfluid or modify the
pair-breaking excitations. In the case of an unpaired par-
ticle, it is convenient to divide the Hamiltonian in two
terms H, and H’'. The first term H describes the spin
dynamics with the unpaired particle located at a fixed po-
sition [see Fig. 1(b)]. Zero-point fluctuations will distort
the superfluid order parameter in the neighborhood of
the fermion in analogy with a fixed hole in the Heisen-
berg model. The second term H' describes the hopping
of the fermion. When the fermion jumps from site i to
site j the tilted spin (which corresponds to a linear com-
bination of vacuum and double occupation) jumps back-
wards from site j to site i. In this process the z com-
ponent is conserved, but the phase in the x-y plane
changes as shown in Fig. 1(c). This is clearly seen in the
U — « limit if one considers a fermion added at site i of
the unperturbed state. The resulting state is

l¢; . ) =C1, [T (u+vChcl)lo) . (3)
1

When the fermion jumps from site i to site j the final
state corresponds to

) =Cl,(u—vChCcIH T (w+vficfplo) . @
1#i

In this way, as the fermion moves, it distorts the
superfluid background. However, the final state at site i
is not orthogonal to the unperturbed one, its overlap be-
ing u2—v?% Consequently, the hopping matrix element
can be divided into a “bare” term t, corresponding to a
jump without creating excitations and a term t' corre-
sponding to the jump with a simultaneous creation of an
excitation of the background. The bare term is simply
given by ¢, =t cos6. For the half-filled band case the to-
tal magnetization is zero and z,=0. Our model then
reduces to the t-J model. Our first result is then the ana-
log to the Nagaoka theorem: in the U— oo (J —0) limit
the ground state of the system with an unpaired particle
consists of a state with a translational symmetry corre-
sponding to Q=(II,II) (antiferromagnetic in the x-y
plane), as shown in Fig. 1(d). In this structure the hop-
ping matrix elements are ¢, =t and t'=0 and the kinetic
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energy of the fermion is minimized. For finite U the fer-
mion will create a bag as a result of the competition be-
tween its kinetic energy and the energy needed to locally
distort the superfluid order parameter. We estimate
the radius R of the bag using an uncertainty principle
calculation and obtain, in two  dimensions,
R =[t/Jn(2—n)]"*, where n is the superfluid density.

To put these concepts in a more quantitative way, we
consider a Hamiltonian that includes the spin (superfluid)
dynamics together with the distortions of the background
due to the motion of the fermion. Following Ref. 11 we
consider the vacuum |0) to be the ordered state of tilted
spins. We also define hard-core boson operators a; such
that a,|0) =0, and

a}=5—i(cos6 S?—sin6 S7)

creates an excitation that corresponds to a spin flip at site
i over the ordered state of tilted spins. The Hamiltonian
H, that describes the hopping of a fermion from site to
site is therefore given by

H=t ¥ C,I,Cju{[sine( 1 —a}aj )—cosOa;T]a,-
(i,j)o
+[cos€(l—ajTaj)-}-sinOa;'](l—a,-Ta,»)} , (5)
where the first (second) term in square brackets describes
the hopping of the fermion to a site with (without) an ex-

citation. In terms of the boson operators, the linearized
Heisenberg Hamiltonian is given by

H=—%E(2coszﬂ+l)+J22aiTai
—1sin26 S (afaf+a;a;)
2 (i,j) Y i

— L cos6 S (afa;+a]a,) . (6)
2 (i,j)

The complete Hamiltonian, in the spin-wave approxima-
tion, can be written as H=H,+ H' with

H,=3 E.C,Cio+3 Q,blb, (7a)
k,o q
and
H'=3 Mk,q)b/C{,Chipe+b,Cl10Cir)»  (TD)
k,q,0

where E; is the kinetic energy associated with the bare
hopping zt,y,, with y,=1/z3se™*?, b; creates a
superfluid excitation with energy

Q2 =(2J[1+(2cos’0—1)y2 —2cos’07,] .
The matrix elements M (k,q) are given by
M(k,q)=tzsinb(y o, v 4,B,) » (8)
with the coherence factors B =aZ —1 and
zJ(1—cos’0v,)

1
¥
Q‘I

a§= +1]. 9)

In the Hamiltonian (7) the distortion of the superfluid
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background due to the fixed fermion is neglected, and for
cos6=0 (n =1), our model reduces to the one considered
in Ref. 11. Further refinements along the line of Ref. 14
can be easily incorporated. We evaluate the self-energy
of the hole using a self-consistent diagrammatic approach
in which the fermion Green’s function and the self-energy
are given by

1

Glho)= o —p—s0—

(10a)

and

S(k,0)=3 M(k—q,9)’G(k—q,0—Q,) .
q

(10b)

In Hamiltonian (7) J and ¢ are in principle independent
parameters, and the present treatment can be applied for
any ratio t/J. We first present results corresponding to
the more interesting regime J <<t, and then we briefly
comment on the J >>t case.

We solved numerically the equations for the Green
function (10) in a square lattice for different values of the
density, and for J=0. In Fig. 2 we present results for
cos0=0 (the ¢-J model). For a 4X4 cluster our calcula-
tions of the spectral density for k=(m/2,7/2) are in re-
markable agreement with the exact results obtained by
Dagotto et al.'® for that cluster size. The shape of the
local density of states resembles that of the Bethe lattice
with coordination number z=4, in agreement with the re-
sults of the self-retracing path approximation obtained by
Brinkmann and Rice.!® As expected, the fermion spec-
trum is incoherent in this limit. For cos@=0 and J=0
the spectrum remains incoherent, although one could
have expected the bare hopping term to create a quasi-
particle pole. Results for the spectral density for different
values of k are shown in Fig. 3.
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FIG. 2. (a) Spectral density A4(k,w) for a 4 X4 cluster, n=1,
k=(w/2,m/2), and J=0. (b) Local density of states for a
12X 12 cluster an n=1.
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FIG. 3. Spectral density (continuous line) corresponding to
the wave vector k=(0.,0.) (1), K=(7/6,7/6) (2), k=(7/3,7/3)
(3), k=(m/2,m/2) (4), n=0.5, and J=0. Dashed line is the cor-
responding local density of states.

For 0<J <<t we performed some analytical approxi-
mations to study the main features of the spectral densi-
ty. In the dominant pole approximation,'? the Green
function of the hole can be written as

ai

Gk,w)= +Gi (k@) , (1n
D

©—

where w; is the position of the pole and G;, the in-
coherent part of G. The residue of the pole is given by
1
a, I_E(kw | . (12)
do K
Following Ref. 12, we conclude that the spectrum in the
bottom of the band is completely incoherent (a;, =0). It
is also interesting to look for the wave vector k* corre-
sponding to the bottom of the band. For zero density
(cos6#=1) the fermion moves as a free particle of wave
vector k*=0. For the half-filled band (cos6=0),
*=m/2. We then expect k* to evolve continuously
from O to 7/2 as the superfluid density increases. Since
the bottom of the band is given by the minimum of w,,
we obtained k* as the value of k for which

Vo, =V(E, +2(k,0,))=0 . (13)
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FIG. 4. Wave vector k* corresponding to the minimum of
the fermion dispersion relation as a function of the superfluid
density for J=0 (continuum line) and J =5t (dashed).
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In the J <<t limit this expression can be simplified'? to
obtain the results shown in Fig. 4. In this approximation
(J <<t) k* is a function of the density only. For low den-
sities k* =0, while for n 0.5 it increases and reaches
m/2 forn=1.

For J >>t Egs. 8 can be solved using a perturbation ex-
pansion.!! In this limit there is a quasiparticle pole carry-
ing most of the spectral weight. This is due to the
superfluid fluctuations that have a restoring effect on the
distortions caused by the fermion. However, the fermion
effective mass is strongly enhanced by the superfluid
background. The quasiparticle pole forms a band of a
width that decreases linearly with the superfluid density
n. As in the previous case, the bottom of the band corre-
sponds to a k* that varies with n (see Fig. 4). In this case,
k* remains close to the center of the Brillouin zone for a
wider range of n than for the J <<¢ limit.

In summary, we presented a treatment for the move-
ment of a single particle in a superfluid background cor-
responding to the strong-coupling limit of the negative-U
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Hubbard model. The problem is analogous to that of a
hole in the Heisenberg antiferromagnet in a strong mag-
netic field. All our results can therefore be used in the
understanding of the polarized ¢-J model. There are,
however, some differences, the collective excitations in
the 7-J model are magnons which carry magnetization
current, while in the present model the collective excita-
tions carry charge current. In the present treatment we
study the deformations of the superfluid where the total
current is zero. Our results show that for large attractive
interaction it is possible to create bags where the phase of
the order parameter is distorted in the surroundings of
the quasiparticle, without weakening the binding energy
of the pairs.
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