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The effect of superconductive fluctuations on the density of states and tunneling resistance is re-
visited in the case of dirty superconductors and derived for clean samples with and without pair-
breaking sources. For clean superconductors new features appear in the density of states. In partic-
ular, with respect to the commonly known dirty case, the fluctuation effects manifest themselves on
a new scale of energy with a different power-law behavior as function of T—T, . The relevance of
these results for high-T, superconductors is analyzed.

I. INTRODUCTION

The discovery of high-T, superconductors' has rekin-
dled interest in the effect of superconductive fluctuations
on the various physical quantities. The small value of
the zero-temperature coherence distance go makes the
Ginzburg criterion for the validity of the mean-field
theories much more stringent; accordingly the deviations
from the mean-field behavior together with the effect of
fluctuations should appear in an accessible range of tern-
peratures around T, even for clean superconductors
(where gu (/, I being the scattering mean free path of the
electrons due to the impurities). Our main concern in
this paper will be the analysis of the single-particle densi-
ty of states. Before discussing the clean case, we shall re-
visit the case of dirty superconductors to provide a com-
plete theoretical framework by which the still unclear sit-
uation of the high-T, superconductors can be analyzed.

A semiphenomenological study of the fluctuation
effects on the density of states of dirty superconducting
material was first carried out while analyzing the tunnel-
ing experiments of granular Al in the fluctuating regime
just above T, . The second metal of the junction was in
the superconducting regime and its gap gave a bias volt-
age around which a structure associated with the super-
conductive fluctuations of Al appeared. The measured
density of states has a deep depression at the Fermi level
(v=0), reaches its normal value at frequency eo(T) and
shows a maximum at frequency value several times co, de-
creasing again towards its normal value at higher fre-
quencies. The characteristic frequency co is of the order
of the inverse of the Landau-Ginzburg relaxation time
~LG for the fluctuations of the order parameter

=—(T —T ).8
LG C

Here and in the following we use units with %=1 and

z 1/2
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5N(0)= —4(l —ln2)C2 d(T, wL&)2,
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(1.3)

for a quasi-two-dimensional sample. Here the subscript d
stands for dirty, No = (mpF /2~ ) is the three-dimensional
(3D) density of states, D =(uFr/3) is the diffusion con-
stant, ~ is the scattering time due to nonmagnetic impuri-
ties (uF~=I), and L is the thickness of the film. For the
strictly two-dimensional case we have to replace in Eq.
(1.3) NOL with the two-dimensional density of states. At
large frequencies the density of states recovers its normal

k~ =1.
The presence of a depression at c=0 and of the peak at

c.-vr G in the density of states above T, is the precursor
of the appearance of the superconductive gap at tempera-
tures below T, .

Microscopic calculations ' for dirty superconductors
( gp ) I ), were carried out not too near the critical temper-
ature in the so-called classical region, where deviations
from the mean-field behavior are small. The theoretical
results reproduce the main features of the experimental
behavior. The strength of the depression (and of the
peak) is proportional to different powers of the Landau-
Ginzburg relaxation time, depending on the dimensions,
i.e., if we define 5N(e)=[N(e) —No(e)]/Nu(0), N(e) and
No(s) being the density of states per spin in the presence
and in the absence of the fluctuations, respectively, the
relative depression in the density of states at zero fre-
quency is given by

5N(0)= —(3&2—4)Ci d(T, bio)
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E, &&wLG, d =3,

value according to the following behavior:
3/2

C3d T,
5N(e) =

2 2
(1.4)

to the inverse of the time necessary for the particle to
diffuse a distance equal to the coherence distance g. This
energy scale coincides with the inverse relaxation time for
the fluctuations given in Eq. (1.1}

5N(e}=C2 d (1.5)

When tunneling junctions are considered either with
both electrodes in the fluctuating regime or with one elec-
trode in the normal state and the other one in the fluc-
tuating regime, the effect induced in the differential resis-
tance by the anomalous behavior of the density of states
is rather weak. In the quasi-two-dimensional samples
for instance, the differential resistance depends only loga-
rithmically on T —T, at e V &(T, and has a weak depen-
dence on the voltage V itself at a scale eV-T, . A
stronger dependence on T —T, appears only when the in-
teraction among fluctuations is considered in the higher-
order expansion in 1/D.

Despite the difficulties that arise in carrying out tun-
neling experiments in high-T, superconductors, these
systems show some distinguishing features that need to
be taken into account in the theoretical analysis. Indica-
tions that high-T, superconductors behave, at least in the
best samples, as clean systems are present in the litera-
ture, see for instance the values of the ratio between the
gap bo and the scattering rate as derived from the
reflectivity measurements in YBazCu&O . The presence
of a strong pair-breaking might be another important as-
pect of high-T, superconductors. This has been advocat-
ed in discussing several physical situations. The conduc-
tivity fluctuations around T, in yttrium and bismuth
compounds can be fitted with the 3D and 2D
Aslamazov-Larkin term only. The absence of the
Maki-Thompson term is an indication that either the sys-
tern is clean or it is in the presence of a strong pair break-
ing. A strong pair breaking has been put forward also in
the analysis of the magnetoresistance in 1-2-3 com-
pounds. ' '" This induces us to complete the above
theoretical picture for the density of states by investigat-
ing the clean case and by introducing the possibility of
pair-breaking effects.

We recall that the coherence distance of the Landau-
Ginzburg theory

1/2

P T}=kp
C

as derived from microscopic calculations' in the clean
case compares with the one for the dirty case via the
different expressions for gp.

7 g(3) EF 2 vl

12 T 2m' ' 8T
C C

(1.6)

where the subscripts c and d stand for clean and dirty, re-
spectively. In going from the dirty to the clean case one
has to make the substitution D (p~l/m)-(E-~rim)
~(E~/mT, ). In Eq. (1.6) g(x) is the Riemann function
and EF is the Fermi energy.

The relevant energy scale in the dirty case is associated

r('=Dg 2-~„ol-T T,—. (1.7)

II. DENSITY OF STATES FOR DIRTY
SUPERCONDUCTORS IN THE PRESENCE OF

PAIR-BREAKING SCATTERING

The lowest-order correction to the density of states in-
duced by the fluctuations is determined by the imaginary
part of the diagram depicted in Fig. 1 for the one-
electron Green's function. The calculations carried out
in Refs. 5 and 6 for the dirty metal gave rise to the results
summarized in Sec. I. We now extend these calculations
to include a pair-breaking scattering process having a
scattering time ~, .

The correction to the density of states is given by

QN(e) = — ImR (c,),1

~No
(2.1)

where R "(s) is the retarded analytical continuation of

In the clean case instead the ballistic motion gives rise to
a different characteristic energy

r
—1

U g
—1 —

( T —1)1/2 iT T il/2 (1.8)

with a =[6m /7g(3)]. Because of this fact, significant
modifications in the expressions of the density of states
and of the tunneling current-voltage characteristic will
appear in the clean case in comparison with the dirty one.

Various sources of pair breaking can be hypothized in
high-T, superconductors, e.g., localized magnetic mo-
ments residing on Cu ions, electron-electron interaction,
fluctuations as mediators of inelastic scattering, ' and
even phonons because of the high value of the critical
temperature. In order to take into account a generic
pair-breaking mechanism, we will simply introduce a
pair-breaking scattering time ~, that will shift the bare
critical temperature and act as a novel energy scale in the
calculations for the density of states.

Because of the uncertainty about the actual values of
the pair breaking and of the ratio between I and gp we
will consider in the following both the clean and the dirty
samples with and without pair breaking. We shall work
in two and three dimensions, while the more involved
case of a three-dimensional layered structure will be the
subject of future investigation.

The plan of the paper is the following. In Sec. II we
will extend the known results for the density of states of
dirty systems to include the pair-breaking term above T,
and in the gapless regime below T, . In Sec. III the effects
of the fluctuations on the density of states for clean sys-
tems are considered above T, and later generalized to in-
clude a pair-breaking scattering. The tunneling current-
voltage characteristics are discussed in Sec. IV together
with some concluding remarks.
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dd
R(c.„)=Tg J qL(q, Qk)A (q, Q„,e„)

(2n )

X qGo(p, E„)Go(q p Qk e„) .8 p
(2m )"

(2.2)
e„=2m T(n+ —,') and Qk =2krrT are the fermionic and
the bosonic Matsubara frequencies, respectively,
Go(p, E„)=(ie„—g~+isgne„/2r, )

' is the one-electron
Green's function, A is the vertex due to the impurity
ladder summation

A(q, li„,s„)=r, '(Dq + l2e„—Q„ l+2r, ') ', (2.3)

and r, ' =r '+ r, '
( r, ' is usually much less than r ' ).

L (q, Qk ) is the standard fluctuation propagator

q, QK

p ~ en

q-p, QK-g

FIG. 1. Self-energy diagram for the correction to the one-
electron Green's function. The wavy line indicates the fluctua-
tion propagator L (q, 01,, ). The vertices are dressed with the im-

purity ladder.

L(q Qk)=—
Dq'+ IQkl+r, '

1

2
(2.4)

f being the digamma function. At small frequency and
momentum, and near the critical temperature, L(q, Qk)
can be written as

At large frequencies ( e ))r, ' &)rLo) the normal value
for the density of states is recovered according to the fol-
lowing behavior:

L(q, Qk)= — (rLo+Dq +lQ„l)
7T 0

(2.4')

Notice that v; produces a shift in the critical temperature
T, = T, (rrl8)r, '.—

Explicit calculations in the limit ~, &&~LG give rise at
zero frequency to the results of Ref. 5 reported in Eqs.
(1.2) and (1.3}, whereas in the opposite limit r, ')&r„oi
we obtain

' 3/2
1 e5N(s) = —C3 ~

2 2

at d =3 and

T,
'

5N(s) =C2 „ ln(erLo)

(2.8)

(2.9)

5N (0)= —
—,
' C3 ~( T,r, ) (2.5)

in three dimensions and

5N(0}=—C2 q(T, r, ) ln
~LG

S

(2.6)

in the quasi-two-dimensional systems. For a strictly
two-dimensional case we have

5N(0)= —— (T,r, ) ln
2 1

m. EF~
+LG

TS
(2.6')

Equations (2.5)—(2.6') show that r, ' acts as a new cutoff
saturating the effect of the fluctuations as T~ T, .

Using Eq. (1.6) relating D to go z, the coefficients C2 z
and C3 & can be written as

for a quasi-two-dimensional system.
The extension of the previous calculations to tempera-

tures below the critical temperature is trivial in the gap-
less regime [b ( T)r, « 1]. There are no significant
differences with respect to the case above T„except for a
separation of the fluctuation propagator in two terms,
one related to the amplitude fluctuation of the order pa-
rameter and still having ~LG as a mass cutoff and the oth-
er one due to the phase fluctuations, without ~LG as a
mass. The resulting expression for 5N(e) is

8T
&

d'q 1

(2n ) (2Dq +2r, ' —2ie)

1 3
C2, Z

2XOLD PFLEF
1

8nNoL(o, a T, .
1 1

2&LG+ Dq Dq
(2.10)

T1/2

C3,d 2
7T 0

33/2 T
2 EF

1

83/ ~ /2~ &3 T050,1 e

1

)
3/2

(2.7)

Since the gapless regime also implies that ~, '&&v„G, in
3D the results are the same as for T & T„and Mt
behaves according to the formulas (2.5) and (2.8).

In the quasi-two-dimensional system the second term
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in parentheses of Eq. (2.10} leads to a logarithmic singu-
larity. This has been cured in several ways. In particular
in Ref. 13, the fluctuations are considered as a source of
inelastic scattering and a cutoff is self-generated. A

cutoff y will in general appear together with Dq in the
denominator of the second term of Eq. (2.10). In this
case for the quasi-two-dimensional system with
~, '»~zG we have

5N(e) = —
—,'Cz d (~, —e')ln

(e +~, )
'

yr„o
+4er, 'arctan(er, )+2(~, —e ) (2.11}

I ~ ~ I

I
l I I I

I
~ In the two limits @=0 and c »~, ' we obtain

0.0

5N(0)= —
—,'C2 d(T, r, ) ln(rLoy 'r, ), e=O (2.12)

'd
CQ

'O

-5.0

-75

5N(e) =—'C2 d2 t
(2.13)

'a
F3

'O

-10.0

0,0

-0.2

-0.4

-0.6

-0.8

I i i & s I s i » I

0 1 2

I ~ I
I

I I I I

I

3

When y-rLo we recover the result (2.6} and (2.9) valid
above T, . The dependence of 5N(0) on T —T, is still
logarithmic as for T & T, .

Independent of being in d =2 or d =3, above or below
the critical temperature, the fluctuation corrections to
the density of states cease to depend significantly on tem-
perature via powers of ~LG because of the presence of ~, '

acting as a novel energy scale. The main final features of
the density of states as T goes to T, are determined by
the parameter ~„which fixes, for instance, the strength
of the depression and the position of the maximum as
shown in Fig. 2(a) for d =2 and in Fig. 2(b) for d =3.
This feature may be relevant in analyzing some charac-
teristic saturation phenomena on the dependence of the
differential resistance on T —T, revealed in tunneling ex-.
periments as T~T, . While at d =2 the logarithmic
dependence on ~zG still produces some variation of the
depression (at e =0) and of the maximum, at d =3 all
curves for different values of ~Lz are in this scale super-
imposed.

—1.0
I I l I l I I t

1 2
I

3 III. FLUCTUATION EFFECTS
IN THE DENSITY OF STATES

FOR CLEAN SUPERCONDUCTORS

FIG. 2. The normalized correction 5N(c, )/C2(3) d to the
single-particle density of states vs the energy c in units of T, for
a dirty superconductor with a pair-breaking term r, '=0.5T, .
Three values of ~«=0.02T„0.04T„0.06T, are shown. (a)
refers to a quasi-two-dimensional sample with Cz z given by Eq.
(2.7). (b) refers to a three-dimensional sample with C3 d given
by Eq. (2.7). In this last case the three curves corresponding to
the three values of v.LG are superimposed.

The correction to the density of states for clean super-
conductors just above the critical temperature is given by
the same diagram of Fig. 1 without the vertex A due to
the impurity diffusion ladder. The expression for 5N(e)
is still given by Eq. (2.2) without the factor A . This fact
does not make the problem easier, since the momentum
dependence of the Green's function is now becoming im-
portant. By integrating over p we obtain
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d q e(e„(e„—Qk))
R (c,„)=2miNp(sgns„)T g J L (q, Qk ) .

(2n) [vF q.+i(0I, —2e„)]
(3.1)

Here the fluctuation propagator L (q, Qk ) is still given by Eq. (2.4 ) with the substitution of D with (8T, /rr)gp, accord-
ing to Eq. {1.6).

Assuming c.„&0 we evaluate the sum over bosonic frequencies by integrating over the contour C indicated in Fig. 3:

R (e„}= I d |t}ccoth L (q, iz—)
2

dz .
&o dq z

(2n. } 2T (z —2ie„+vF q)
(3.2}

After shifting the variable of integration along the upper part of the contour, R (e„) is an analytical function of i e„and
its analytical continuation is simply obtained by replacing i c„with c,,

R "(e)=iNp
d coth Im

d z L "(q, —iz)

(2n ) —~ 2T (z —2e+ vF q)
(3.3)

8Tc
vF q —i rLG+ gp q

—2s
m'

8Tc
R (e)= —16iT J r '+ g qc {2 }d LG Pc (3.4)

where we have neglected a less singular term that comes from the shifted integration and contains tanh(z/2T) instead
of coth(z/2T). Carrying out the integration over z we find

' —1 —2

In addition to the substitution of D with (8T, /m )gp „the
novel feature of the clean systems is the appearance of
the term vF q in the denominator. This, as it will be
clear in a moment, determines a change in the power-law
behavior of the singular term of the density of states as
function of ~zG and introduces a scale of energy accord-
ing to the formula (1.8) discussed in the Introduction.

In fact performing the integration over q in 30 and
taking the imaginary part according to the formula (2.1)
we obtain

5N(0) = —C3,

' 1/2
Tc+LG

(3.6)

with the novel feature of a square root of vLG.
In Fig. 4 the behavior of 5N(e} as a function of e is

given according to the formula (3.5). The new scale of
energy shows up clearly in determining the behavior of
5N{e). The normal value of the density of states is in
fact first recovered at s of the order of t&

' [Eq. (1.8)],
5N(e)= —C3,f3(e),

where

(3.5)

f3(e)=
—,'Re

' 1/2
VF

32T,
' 1/2

VF
LG 2l E'+

32T. koc

Tc
' 1/2

—1 ~ FV

7LG l E +7LG TLG 2EE+
232T, ko'

(3.5'}
~ Rez

and

1
C3,c 22rr vFNpgp c

2
2Q Tc

EF 2(21r) o' N gp, T,
(3.5"}

Recalling via Eqs. (1.6) and (1.8} that
(rr/32T, )(vF /gp, ) =(a /4) T„ the depression at e =0 is

FIG. 3. Integration contour for the evaluation of the sum

over the Matsubara frequencies in Eq. {3.2}.
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We qualitatively discuss the effect of a pair-breaking
term in the clean case. Together with the energy scale
r&

' -U~g ', we now have the energy scale due to r, '.
The behavior of the density of states due to fluctuations is
determined by the largest between the two energies t&

'

and ~, '. Approaching T, a crossover in the behavior of
5N(E} will appear when r, ' —

t& ', with a saturation in
the temperature dependence.

Here L (q, Qk ) is the fluctuation propagator introduced
in Secs. II and III.

Since the matrix elements T& k depend weakly on the
momenta near the Fermi surface, we can substitute the
summation over p and k in Eq. (4.3) with the integration
over the energies, with the help of the formula for the
normal resistance

IV. TUNNELING CURRENT
p, k

fdic, fdic. ( (4.4)

We discuss in this section how the anomalies in the
density of states reflect themselves in the tunneling
current. This problem was previously considered for tun-
neling junctions with dirty superconductors above and
below' the critical temperature. We shall consider here
the junctions with clean superconducting electrodes at
T&T.

The quasiparticle current through the tunnel junction
is determined, at first order of barrier transparency, by
the imaginary part of the analytically continued expres-
sion of the diagram of Fig. 6(a}

where R&'=4ne N&( 0) N»(0)(lT&&l ) is the resistance
of the junction in the normal state and N, (0), N»(0) are
the densities of states of the two electrodes at the Fermi
surface. Once these integrations are performed, one finds

@s&n

I ( V) = —e ImE "(co„)l;„ (4.1)

where
s n+

c„p,k
(4.2)

q, Q),

The quantities T k are the matrix elements of the tunnel-

ing Hamiltonian, c.„and co are the fermionic and the bo-

sonic Matsubara frequencies, and the subscripts I and II
specify the electron Green's function for the "left-hand"
and "right-hand" electrodes.

Starting from the expression (4.2) of E(co„), it is

straightforward to evaluate the fluctuation contributions
to the tunneling current. As a first approximation it is
suScient to take into account the corrections to the one-
electron Green's function according to the diagram of
Fig. 6(b). In the case of a symmetric junction it is neces-

sary to include the diagram of Fig. 6(c) as well. Physical-

ly these contributions originate from the fluctuations in

the density of states of the two electrodes. When one
writes down the expression for the diagram of Fig. 6(b),
the correction 5K (co„) reads

(b)

s&n

k, Kg+ Qy

p, k (c)

XG0(q —p, Ql, —s„) . (4.3)

FIG. 6. (a) Diagram giving the response function for the tun-
neling current in the absence of Auctuations. The crosses indi-
cate the matrix elements of the tunneling Hamiltonian. (b) and
(c) corrections to the tunneling current due to the superconduc-
tive fluctuations of electrode I and of electrode II, respectively.
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5K(co ) = — ' T g sgn(e„)sgn(e„+co„)T g e(e„(s„—co„))I d
L (q, Q„)(iQk —2ie„+v~.q) (4.5)

The sum over the Matsubara frequency Qk can be performed with the same procedure we used in Sec. III for the densi-

ty of states. For ( T —T, ) /T, « 1 we obtain

5E(co ) = —
2

T g sgn( e„)sgn( e„+co„) d rLO+ go, q
4T 8Tc

e R~No, " "
(2m}

8Tc
vF q+ i 'rLo+ go q

—2ie

(4.6)

Notice that an additional summation over the fermionic Matsubara frequency s„ is present in Eq. (4.6},with respect to
the expression for the density of states. This will introduce a cutoff of order T in the main singularity of the density of
states, thus reducing the effect of the fluctuations in the tunneling current.

In fact, by performing the summation over c„and restricting to the most diverging terms, we obtain

T q i ST,
5K (co„)= d &Lo+ ko„q

2 e RNNo (2m )

1 v~' 2+2 T
(4.7)

where g'(x) is the trigamma function.
It is apparent from the expression (4.7) that the tunneling current may exhibit singular behavior only for a sufficiently

thin junction [when thickness L &g(T)], i.e., for a quasi-two-dimensional electrode. In this case, carrying out the in-
tegration of Eq. (4.7), we obtain for the correction to the resistance of the junction a weak (logarithmic) singularity:

R~

RN

3~ 1 Tc Tc „1 jeV

112$(3) (pFL) EF T —T, 2 2n T
(4.8}

The expression (4.8} for the resistance is valid for a nonsymmetrical junction. If the junction is symmetrical, the dia-
gram of Fig. 6(c) must be considered as well, leading to an addition factor of 2 in Eq. (4.S).

In the case of a tunnel junction with dirty superconducting electrodes, the voltage dependence of the differential resis-
tance has the same form as Eq. (4.8), provided the prefactors for the two-dimensional dirty case are used: '

5R„
RN

~c ~„1 ieV
2n (pFL) (EFv) T —T, 2 2n T

(4.9)

I( V)- J de tanh
oo c+eV —tanh

E,

QO 2T 2T

XN, (s+ e V)Nii (s ) (4.10)

For N, (e)-const, the differential resistance reads

We now briefly discuss our results. As it can be seen
from the expressions (4.8) and (4.9) for the resistance, the
energy dependence is developed at the scale eV- T for
both clean and dirty samples. No structure is present at
the energy scales that characterize the density of states,
i.e., eV-(aT, r„o)' and eV-rLo for the clean and the
dirty case, respectively. The singularities present in the
density of states do not appear in the differential resis-
tance. This result is more transparent by writing the
differential resistance as convolution over the density of
states. In fact, assuming again a weak dependence of the
matrix elements Tz i, on the momenta, Eqs. (4.1) and (4.2)
for the tunneling current can be written in terms of the
densities of states of the two electrodes

5R„ c.+eV—I de cosh 5Nii(e) .
RN

(4.11)

According to Eq. (4.11), whenever the density of states
5N„(e) has a structure at energy scale e) T, the temper-
ature dependent factor in the integral would not mask it

5R(V)-5Nii(eV) .

However, in the case under consideration, the typical en-

ergy scales of the density of states are at c. && T, and if we
now perform the integration over e in Eq. (4.11},using
the expressions for the 5Nii(s) obtained in Sec. III, we

get the less-structured behavior for the differential resis-
tance given in Eqs. (4.8) and (4.9).

Coming back to Eq. (4.10), we note that if the electrode
I is in the superconducting regime, with energy gap
hi(T), the effects of the fluctuations in the electrode II
can emerge as a structure around the bias voltage
eV- b, i( T). As already stated high-T, superconductors
are good candidates to observe such phenomena. Howev-
er, in order to observe such an effect, we need a junction
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where the electrode I is a traditional superconductor
below its critical temperature T,&

and the electrode II is a
high-T, superconductor just above its critical tempera-
ture T,«. This experimental setting could be achieved by
using a traditional sample with the maximum possible T,
and a novel superconductor that, while showing the phys-
ical characteristics of the high-T, superconductivity, has
a sufficiently low critical temperature T,&&

(T,&
~
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