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The anisotropy of the gap in layered compounds is studied in the framework of the BCS model,
taking into account the interlayer and different intralayer couplings in the system. The compounds
with alternating normal (N) and superconducting (S) layers are studied in detail, the N layers being
assumed to have zero pairing intralayer interaction. In S-N systems with Josephson coupling of lay-
ers, there are two quite different gaps and also different temperature scales of the superconducting
properties of the S and N layers. The results are used to discuss the behavior of high-T, supercon-
ductors and possible artificial superlattices based on these compounds.

I. INTRODUCTION

High-temperature superconductors based on copper
oxides have layered crystal structures and strong electron
anisotropy. This anisotropy was observed very clearly in
the magnetic properties of the superconducting phase;
i.e., the critical magnetic field and London penetration
depth depend strongly on the orientation of the field with
respect to the layers’ plane (ab). Quantitatively the elec-
tron anisotropy is characterized by the ratio 2¢ /e where
t is the hopping integral between layers while €5 is the
Fermi energy of electrons inside the layers. The electron
anisotropy is about 25 in YBa,Cu3;0, and La,_, Sr, CuO,
while it is as high as 10*~10° in Bi,Sr,CaCu,05.' ~*

Recently, tunneling’ ® and optical® measurements
were made which showed the possible anisotropy of the
energy gap in high-T. layered superconductors. In the
case of YBa,Cu;0, the ratio 2A(0)/T, is 8 for E polar-
ized in the (ab) plane, while it is about 3 for the polariza-
tion along the ¢ axis [perpendicular to the (ab) plane].
Here A(0) is the energy gap obtained at very low temper-
atures T << T,. According to the Raman scattering mea-
surements, the suppression of the electron scattering at
low frequencies at temperatures below T, is anisotropic
in the same manner and, besides, gives some evidence in
favor of gapless superconductivity in YBa,Cu;0, and
T1,Ca,Ba,Cu;0,,.'% "

The magnetic anisotropy of the layered superconduc-
tors is due directly to the anisotropy of the Fermi surface.
The complete description of the anisotropic magnetic
properties of superconductors near T, is given by the
Ginzburg-Landau model with anisotropic effective mass
(if the anisotropy is not very strong) or by the Lowrence-
Doniach model in the limit of very high anisotropy (in
case of Josephson coupling of the layers).'>!> However,
the question concerning the anisotropy of the energy gap
in the layered superconductors is still unresolved. The
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essential point is the fact that the standard BCS model
with anisotropic Fermi surface but isotropic electron cou-
pling gives an isotropic energy gap. So the key point here
is the coupling but not the electron band structure itself.

The problem of the energy gap anisotropy in the lay-
ered superconductors is interesting also from the point of
view of artificial superconducting superlattices with a su-
perstructure on the atomic scale. Intercalated layered
compounds and high-T, superlattices of YBa,Cu;0,/
DyBa,Cu;0, and (YBa,Cu;0,), /(PrBa,Cu;0,),,
type'*1% are counted among these systems. In fact, the
layered high-T, superconductors can be considered as
natural superlattices which consist of layers with different
electronic properties. In YBa,Cu;0,, there are layers
with CuO chains as well as the standard CuO, layers.
The electrons of CuO chains give also a contribution to
the Fermi surface states. In Bi and Tl high-T, com-
pounds, the layers BiO and TIO can contribute to the
Fermi surface states.'®

We study below the possible anisotropy of the energy
gap in layered compounds in the framework of a stan-
dard BCS model assuming isotropic coupling of the elec-
trons inside the layers [in the (ab) plane]. We focus our
attention on the anisotropy of the electron coupling
which is inherent to the layered crystals (interlayer cou-
pling and different coupling in different layers). We will
show in Secs. II and III that in crystals with equivalent
layers the ansiotropy of the gap is remarkable if the an-
isotropy of electron motion is not very strong (i.e., the ra-
tio t /e is not very small). In Secs. IV-VII we consider
systems which consist of layers with different coupling of
electrons inside the layers, i.e., the systems of S-S’ or S-N
type, according to the terminology of superlattices. We
assume that different coupling is possible inside the layers
CuO, and CuO in YBa,Cu;0, or inside the layers CuO,
and BiO or TlO in Bi and Tl compounds. We assume
that the pairing coupling in CuO, layers is strong (S lay-
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42 ENERGY GAP IN LAYERED SUPERCONDUCTORS

ers) while in CuO or BiO and TIO layers it may be weak-
er or completely absent (S’ or N layers). The behavior of
the system with nonequivalent layers depends strongly on
the ratio ¢t /T.. We will show that in the Josephson cou-
pling limit (z << T,) the optical properties do depend on
the orientation of the electric field with respect to the lay-
ers if the pairing coupling inside the layers varies from
layer to layer.

We consider in Secs. V and VI also the density of states
at low temperatures as well as temperature dependence of
London penetration depth in the Josephson S-N system.
The obtained results allow us to choose the model (S-S,
S-S’, or S-N) which describes the properties of highly an-
isotropic Bi and T1 compounds as well as the artificial su-
perlattices.

II. CRYSTALS WITH ONE LAYER IN THE UNIT CELL

We shall use a Hamiltonian in the discrete representa-
tion for the description of electron motion along the ¢
axis and in momentum representation to describe the
electron motion in the (ab) plane. For this purpose we
introduce the Wannier functions w,(r) for an atom i in
the layer n while the electron Bloch functions with quasi-
momentum p are used inside the layers

<p,,_p(r)=(1/\/§)Zeip.p"w,,,-(r), r=(p,z), (1)

where p; are the coordinates (x,y) of atom i in the layer
and S is the area of the layer. We write the electron field
operator using the states (n,p)

V()= 3 @, p(r)a, 5, - )
p,n

The function @,,(r) is delocalized with respect to coordi-
nates x,y inside the layer n but localized in space in the
coordinate z (along the c axis).

We start with the standard Hamiltonian

H=fdr

2
S W(r) [22—+ V(1) }\l’a(r)

+IW ()W ()Y ()W _ ()Y, (1) l , (3)

where V(r) is the lattice potential and V(r,r’) is the
pairing potential. We obtain, using the discrete represen-
tation (2), the BCS-type Hamiltonian

H=H,+H,,, H,=HQ+H) +H2

nt nt mt 2
— t
H,= 2 [E(p)_-sF]anpoanpa
n,p,o
t t
+t(an+1,p,a +an*1,p,a)anp,a ’

(0) — 0 t T
int — 2N(0) 2 an,p,—o’a"y_P;U

n,p,p’so
Xan,p',aan,p',—o ’
A
() — ! t t
int — =T a a, _, _,a, » _
int ZN(O) n’p,ga’i n,p,c*n,—p,—o%“n,p’,—o
Xa,+y —potec.c., 4)
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(2) — 2 t +
int — 2 a, 504 —p
,po¥ntl, N
2N (0) npp ot p.—c

Xy 11,p, -0y, —p o Fe.C. |
A=N(0) [drdr'e}  (r)g} _,(r')p, (r')
X, —p(OV(r,r'),
M=N0) [drdre} (1)} _(r)@, A1)
X@pt1,—p(rWV(r,r'), (4a)
2=N(0) [drdr'g} (r)p, _,(r)

X¢:+l,—p(rl)¢n+l,p'(r')V(r’r’) )
t=[drgt., (r)g, (D[P /2m+Vo(r)],

where N(0) is the density of states at Fermi energy inside
the layer [N(0)=m /2w, m is the effective mass along
the layer]; in (4a) an average over p,p’, with p=|p’| =py
is assumed; A, A}, A, are independent of n in this section,
but they do depend on 7 in the case of many layers in a
unit cell. Deriving the Hamiltonian (4), we use the tight
binding approximation for the electron band structure
along the ¢ axis, so we preserve the terms which are of
zeroth and first order in the overlap of the Wannier func-
tions. The parameters of the model are shown schemati-
cally in Fig. 1. The term H'2) describes the coupling in-
side the layers and it gives the standard BCS result (iso-
tropic gap) without the other interaction terms. We can
estimate A,/A, as being roughly ¢ /ez. The term H 2
does not contain such an overlap of Wannier functions,
but A, is small in comparison with A, due to the spatial
separation of different layers, A,/A,~7 and 1 <1. The
Hamiltonian (4) without the term H|!) was studied in
Refs. 17 and 18; the result for the energy gap was the
dependence of the gap on momentum g along the ¢ direc-
tion:

A(qg)=Ay+b6cosq , (5)

where 8/Ag~(Ay/A Nt /ep)~nt/ep. We will show
below that the term H{!) gives the same expression (5)
with additional contribution in & of the order of
(A /Ag)Ag~(t /eg)A,. For this reason, the term H\!) is
essential.

The Hamiltonian (4) gives the following Gor’kov equa-
tions (in Matsubara frequencies):

n+1 >\0
R t, )\1 ) )\2 )\0
-1 t, >\1) )\2 AO
n-2 )\0

FIG. 1. The parameters of the model “one layer in unit cell.”
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(—io+E&)G(w,p,n—n")+AF(OF (0,p,n—n")+ 3 [tG(wp,n+a—n")+AF(a)F(w,p,n—n")

a=*t1

+k1F(0)Ff(a),p,n +a—n’)+A2F(a)FT(co,p,n +a—n')]

=—8n—n"),

(io+E&F (w,p,n —n')=AF(0)Glw,p,n—n")+ I [tFY(@,p,n +a—n")—A,F(0)G(w,p,n—n")

a=*1

E=elp)—egp,
F(a)=T Y F(o,p,a) .
,p

—AF(a)G(w,p,n —n')—A,F(a)Glw,p,n +a—n')]=0,

Making a Fourier transformation from the descrete variables n to the quasimomentum g, —7 =g =<, we obtain

Fl(9)=A(q)/[0*+E*+A¥q)],
Sg)=—lio+E)/[*+E+A%q)],
§=§+2t cosq ,

A(g)=Ay+8 cosq =AF(0)+2A,F(1)+2A,F(1)+2[A,F(0)+A,F(1)]cosq .

The self-consistency equations are

Alq)
F(0)=[T/Q2m)’N(0 dpdg——5,+——,
(0)=[T/(2m) ()]%f L e yerpn

A(g)cos
F(1)=F(—1)=[T/27)’N(0 dpdg—=>47°%%4
( (7/2mPNONZ Japde 2 i)

According to (8), the value F(1) is at least first order in
(¢t /eg) because F(1)=0 at t=0 and A,=0. Thus we ob-
tain estimates of the contributions of H{!) and H{2) to &
mentioned earlier. From (8) we get the value of T, and
the temperature dependence Ay(T); they coincide with
standard BCS results with accuracy (¢/ef)? at small
values of the ratio (¢ /eg).

The quasiparticle density of states has the form

p(s):fr“lN(O)Refo”s/\/s2—(A0+5 cosq)*. (9

It is logarithmically singular at e=A;+6 and becomes
zero at € <A,—8. With accuracy (t/¢x)% the London
penetration depth is given by the standard BCS expres-
sion and its anisotropy is determined by the anisotropy of
the Fermi surface only. The anisotropy of the gap is pro-
portional to 8~ A (¢ /er) and it is small if ¢ /e is small
(i.e., if the magnetic anisotropy is large). The term §=0
in an isotropic system (where ¢ is order €5). We came to
the conclusion that the gap anisotropy 6/4, in a system
with one layer in the cell reaches its maximum at some
intermediate values of the electron anisotropy
t/ep~4—+. The effect of interlayer coupling may be
essential for Yba,Cu;0, type compounds with intermedi-
ate magnetic anisotropy. In the highly anisotropic Bi and
Tl compounds the anisotropy of the gap caused by inter-
layer coupling is negligible.

III. TWO EQUIVALENT LAYERS IN THE UNIT CELL

Let us consider a system which consists of equivalent
layers with alternating spatial separation between neigh-

(6)
)
(8)
[
boring layers. The resonance integral alternates
(t,t't,...), as well as the parameter A,:(A;,A},A,,...).

The parameters of the system under consideration are
shown schematically in Fig. 2. Again the remarkable
difference from the results of the standard BCS model is
obtained if the value ¢ /€ is not very small. We consider
below the case ¢, |t —t'| >>T,.. We omit the term H\2) be-
cause it does not change the qualitative behavior of the
system.

Let us introduce the Gor’kov functions G, glw,p,n,n’)
and Fa gl@,p,n,n’) where indexes a,=1,2 are the num-
bers of the layers in a unit cell and » is the number of unit
cells. We obtain then the equatlons for the Fourier com-
ponents G ,z(w,p,q) and Fa s(@,p,q) [assuming F(0) and
F(1) are real]:

Ao
t ’ )\1 AO
t’) x,1 )\0
Ao

FIG. 2. The parameters of the model “two equivalent layers
in unit cell.”
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o —tlg) 4, Alg)

. 5 A Gio(®,p,q) O14
—t*(q) @ (q) 2 G,,l0,p,q) — 824

A, Al o, tg) Fgam,p,q) 0
A*g) A, t*g) o, ||Fulopd

oi=iotf, t(g)=t+t'e,

where
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) (10)

8;=8,=80=[T/N(0)] 3 [AoFy (®,p,q)+(A;+Aie“)F, (w,p,q)+(A;+Aie “)F y(0,p,q)],

«,Pp,q

A(@)=[T/NO)])(A,;+Ae) 3 F(0,p,q) -

o,p,q’

(10a)

The electron spectrum in the normal state has two branches

51,2=§i|t(¢1)1 ’

(1n

i.e., there are two branches of the Fermi surface as determined by the equations €, ,=0. In the superconducting phase
the energy gaps on these branches are the same if A;=A]=0. For A,70 and A{70, the gaps are different and both de-

pend on g:

A, 5(@)=Ag[1£Ag (AT +A']+24 A cosq ) *cos(@,— @,)] ,

(12)

tang,=t'sing /(¢ +1t'cosq) , tang,=Aising /(A;+Ajcosq) ,

where A, is determined by the standard BCS expression
with coupling parameter A, to an accuracy (¢ /e;)?. The
gaps A, ,(q) disappear simultaneously at temperature
T=T,. As a result, the system contains two groups of
electrons (two branches of the Fermi surface) with
different gaps. Its response to an external electromagnet-
ic field is half of the sum of two superconductors with
gaps A,(¢) and A,(q). For example, the quasiparticle
density of states is given by the expression

p(e)=(%W)N(O)Refoﬂdq(s/\/ez—A%(q)

+e/v €2 —Adq)) .

At A} <<A, and t' <<t the density of states has two nar-
row peaks at energies Ay(1xA,/Ay) with width of order
2A}/Ay. There are logarithmical singularities near these
peaks. The ratios 2A, ,(T=0)/T, are 3.52(112A,/A,) if
we take the positions of the peaks to be the “gaps.”

The magnetic anisotropy in the system under con-
sideration is determined by the value t'/ep at
t' <<t <<ep. On the other hand the difference in the
“gaps” is determined by the parameter t/ep if t' <<t.
We can see different gaps in such a system even in the
case of very strong magnetic anisotropy. However, the
anisotropy (¢ dependence) of the gaps is determined by
the parameter t'/ez. So both gaps are isotropic in the
case of strong magnetic anisotropy as in the system with
one layer per unit cell.

We note that the system with two equivalent layers per
unit cell at ’=0 and without the terms H{!),H?) was
studied by Hoffman er al.'" We conclude that the effect
of interlayer coupling inside the unit cell may be essential
for all the compounds with several superconducting lay-

(13)

[

ers in the unit cell. This effect can smooth out remark-
ably the peak in the density of states near the gap and
correspondingly suppress the enhancement of the NMR
relaxation rate just below T.

IV. TWO NONEQUIVALENT LAYERS
IN THE UNIT CELL

We consider now the crystal which consists of two
different layers with intralayer pairing coupling Ay; and
Ag; without taking into account the interlayer coupling A,
and A,; see Fig. 3. In the case Ay, 70 and A, 70 we deal
with the S-S’ superlattice while at A5, =0 we label such a
system S-N. For simplicity, we will assume that the lay-
ers 1 and 2 differ by the coupling parameter Ay, only, i.e.,
their electronic spectra in the normal state are identical.
The Gor’kov equations have the matrix form (10) where
we put

A(g)=0, (14)

neglecting the interlayer coupling. In the case ¢,t' <<T,,
which will be of principal interest in the following, the in-

Aot
t Ao2
t Aot
Aoz

FIG. 3. The parameters of the model “two nonequivalent
layers in unit cell.”
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terlayer coupling can be omitted. It should be taken into
account at larger ¢,¢’ but the account of this coupling
does not change the behavior of the system qualitatively.

The values A, in (10) are assumed to be real; they are
determined by the self-consistency equations

B=ho[2m’N©O)]'TS [dpdg F}, ;(0,p,q) . (15
We consider first the quite interesting case t =t’ with a
gapless spectrum of quasiparticles in the superconducting

J

tanh(Eg/2T)

2
A,=(1/87) [dEdg| | 3 E, Mooy +
B=1

2
(—1)
;En Ep
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state. From Eqgs. (10) and (14) the quasiparticle spectra
are obtained as

E},=E&+4t%cos*(q/2)+ HAI+AEL(E,q) ,

L%(&,q)=16t%6%cos*(q /2)+ (A} —AZ)? (16)

+4(A,—A,)*%cos*(q /2) .

Using (16) we can rewrite (15) as

ﬁtanh(EB/ZT)

(17)

X 4ot 2c0s*(q /2) (A = AN —1)*—LA0,A (A2 —AZ)(—1)*]/L(&,q)
a=1,2.

The equations (14)—(17) can be solved analytically in the limiting cases t << T, and ¢ >>T,. The former corresponds
to the Josephson coupling of the layers and the condition ¢ << T is equivalent to the condition £,(0) <<d where £,(0) is
the superconducting correlation length along the ¢ axis extrapolated to 7=0, and d is the interlayer distance. The
proximity effect is weak in this limit.

We consider first the system with large ¢, i.e., with strong proximity effect. In the case t >>w/ the self-consistency
equation takes the form

A +4,

2 fo dé

where wj is the Debye frequency. We see now that A,/A,=Ay /Ay, and the value (A;+A,)/2 plays the role of
effective order parameter while (Ay, +Ay,)/2 is the effective average coupling. So at large ¢ the strong proximity effect
causes the effective averaging of the electron interaction and order parameter. However, the quasiparticle spectrum at
small energies is more complicated than the BCS spectrum. According to (16) the minimal energy is reached at
cos(g /2)=0 and £=0. It is equal to A, (we assume Ay > Ay,). At g7 the energy gap is very close to (A;+A,)/2 be-

tanh{[£2+1(A,+A,)2]'/2/2T}

A=A
a Oa [§2+71‘_(A1+A2)2]I/2

) (18)

cause at a given cos(q /2) >>A, /t the minimal energy is

E2in=1(8,+4,)—(A}—A2)?/[64t%cosX(q /2)] .

(19)

In the system with A5, =0 (i.e., S-N system) superconductivity is gapless as seen from (16), the energy is zero at £=0
and g =m. For the energies € <<A, we get in the S-N system the density of states

po(e)=(1/m) [ dpdq(2m) *IM[G oa(@,P,9)iiroc+15] »
p,(8)=(2/m)N(0)(eA, /2t%)" 2K (1V'2)=0.83N(0)(eA, /t})'/? ,

pile)~(e/A))p,le) .

The gapless character of the quasiparticle spectrum
manifests itself in terms which are exponentially small in
ordinary BCS theory at low temperatures. Thus at
T <<, the electron specific heat depends on temperature
as

C~yTAT,/tT/T,)*?*, @1

where ¥ is the coefficient in specific heat in the normal
phase.

We stress that the gapless character of the spectrum is
due to the presence of electron eigenstates in the normal
phase which are localized on N layers only. For this

(20a)
(20b)
(20c)

{
reason such electrons do not feel the pairing potential
and have no gap in the superconducting phase. The sys-
tem with identical transfer integrals t =t' does have such
states but they are absent if 5¢'. To describe the spec-
trum in the case 7t’ we must substitute
(£24+1'2+2tt'cosq) for [4t%cos*(g/2)] in (16). For
t,|t—1t'| >> T, we obtain the usual BCS results with the
gap (A, +A,)/2.

In the S-N system with transfer integrals ¢,¢'>>T, all
the corrections to BCS results are at least of the order of
T./t or T/t. Such a system is very similar to the three-
dimensional anisotropic BCS superconductor with aver-
age parameter A=(A,, +1y,)/2.
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V. NONEQUIVALENT LAYERS
WITH JOSEPHSON COUPLING

At t,t' << T, the layers 1 and 2 are independent in the
first approximation and the critical temperature of layer
1 is determined by the parameter Ay, in the usual way,
ie, T,=T,, and T,,=1.14wpexp(—1/Ay,). This result
is valid in the framework of mean field theory; actually,
the long-range superconducting order in the two-
dimensional system is absent due to the fluctuations in-
cluding the topological Kosterlitz-Thouless-Berezinskii
excitations (Pearl vortices in the superconducting film).

However, in a layered compound the three-
dimensional interaction of such topological excitations
suppresses their formation. The first contribution to this
interaction (of the short-range type) is due to the Joseph-
son coupling of the layers and the second one (of the
long-range type) is due to the electromagnetic interaction
of the topological excitations (fluxons).?® The latter can
suppress the formation of fluxons quite effectively even in
the case of very weak Josephson coupling and so the ex-
istence of the fluxons in the layered compounds has been
under question until now.?° In the absence of such exci-
tations the Josephson coupling of the layers establishes
the long-range order practically just below the mean field
critical temperature T, at any realistic values of ¢,7'.!
According to Eq. (17) the value of T, coincides with T,
in an accuracy (¢2+1'?)/T? at t,t’' <<T,,. If topological
excitations do exist in the systems under study all of our
following considerations will be valid below the critical
temperature of the Kosterlitz-Thouless-Berezinskii tran-
sition; this temperature would be also quite close to T ;.

In the S-S’ system the order parameter on layer 1 at
T < T, is given by the standard BCS result with accuracy
of order of (t2+1'?)/T?. The order parameter of layer 2
at T,, < T <T,, is proportional to the order parameter of
layer 1 multiplied by the same small factor. At T <T,,,
the order parameter of layer 2 is given by the standard
BCS result with the coupling parameter Ay,. Below, we
consider in a more detailed manner the S-N system only,
which is the limiting case of the S-S’ system and is the
most interesting due to the strong difference in the prop-
erties of the layers S and N in the superconducting phase.

In the S-N system (A5, =0) the layers 2 are supercon-
ducting also below T, due to the proximity effect which
mixes the properties of layers in accordance with the
small parameter (¢2+¢'2)/T2. Using (10) and (14) we
obtain the Gor’kov anomalous function F ;z(w,p,q)
which describes the superconductivity of the layers 2:

Fly(0,p,q)=A3Ry(q) /(*+E? ) +E2) ,
E1=&+A}, E;=£+A3q), 22)
A)(g)=(t2+1t"*+2tt'cosq) /A, .

Here A, is the usual BCS order parameter of layers 1
which has the standard BCS dependence on T with criti-
cal temperature T,~<T,,. We see from (22) that at fre-
quencies @ <<A, and energies £<<A, the value A,(q)
plays the role of effective gap of layers 2 which depends
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on g. At T>>T,=(t*+1'?)/A, the layers 2 are super-
conducting to a very small degree while at T ST, they
behave as superconductors with the gap A,(q). The
value T, plays the role of effective critical temperature
for layers 2, though real phase transition does not exist at
this point. As we will see later the layers 1 determine
mainly the Meissner effect in magnetic fields Hj|c at tem-
peratures T, << T <T,,;, while the layers 2 start to con-
tribute strongly below T,.

Now, we consider the quasiparticle density of states at
low temperatures T << T,. In the system with r5t’ a gap
g =(t—1")?/A(0) exists for all the electrons. At ¢=t'
the spectrum is gapless and in the following part of this
section we consider this interesting case.

For the gapless S-N system the density of states of the
layers 2 is given by the expression (20b) at £ <<t2/A,.
We note that the density of states of layer 1 is also
nonzero at energy € S A, but in a very small degree:

(e/A)p,y(e), e<<T,,

(12/A0)pye), T,<<e<<A,. 23)

pl(E)N

The densities of states p,(¢) and p,(e) are shown
schematically in Fig. 4. The function p,(¢) differs from
the standard BCS result at energies near A;; it has loga-
rithmic singularity here instead of the usual BCS square
root one. Additionally, a weak peak is present in p,(g) at
e~A,(0). The function p,(¢) has logarithmic singularity
at e=A4,(0), weak peak near A, and p,(¢) is much small-
er than the density of states in the normal state N(0) at
€ <<A,(0) in the gapless case while it vanishes at € < gg in
the case with the gap. So two peaks occur in the density
of states of the S-N system [at A,(0) and A,] at low tem-
peratures T << T, while one peak exists (at A,) at temper-
atures T, << T < T,,.

The gapless character of superconductivity in the S-N
system is suppressed by impurities which restore the gap.
We will consider now this effect. As was mentioned early
the gapless spectrum at ¢t =t¢' is explained by the presence
of electrons which move along “normal” layers 2 where
the pairing potential is absent. The impurities mix such
trajectories with the trajectories of electrons that feel the
pairing potential. For this reason a gap €, occurs in the
presence of impurities in the system with t=¢". We will

v} '
N(0) i
h
I\‘
AN
AN
; \\\
P I Sl
: D
[
]
1
II
A/
——— e = = '
4,(0) 09 €

FIG. 4. The densities of states in a Josephson S-N system in
the gapless case.



10 236

consider the dependence of €, on the electron scattering
time 7 in the simplest model of nonmagnetic scattering
assuming that impurities’ potential is isotropic inside the
layers and diagonal in the indices n. We suppose also
that disorder is the same in both S and N layers.

In the presence of impurities the Green’s functions in
Eq. (10) should be replaced by the average Green’s func-
tions G and F', and the frequencies o, and order parame-
ters A, should be replaced by @, and A

Ba=w—(2m) InNO)|U? [ Goulé,q)dEdyg
_ _ (24)
R,=A,+02m) 'nNO|U? [Fl£q)dEdg ,

where U is the impurity potential and n is concentration
of impurities, 7~ '=27nN(0)|U|2. We obtain equations
for @, and A, by the standard method (see Ref. 22). At
small ¢ we get

1 1 1 2T
- _—— = i A
@2 27<a2(q)> o, (4(g) 21rfo dg A(q),
- 1 < 1 > _2t2<cos2(g/2)>
Az I -_— ’
21\ a,(q) T a,(q)
&3, + 8,8, +33+EE
—_ W (0]
a}(q)=K3+3+8%cosiq /2)——————
A2+(1)2

+ticos*(q/2) /(A +m ),
& =on, A=Am, n=1+27Vw?+A}.

We admit the following ansatz for a,(q) which is use-
ful to get the analytical continuation for energies near

gap g;:
(a;(q))
=min[(@

{a;'(q)cos(q/2))=min[A,/t? (&

2+A )_1/4(t2/A )*1/2 (52+A2)~l/2]
(26)
+AHT.

Then the density of states can be obtained using analyt-
ical continuation for @, ie., py,(e)=Im21& (iv—¢
+i6),6—0. As a result we get the gap ¢, whlch depends

on the relations between the scattering rate 7~ 1 and the
values T'5,A;:

L Tz‘r>>1, (27a)

gg=~ 112/0, T,<<r ', (27b)

21, AT<<1. (27¢)

For 77!« Tz, the states at €< €, are absent; for

€>>¢g,, we obtain he same density of states (20) as in the
clean S-N system. For the intermediate scattering rate
(27b) the states of layers 1 and 2 at low energies are
mixed completely, there is gap sngz; but at energies
€>>¢g, the layers 2 are normal while the layers 1 have a
suppressed density of states up to the energy A,. The be-
havior of functions p(¢) at 77!>> A, is similar. Thus €,

reaches a maximum as 7~ grows, the decrease in ¢ at

g
small 7 being due to the suppression of electron hopping
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between the layers (the diffusion hopping rate of electrons
ist’rattr<<1).

The conclusion is that the gapless character of the
spectrum in the S-N system with Josephson coupling
(t <<T_) at t=t’ is preserved in the presence of impuri-
ties as far as 7! <<T,. Our analysis of the S-N system
with ¢ >>T, shows that the gapless type of spectrum at
t=t"1is preserved for 77! << T,.

VI. THE JOSEPHSON S-N SYSTEM
IN THE MAGNETIC FIELD

We consider first the Meissner effect in the field along
the c axis, i.e., superconducting currents flow in (ab)
plane. The electromagnetic kernel Q,(k) for the vector
potential (in the Coulomb gauge) parallel to the layers
may be obtained by the standard way using perturbation
theory in the vector potential; the zeroth order functions
are defined by Eq. (10). At t,t'<<T,, with accuracy
T, /T., we obtain for k —0

Q,(k=0)/(e’Nm['")=N, (T)/N

=NyUT

sl

)/N+NZ2(T)/N

2
1

=(m/2) TE —————2+A2)3/2

7 Alq)
+iT3 [7d 24 28)

0 q[wZ_*_ZZ(q)]B/Z ’

where N is the density of the conducting electrons. The
first term in the right side describes the contribution of
layers 1 which is of the usual BCS form. The second one
gives the contribution of layers 2 and it is of the same or-
der of magnitude as the first term at TS T,. At tempera-
tures T, << T S T,, the contribution of the layers 2 is of
the order of TZAZ(T)/T“,, i.e., smaller by the factor
T 3/T? than the contribution of layers 1.

For the gapless case t=t’ at T << T, the concentration
of superconducting electrons of layers 2 is given by the
expression

2T ~ ~
NS‘?,"(T)/(N/2)=1~f0 dq[A,(q)/T]expl —A,(¢q)/T]

=1—(TA/mt?)'? . (29)

In the system with gap (at t5%t’ or in the presence of
impurities at r=t¢’) the value N? | approaches to zero
temperature value (N /2) exponentlally

The temperature dependence of the corresponding
London penetration depth (inverse and squared) ln_z is
shown schematically in Fig. 6. Far below T, but above
T, it is determined by layers 1; the concentration of su-
perconducting electrons is (N /2). Below T, this concen-
tration increases up to N.

We remark that calculating (28) we use local approxi-
mation k —0 (i.e., London limit) for both layers N and S.
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For N layers this approach is correct at condition
A>Vg/ T, which can be invalid in systems with very
small ¢.

The behavior of the electromagnetic kernel Q, for the
magnetic field parallel to the layers (and the vector poten-
tial A, perpendicular to the layers) is quite different. We
consider here the case z =¢' and introduce the vector po-
tential A,(p) in the Hamiltonian in the following way:
The resonance integral ¢ in (4) has to be multiplied by
exp[xx(p)] with x(p)=ed /ficA (p); a sign depends on
the direction of electron transfer. Thus in the presence of
A (p), we get the additional term in the Hamiltonian

Q,(k—0)/(e’Nm [ ")=N, (T)/N

10 237

—_ T
Hen= 3 H@ni1pofpyp
n,pp',o

t *
+an—l,p,af—p,—p )an,p’,a ’

. I (30)
fp_p,=fdp(e‘x—l)e‘("”‘”"’ .
We next calculate the contribution of (30) to the free
energy of the system and obtain then the superconduct-
ing current J, calculating derivatives of the free energy
with respect to A4,(,p). The diagram of perturbation
theory for Hgy are shown in Fig. 7. At low tempertures
T << T,, with accuracy (¢ /T,,)® we get the expressions

AAy(g)

=(/mT 3 [dE [ dq

N/m,=2t?dN(0) .

We obtain with logarithmic accuracy the low-
temperature behavior N, | as

N, (T)/N=(4t*/mADIn(A/T), T,<<T<<T,,
N, (T)/N=(4t*/mADIn(A/T,), T<<T,, (32)

while near T,; we get
N, (T)/N~t*AXT)/T} . (33)

According to (32) and (33) the inverse squared perpen-
dicular London penetration length [for the magnetic field
along the (ab) plane] A X T) decreases gradually with
temperature and saturates at T < Tz- In contrast, the in-
verse squared parallel London penetration length (Hlc)
has two upturns: at T, due to the layers 1 and at T, due
to the layers 2; see Fig. 5. It is worth noting that accord-
ing to (28)-(33) the magnetic anisotropy kf(T)/)Lﬁ(T)
grows with temperature down to the temperature T,.

Due to the condition of Josephson coupling of the lay-
ers t <<T, the value A,=(47Q,)~'2 is very large and
the parallel lower magnetic critical field H,, , is very
small, H.  =($o/4mA A )In(A,/d ).2! So the parallel
magnetic field H>>H, ,  penetrates almost completely
into the sample. We estimate now the value of parallel
magnetic field which affects remarkably the Josephson
coupling of the layers. For this purpose we present first
another method for studying the gap function A,(q)
which allows us to calculate this function in a simple way
in more general systems (finite set of S and N layers,
different transfer integrals, or in the presence of magnetic
field).

To obtain A,(q), i.e., the gap function of N layers, we
use the perturbation expansion for the off-diagional part
of self-energy. At t=t'=0 we have normal layers N with
Green’s functions G5 (w,p)=(iw—§&) ', F}Y =0 and su-
perconducting S layers with standard Gor’kov function
F=A,/(0*+£*+A3%). Now the Gor’kov function of

(0®+E+AD[0*+E+A%q)]

(31)

the layers 2, ie., Fl,(o,p,m,n) for T<<T,, to the
second order in #,¢’, is given by the expression

F;z(m,p,m,n )=G(23)(w,p)F(l({)(co;p)G(zg)(-—co, -p)
X[(t2+1)8,,,
F1t' (8, 418, 5 —1)] - (34)

Comparing this expression with the expansion of F ;2 in
the off-diagional part of self-energy A, (w,p)
F;rz(a),p,m,n )=GY(w,p)
XApa(0,p)GY(—w,—p),  (35)

we get the “order parameter” in a discrete representation
at T <<T,, as

B, =[(2+12)8,,, +11'(8,, 41+ 8, - 1)1/4,
and the gap function
8,(q)=(t2+1t"2+2tt'cosq) /A,
in momentum representation. Att=t' we get

A,(q)=(2t*/A,)(1+cosq)
Xz
X0

0.5

FIG. 5. The temperature dependence of the London penetra-
tion length in a Josephson S-N system.
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in a complete analogy with results (5) of Sec. II. The
difference now is that in the S-N system A,=35 and this is
a reason for the gapless nature of the spectrum.

Now we can obtain the gap function in the presence of
parallel magnetic field H; which penetrates completely
into the sample. To take into account such a field we
multiply ¢ by the factor exp(ty) where y=edHx /#c.
Now the hopping term H, in the Hamiltonian has the
form

Ht = 2 t(a:+1,p+k,a +a:—l,p-k,a )an,p,a ’ (36)

n,p,s
where |k|=edH /#ic. Using (36) we get the off-diagonal
part of self-energy A, ,(w,p,p’):
At?
o+ (E+v-k)2+A?
At?
+ ,
*+(E—v-k)?+A?
At?
o’ +(E+vk)+A

A, n(0,p,p)=

(37

An,nil(wip’pizk)':

where v is the velocity of electrons on the two-
dimensional Fermi surface. We see from (37) that paral-
lel magnetic field changes the proximity effect if
H 2 ¢y/d§(0), i.e., the only very strong parallel fields
affect the superconductivity of layers 2.

VII. OPTICAL PROPERTIES OF THE
SYSTEMS S-S’ AND S-N

At t >>T,, the systems S-S’ and S-N are very similar to
the homogeneous system with average coupling and thus
optical conductivity can be determined by the usual BCS
expression. There the optical conductivities for E paral-
lel and perpendicular to the layers have similar frequency
dependence [with gap (A;+A,)] and only the magnitudes
depend on E orientation.

In the Josephson S-S’ and S-N systems the frequency
dependence of the conductivity is anisotropic. In the first
approximation (at ¢#=0) the system is an insulator for
E|ic, and for E along (ab) plane the conductivity is the
sum of conductivities o, ; and o, |, which are character-
ized by the gaps 2A; and 2A,. At t+0 the conductivity
o,(w) for E|c is determined by the transfer of electrons
between neighboring layers S and S’. It does not vanish
for o> (A;+A,). So the gap 2A, and 2A, can be seen in
o,(w) while the “gap” (A;+A,) occurs in o,(w). In the
S-N system we get the gap 2A, in o () and A, in 0 ().

We consider now in a more detailed fashion the depen-
dence o () in a clean and dirty S-N system at ¢t << T,,.
To obtain o (w) we calculate the electromagnetic kernel
Q,(w) for the vector potential 4 ,(p,w) using the stan-
dard technique (see Ref. 22). The contributions to Q,(w)
are given by all the diagrams shown in Fig. 6 except dia-
gram (a). In the presence of impurities the kernel is
determined by the average of the product of the two
Green’s functions. To the lowest order in ¢, these two
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G2
(a) (b) (c)

FIG. 6. The diagrams for the free energy (up to second order
in the vector potential).

Green’s functions are for neighboring layers. We take
into account the scattering of electrons by impurities in-
side the layers only. Thus calculating the average value
of the product we obtain the product of the average
Green’s functions omitting the diagrams shown in Fig. 7.
As a result we obtain in the normal state

2
@Dp) T 2 _ 4me N

——, (38)
1+ w?? pl m;

Ui(w)=iIle(w)=

In the superconducting phase at low temperatures
(T << T,,) we get in the clean system at kK —0.

o, (@) _ A}

Olw—A4,) , (39)

o, .(@) 20’

where O(x) is the step function. In the dirty system at
AT<<1 we get

O'l:(w) w“Al
L =804, . (40)

Ul‘n(w)

VIII. CONCLUSIONS

We can summarize the main results on the S-N systems
as follows.

(1) The atomic scale layered S-N systems with large
transfer integrals do not differ practically from the usual
BCS superconductors. The pairing interaction is aver-
aged there; the layers S and N lose their individual prop-
erties due to the strong proximity effect.

(2) The individuality of S and N layers preserves to a
great extent in the limiting case ¢ << T ;. The S layers be-

FIG. 7. The diagrams omitted in calculations of perpendicu-
lar conductivity.
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come superconducting there below T, and the gap A, of
order of T,, forms at temperatures T <<T,,. However,
only the very small superconducing order parameter is
induced inside the layers N down to the temperature
T,~t%/A,. At temperatures T <<T, almost all the elec-
trons of N layer become superconducting and the gap
here is of order of T,.

(3) The tunneling density of states in the Josephson S-N
system has the normal contribution as well as the super-
conducting one at TX T, while at T << T, two gaps A,
and A, can be observed.

(4) The remarkable growth of superconductivity below
T, in N layers manifests itself also in the temperature be-
havior of London penetration depth, specific heat, as well
as Knight shift and NMR relaxation rate measured on
nuclei of N layers.

(5) The magnetic anisotropy A}/Aﬁ grows with temper-
ature in the Josephson S-N and S-S’ systems while it is
temperature independent in the case ¢ >>T, or in the
Josephson S-S system (for more details, see Ref. 23).

(6) The frequency dependence of optical conductivity
in the Josephson S-N system is remarkably anisotropic;
different “‘gaps” characterize the conductivity for E||c
and E||(ab); the ratio of the “gaps” is about two.

It is worthwhile to compare the atomic scale S-N sys-
tems with those made of S and N thick films.2#?* The
systems which consist of alternating .S and N layers with
thickness dy,ds larger than atomic scale but smaller than
the superconducting correlation length £(0) behave very
similar to the microscopic ones. All the macroscopical
parameters of such systems are determined by average
pairing interaction due to the strong proximity effect, and
the possible gapless character of the excitation spectrum
in clean systems reminds us of the presence of N layers.?’

The properties of the systems with thick metallic layers
dy>>£(0) can be compared with those of Josephson
atomic scale S-N systems. In both systems the induced
superconductivity of N layers is characterized by the
small gap at very low temperatures. However, the sys-
tems under consideration behave quite differently in the
parallel magnetic field due to the remarkable difference in
the thickness of N layers. In the systems with thick N
layers dy >>A, the N layer alone can screen the magnetic
field due to the induced superconductivity. Thus, two
phases are possible inside the N layer in the presence of
rather weak parallel magnetic field (normal and super-
conducting). In systems with atomic N layers such
screening is impossible and the very strong magnetic
fields are necessary to suppress the induced superconduc-
tivity of N layers.

Considering now high-T, superconductors we con-
clude that, in principle, some optical and tunneling data
on high-7, layered superconductors can be explained in
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the framework of the Josephson S-N model. For exam-
ple, normal contribution in tunneling current was ob-
served until now in all high-T, compounds. The anisot-
ropy of the optical properties in such superconductors is
also in agreement with predictions of the Josephson S-N
model. However, up to now we do not know if such a
model is appropriate for these crystals. First, we do not
know certainly if the layers BiO and TIO are conducting
or insulating. Secondly, we do not know if the transfer
integral ¢’ between suspicious “N” layers and supercon-
ducting CuO, layers fulfills the condition of Josephson
coupling. In Bi and Tl compounds the smallest hopping
integral does fulfill such criteria. Here the anisotropy
A =Kf/kﬁ= ﬁ/é’f is as high as 10°~10* near T, obtained
from torque measurements.””* So  £}(0)/d?
=[£,(0)/d]?47'=107> at £,(0)=20 A and d=~10 A.
However, we get the Josephson S-N system if all the
transfer integrals between S and N layers are small
enough in comparison with T.. If transfer integral ¢ be-
tween S and N layers in the unit cell is large (¢ >>T,) and
intercell integral ¢’ is small (¢#'<<T,) we obtain the
Josephson S-S system, each sheet S consisting of layers S
and N with average pairing interaction. So the Bi and Tl
high-T, superconductors can be described by the Joseph-
son S-S system if all the layers except CuO, are insulating
or if BiO or TIO layers are metallic but intracell hopping
integral ¢ is large in comparison with T,. Alternatively
these compounds are described by the Josephson S-S’ or
S-N system.

The anisotropy A4 was found to be independent of tem-
perature in T1,Ba,CaCu,O, in the interval 90-100 K.?®
Thus, we can think that we get the system S-S in this
case, the TIO layers being nonconducting or alternately
the intracell integral ¢ being large in comparison with T.

We used the BCS model to study the proximity effect
in the S-N and S-S’ layered compounds. Of course, such
a model does not give an accurate quantitative descrip-
tion of high-T. superconductors. However, we think that
this model is useful to understand in a qualitative way the
proximity effect in any kind of superconductors which
can be described by the superconducting order parame-
ter.
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