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We present a theory for a vortex lattice in a layered superconductor, with very weak coupling be-

tween the layers. We use the Lawrence-Doniach model to show that only the component of the
magnetic field that is perpendicular to the layers can give rise to an Abrikosov vortex lattice. The
parallel component penetrates completely into the superconductor, which behaves as if it were mag-

netically transparent. The actions of these two components are very different, and almost complete-

ly decoupled. We find the lower critical fields, as well as the torque.

I. INTRODUCTION

It has been proposed recently' that the concept of a
flux-line lattice breaks down when the magnetic field is
parallel to the superconducting planes, for layered super-
conductors with very weak coupling between the layers,
such as the high-Tc superconductor Bi2Sr2CaCu20s (Bi
2212). Several experiments on the properties of high Tc
superconductors can be reconciled' only if the formation
of an Abrikosov lattice is due to the field component Hj
alone, i.e., the component perpendicular to the layers.

In detail, the authors of Ref. 1 note that Bi 2212 be-
comes two dimensional half a kelvin below T&, actually
behaving as if the superconducting Cu02 planes are
decoupled. They propose that all of the experimental re-
sults can be explained if it is only the magnetic field com-
ponent H~ (perpendicular to the layers) that can create
an Abrikosov vortex lattice. Both the order parameter
zeros and the screening currents lie in the Cu02 layers.
The order parameter is finite only on these layers, and
practically zero in between. The Bi 2212 material is mag-
netically transparent for the magnetic field component

H~~ (parallel to the layers). It seems thus that there is a
certain decomposition taking place, in the sense that the
superconductor responds more or less independently to
the components of H along the layers and perpendicular
to the layers.

This proposition is in conflict with the usual
Ginzburg-Landau anisotropic model, which is presumed
to be nonapplicable to these highly anisotropic supercon-
ductors. One is left then without a theory for a vortex
lattice in a highly anisotropic superconductor.

It is the purpose of this paper to present precisely such
I

a theory, derived from the standard Lawrence-Doniach
model of layered superconductors.

We show that indeed Abrikosov vortices arise only
from the component H~ perpendicular to the layers. In
most of the experimentally interesting region, for an arbi-
trary field orientation, there are Abrikosov vortices due
to Hj alone, while H~~ penetrates completely. There are
two lower critical fields, H„and H, &, quite independent
of each other, and both of them very low in the case of Bi
2212. When H~~ & H„, the parallel component of the field
starts penetrating the material, which becomes magneti-
cally transparent, and a Josephson vortex lattice with su-
perconducting cores appears. While when H j & H„,
Abrikosov vortices begin to appear. These two condi-
tions do not affect each other. It is thus possible to have
a complete Meissner effect if H~~ &H,~~& H~ &H ] or a
usual Abrikosov vortex state with 8~~=0, if H~~ &H,~~„

Hy & H ] ~ It is also possible to have a transparent state
with no Abrikosov vortices when H~~ & H,~~, and H, &H,', ,
or a transparent vortex state when H~~ & H, &

and H~ & H„.
The Abrikosov vortices are always perpendicular to the
layers, and are independent of the Josephson vortices that
are parallel to the layers.

We evaluate these lower critical fields in Sec. III, after
presenting our model in Sec. II. In Sec. III we also calcu-
late the torque for vortex lattices in fields H, &

«H «H„. Our conclusions are presented in Sec. IV.

II. THE MODEL

Consider a set of identical layers, separated by a dis-
tance d. Then the Gibbs free energy 6 in a uniform
external magnetic field H =H y+ H, z is given by

G ld =fdx f dy g [a ~ +„~ +P~ +„~ /2+ trt
~

—i V~~%'„2e A~' +—/Pic~ l2m

+g ~%'„+, %'„exp(2ie d—A,„/Ac) ~
+(h„—H )~/8m ] .

Here 4'„(x,y) is the order parameter on the nth layer, V~~

is the gradient along the layers, A~~„ is the component of
the vector potential of the nth layer that is parallel to the
layers, and A,„ is the component of the vector potential

I

of the nth layer that is perpendicular to the layers. All
the constants are temperature independent, apart from
a=ao(T —Tc), where ao) 0. The constant g is the
Josephson coupling between neighboring layers, and will
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be assumed to be very small throughout this work. We
assume the z axis is perpendicular to the layers.

In the above discretized form of the Lawrence-
Doniach model, the magnetic field h„ is

aa,„h„=x A„„+)—A „
d

aw, „
Bx

+~ ynaw

Bx

BA„„
By

(2)

The Gibbs free energy is gauge invariant under the gauge
lg

transformations qi„~+„e ", A„~A„+AcVlg„/2e
+Ac (y„+,—y„)z/2ed

The field equations that minimize the Gibbs free ener-

gy are

af„+PP„+Pi g„(V~~&„—2e A~~„ Itic) /2m +2rtf„

,cost„, rid„+—,cos@„=fizV1$„/2m,

where P is the azimuthal angle, p=+x +y, and f(p)
and A (p) satisfy the equations

2efi 2eA (p) 1 1 B BA A

mc A'c p 4ir Bp Bp p
'2

aP(p)+P1('(p)+ g(p)
iri 2eA (p) 1

2' A'c p

Bf+1 Bg
2m Bp p Bp

(12)

f(p) =pop/R, (13)

with R =+p +b, in which case Eq. (11) can be solved
exactly to give

The solutions of these two equations describe a usual
Abrikosov single vortex. Thus A (p) ~A'c/2ep and
P(p)~go as phoo, while A (p)-p, g(p)-p, as p~O.

A very useful analytic approximation to the solution of
these equations has been given by Clem. The solution to
Eq. (12) is approxiinated by

(3) A (p)=(Pic/2ep)[1 RK&(R—/A, )/bK&(b/A, )) . (14)

where %„=g„e " and 8„=g„+&—y„2e d—A,„/Pic,

(fi /2m)Vl [f„(Viiy„2eA—ii„/Pic)]

,sin@„, i)g„P„~,—sin8„,

g„(2e A'/mc )( By„ /Bx —2e A„„/Pic)

=(Bh,„/By —h „/d+h „,/d)/4ir,

f„(2eklmc)(By„IBy —2eA „IAc)

(4)

(5)

Here A,
z =mc /16ire zgoz, where A, is the penetration

depth. In the high-Tc materials, A, is much larger than
the coherence length g. In particular, we shall take the
number A, /g to be very large, from now on.

We insert these expressions into Eq. (1) and we thus
evaluate G. The variational parameters go and b, found

by minimizing G, are given by foz = —a/P and
b = —R Im a =2/ . If our area of integration in the x -y

plane is mA, then the energy density for this vortex is

=(h„„/d h„„,/d--Bh,„/Bx)/4~,

(4e drtlhc)f„+ &g„sin8„

(6)

=(Bh „/Bx —Bh„„/By )/4ir . (7)

It is the solutions of Eqs. (3)—(7) that will give us the be-
havior of highly anisotropic superconductors in the pres-
ence of a uniform external magnetic field.

Let us examine some particular solutions of these equa-
tions.

(i) It is easy to verify that an exact solution of the field
equations for any g, and for an arbitrary orientation of
H, is

H, Rc
g = +

213 8~ 4~ex'
Aa

[ln(/2A, /g)+0. 173] .
mPA

(15)

Note that a is negative everywhere, since T (T~.
This solution describes the usual Abrikosov vortex

state, and is valid for any g or H.
(iii) A most interesting solution of the field equations is

the following:

g„=go[1+illa+ii cos(coax)l(e hod Imc a)], (16)—

h„=O, g„=l(o, A„=O, y„=O, (8)

where go= —a/P. This is the familiar Meissner state,
with Gibbs free-energy density

y„=2eh oz„x /Pic 8m il lltoz„sin( co—x ) /h od,

A„=z„x(ho
—8mrtgocos(coax ) /h o ),

h =y(ho 8iri)cocos(cox)/ho)

(17)

(18)

gM= —a /2P+H /8m. .

The magnetic field is excluded from the bulk of the ma-
terial in this state.

(ii) Another exact solution, for any ri, is given by

f„=f(p), A„= A (p)P,
(10)

a~h„=z +
a

where co=2ehod Itic, go= —a/P, ho is arbitrary, and z„
is the location of the nth layer along the z axis. Conse-
quently, z„+,—z„=d. We can easily verify that these
equations constitute an exact solution of the field equa-
tions (3)—(7), provided we neglect terms of order rt . It is
correct up to 0 (il). It should also be noted that this ex-
pansion in g becomes invalid very close to Tc, since there
~a~ can actually become less than il, no matter how small

q is. Since the coupling q in the Bi 2212 is very small,
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the region of temperatures where this solution fails is
very close to T&, and therefore of not too much experi-
mental interest. It is expected anyway that this two-
dimensional solution should fail very close to Tc, where
the coherence length becomes infinite, rendering the sys-
tern three dimensional. This region is about 0.5 K for the
case of Bi 2212, as mentioned in Ref. 1. Indeed, if we use
the estimates d=1.2 nm, g,b(0)=3.2 nm, Tc--85 K,
m, /m —=h' /2m rid =3000 of Ref. I, then at half a kelvin
below Tc the ratio rt/~a~ is about 0.4. At 82 K, this ratio
has dropped to 0.067, and is small enough to justify our
perturbative expansion.

This solution also fails if ho=0. This will be under-
stood later.

The parameter ho is determined variationally, by
minimizing G. Thus we find

AO=H (20)

where H is the magnetic field component parallel to the
layers. The Gibbs free-energy density of this state is

gT = a'/2P—+H,'/Sn 2ga/P—+0 (rt') . (21)

—(y„+i—y„)lo]= g(hc/2e) .

It 1s clear then that each maximum of Ay& 1s indeed the
core of a Josephson vortex, since the associated flux is
one quantum of flux, equal to hc/2e. This solution is
simply a lattice of Josephson vortices parallel to the layers,
where the order parameter remains nonzero at the core.
Such Josephson vortices have also been studied previous-
ly by Bulaevskii. His solution, however, is not valid for

We see then that, even though there may exist a com-
ponent of the external magnetic field perpendicular to the
layers, only the parallel field can come through. The per-
pendicular field is screened. It is, in fact, as if the materi-
al is magnetically transparent along the layers. We shall
call this state then the transparent state.

Note that the field H can be as large as one wishes.
This indicates that the parallel upper critical field is
infinite for this state. It is indeed known that H,~2 in 1ay-
ered superconductors is infinite once the dimensional
crossover from 3D to 2D has occurred. Such is the case
here.

A most interesting feature of the transparent state is
the undulation of the magnitude of the order parameter
and of the magnetic field h„. In particular, the maxima
of h„„coincide with the minima of the order parameter.
Thus, each of the maxima of h „ is in fact the core of a
Josephson vortex along the 1ayers, but the order parame-
ter is nowhere zero. Note also that the distance along the
x axis between neighboring maxima is 2m /co.

I.et us evaluate the flux through the superconductor,
over the distance 2m. /to along the x axis. It is
d g„ f0" h „dx. But our solution satisfies the relations
By„/Bx =2eA„„/«and h~„=( A„„+,—A„„)/d, as can
be seen from Eqs. (17}—(19). Thus the flux is

highly anisotropic layered superconductors with ri~0,
because the nonlinear cores of the vortices overlap, and
the approximations he made no longer apply. Our solu-
tion (iii) takes explicitly into account the nonlinear be-
havior of the vortex cores.

(iv) We now present one last solution. This is in

essence the combination of solutions (ii) and (iii), i.e., of
the Abrikosov Uortex state and the transparent state. We
shall call it the transparent vortex state. We can easily
verify that

g„=g(p), y„=2ehoz„xj«+P,

A„=hoz„x+ A (p){J}, (22)

y„=2eh Oz„x /Pic Sm rigoz„—sin(cox ) /h Od +P,
A„=z„x(h 0 Smrtgocos(tox—) /h 0 ) +Pic P /2e p,
h„=y( h o

—Snrtfocos(Cox ) /h p ),

(23)

with $0= —alp, constitute a solution of the field equa-
tions (3)—(7) far from the core, correct to 0 (g). Just as in
case (iii), the solution is invalid if ho =0 or if we are too
close to Tc.

We can see very clearly from these expressions that the
vortex can screen the magnetic field H„but not the field
H . So the parallel field can penetrate the material,
whether there is an Abrikosov vortex [as in (iv)] or not
[as in (iii)]. The existence of an Abrikosov vortex perpen-
dicular to the layers cannot influence the magnetic tran-
sparency along the layers, and vice versa. This is precise-
ly the claim of Ref. I, and it is most aptly demonstrated
by Eqs. (23).

The parameter ho will be determined by minimizing G.
There is some difficulty, however, in doing this, because
the solution is not easy to find in the region of the core.
In that region P is not a simple function of x and y, and
there is some interplay between the nature of the Joseph-
son vortex solution (iii) parallel to the layers and the na-
ture of the Abrikosov vortex solution perpendicular to
the layers.

It is best then to use a method similar to the one used
in case (ii}. For simplicity we shall omit all terms of
0 (g ) in G. Then we can obtain 6 correct up to 0 (g) by
inserting the unperturbed solution into our general ex-
pression for the Gibbs free energy; Clem's ansatz comes
in quite handy then. So we shall insert the unperturbed
solution (22) into (1), using the f(p) and A (p) of (13) and
(14}. The variational parameters are ho, go, and b. Note

h„=h y+z(BA/Bp+ A/p),

is an exact solution of the field equations (3)—(7),for ri =0,
provided P(p) and A (p) are given by (11) and (12). This
is clearly an Abrikosov vortex perpendicular to the layers
that is pierced by a magnetic field parallel to the layers.
It is a transparent Uortex, the superposition of a usual
Abrikosov vortex parallel to the z axis and of the absence
of screening of the magnetic field along the layers.

We can verify further that, in the region far from the
core, the expressions

$„=$0[1+ri/a+icos(tox)j(e hod lmc a)], —
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that unlike cases (i) and (iii}, where $0 was determined ex-

actly from the field equations, here it will be determined
variationally. We find $0=( —a —2g)/P, ho=H„, and
b =—fP/ma. If our region of integration is nA, and
we neglect terms of order g/A, then the Gibbs free-
energy density is

H, H Pic
g +

2P 13 8~ 4~eA'

[ln(A&2/g)+0. 173] .
mPA

(24)

We have thus seen that there are four possible states of
equilibrium for highly anisotropic layered superconduc-
tors. Apart from the usual Meissner and vortex states,
there is also the transparent state and the transparent vor-
tex state. These differ from the other two in that they al-
low the parallel component of the magnetic field to
penetrate unhindered into the material. There is no
screening of the magnetic field along the layers for these
transparent solutions, even though flux is still quantized,
with each Josephson vortex having one flux quantum. In
the next section we shall examine the conditions under
which each one of the four states mentioned above is the
actual state of thermal equilibrium.

III. LOWER CRITICAL FIELDS AND TORQUES

Hi, =v' 16~qa/p—. (26)

If H & H,i„ then the parallel field penetrates completely
into the material, and a Josephson vortex lattice appears.
For the Bi 2212 material both of these critical fields are
very small.

It is easy then to see that
(i) If H» &H,~~„H, &H„, we have the Meissner state.
(ii) If H» &H,~~„H, &H„, we have the usual Abrikosov

vortex state.
(iii) If H» & H~~„H, & H, i, we have the transparent state

(i.e., a lattice of Josephson vortices parallel to the layers).
(iv) If H» & Hi„H, &H„, we have the transparent uor

rex state (i.e., a lattice of Abrikosov vortices perpendicu-
lar to the layers, and a Josephson vortex lattice parallel to
the layers}.

In fact, since both of these fields are so small for Bi
2212, and most experiments use fields H„«H «H, 2,
highly anisotropic high-T& superconductors are mostly
in the transparent vortex state.

Note that at the point ho=H =0, where solutions (iii)
and (iv) break down, they are no longer energetically
favorable. Therefore the limit ho~0 presents no prob-
lem.

Typically then, if we start with a magnetic field

Comparison of g~ and gi, gives the lower critical field
for the direction perpendicular to the layers,

H, ) =(A'c/4eAO)[ln(Aov'2/g)+0. 173], (25)

with Ao= mc P—/16nea I.f H,.&H„, Abrikosov vor-
tices will appear.

Comparison of gz and gzz gives the lower critical field

parallel to the layers,

H ))H„perpendicular to the layers, we have the usual
Abrikosov vortex lattice. As we begin rotating the field
direction away from the normal to the layers, the materi-
al becomes magnetically transparent along the layers, and
a Josephson vortex lattice appears parallel to the layers.
The angle 61 that the field H makes with the normal to the
layers is sin '(H,~', /H) at that point, and is quite small.
As we keep rotating, the density of the Abrikosov vor-
tices decreases, because the perpendicular component of
the field decreases, and this is the only component that
affects the Abrikosov vortices. Eventually the Abrikosov
vortices disappear, when cose=H„/H, and we get the
transparent state of our solution (iii). In this state, there
are no Abrikosov vortices. There is only the lattice of
Josephson vortices along the layers, which does not
screen the parallel magnetic field.

We have already described the structure of a single
Abrikosov vortex coexisting with a Josephson vortex lat-
tice in terms of (22) and (23). However, most experiments
are done in regimes with many Abrikosov vortices. In
particular, torque magnetometry experiments probe the
superconducting anisotropy precisely in such regimes,
where demagnetization effects are very small. However,
no formal treatment of the torque in the two-dimensional
case has been presented as yet. It is precisely this
theoretical vacuum that we shall now attempt to fill,
especially in view of the educated guess that has been
made in this regard in Ref. 1.

In other words, we shall calculate the torque in a re-
gion where it is a good approximation to neglect the
Abrikosov vortex cores, and to set g„equal to a constant.
Such a calculation has only been done so far in the con-
text of the Ginzburg-Landau model. We present below
the corresponding calculation for the two-dimensional
case.

Let us calculate then the torque for the transparent vor-
tex state. We use the standard methods of Ref. 6. We as-
sume the absence of demagnetization effects for simplici-
ty. This assumption is justified when H„«K, «H, 2 by
the smallness of the magnetization. In that case the
torque is given by Te= —VBg/Be, where 8 is the angle
between the field orientation and the normal to the
planes, and V is the sample volume. The torque is shape
independent, at least to the extent that terms involving
the square of the magnetization have been neglected. We
shall only keep terms in G up to 0 (rl), thus we need sim-

ply use the r}=0 solution of the field equations. Then G
will automatically be correct to O(g).

We shall let P„be constant almost everywhere. Thus
let tP„=go, with $0= —a/P. Let also

y„=2ehoz„x /Pic +y(x,y), (27)

A„=hoz„x+ A„(x,y}x+A»(x, y)y, (28}

h„=hoy+zh, (x,y), (29)

where h, =BA /Bx —BA„/By. The parameter ho is

found variationally, by minimizing G, to be ho =H~.
These equations solve exactly the field equations

(4)—(7), for q=0, provided
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2e Ago(Vg 2—e A/Ac )/mc =V X (h, z/4n. } .

Taking the curl leads to the London equation

h, —
A, V h, =Po+5z(r —r;),

(30}

(31}

where A, =mc /16ire fv, Pe=bc/2e, and r, is the loca-
tion of a vortex.

This equation can be solved, since h, is periodic, in
terms of Fourier transforms. We find h, = g hze''i',
where the q's run over the reciprocal lattice of the tri-
angular vortex array, and where hz =8, /(I+A, q ).

We can now evaluate G. Unlike the standard treat-
ment, though, we do not drop the 1 from the factor
1+A. q . For evaluating the sums, we approximate them
to integrals, with cutoffs q,„=I /b = I /(&2 and

qm;„= (Pole 8, ) ' . We obtain the Gibbs free-energy
density

This holds, of course, only in the transparent state
(cos8 (H„ /H). Observe that, at the transition, Te takes
again the value VHH„ /4m. .

Finally we have to calculate the torque for angles very
close to 0=0. There, H (H„and there is the usual
Abrikosov vortex lattice, with no magnetic transparency.
In this case, g is given again by (32), after replacing the—2ga/JP term by H~/Sn. This change fully takes into
account the disappearance of the magnetic transparency.
Thus 8, is still given by (33), but now the torque is
—VHB, sin8/4n. Since H, and 8, differ by terms of
0 (H, i ), according to Eq. (33), the demagnetization
torques, which are proportional to the square of the mag-
netization, are 0 (H„},and have been correctly neglect-
ed. We may use Eq. (33} to approximate the torque for
this case of H (Hll, by

Ts = —VH sin(28)/Sm.

a' 2r)ag= +
2P P Sn.

B,po 2gz 2g mB,
In +

32m'A, ' A.
' (32)

8, can be found from Bg/M, =0:

8, H, =(P IO—@ST, )In(2$ IA, +2( nB, /gv) . (33)

Thus we see that the magnetization is of order H, &, and
hence small. Our neglect of demagnetization effects is
then justified, at least to the extent that 0(H„) terms
may be neglected.

We now note that g is a function of H„not only exphc-
itly, but also through B„which is itself a function of H, .
Thus dg IdH, =(Bg/BB, )(dB, /dH, )+(Bg/BH, ). Since
dg/dB, =O, this leaves us with dgldH, =(H, B,)I4n- ..
Thus the torque is VH sin8(H, 8, )/4m, where V—is the
sample volume, and H, =H cos8. This is precisely the
expression used in Ref. 1.

In the region H„&&H cos8&&H, 2 we can replace 8,
by H, inside the logarithm, since H, —8, &&H„and we
end up with

Po 2g 2g nHcos8.
32Hz'

(34)

Tv= VH sin(28)/Sn . (36)

Closer to H„,
Te= VH sin8(H, —8, )/4n, '

where 8, is defined implicitly by (33). Note that if 8, =0,
then this equation implies that H, = (Po/4m k, )1 (An, /
P 2)=H„. Therefore, when the angle 8 has rotated so
closely to 90 that there are very few Abrikosov vortices
left (cos8 =H„ /H), Te becomes approximately
VHH„/4m. . Once the angle 8 gets even closer to 90' than
that, we have a transition from the transparent Uortex
state to the transparent state Therefo.re, Eq. (35) be-
comes invalid, and we have to use Tz= —Viz-l88, as-
suming the absence of demagnetization effects. Using
(21) we obtain

4'o
1

2g 2g nH cos8—VH sin8 ln
32m'k'

(37)

We have now completed the calculation of the torques
in the two-dimensional case, the case of highly anisotrop-
ic layered superconductors. Let us summarize our re-
sults.

We assumed that H»H, ~~, , H&&H„. At 8=0, the
external field is normal to the layers and there is the usual
Abrikosov vortex lattice. The torque vanishes at 8=0,
and is given by Eq. (37) in the vicinity. But soon after,
when H becomes greater than H„, it becomes energeti-

cally favorable to go into a transparent vortex state. The
torque is then given by (34}. As 8 keeps increasing, the
torque keeps changing. In fact, the best way to express it
in most of the region from 0' up to almost 90 is through
(33) and (35). Note that Ts increases monotonically in all

of this region. Finally, at 8=90', when H, becomes
smaller than H„, the Abrikosov vortex lattice disappears,
and we are left with a transparent state of Josephson vor-
tices with no Abrikosov vortices, where the torque is
given by (36). Note that at 8=90', the torque is zero.
Therefore there is a very acute maximum in the torque
when cos8=H, i/H, at the point where the Abrikosov
vortices disappear. This is precisely the behavior typical-
ly observed in torque magnetometry experiments.

IV. CONCLUSIONS

In this paper we have presented the description of
highly anisotropic layered superconductors in terms of a
Lawrence-Doniach type of model. Our model differs
from that of Ref. 2 in that the vector potential, as well as
the order parameter, has been discretized in the direction
normal to the layers.

We have found four possible states of thermal equilibri-
um. The state of the system is determined by the com-
ponents of the external magnetic field. If H, &H,

&
there

are no Abrikosov vortices, and 8,=0 (Meissner state in
the z direction). If H, )H„, we have an Abrikosov vor-
tex lattice. On the other hand, if H (H, &, the parallel
field component is screened, but if H )H„, it penetrates
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completely and the material becomes magnetically trans-
parent. These two distinct behaviors do not a8ect each
other, except possibly at the cores. In other words, the
magnetic transparency along the layers and the creation
of Abrikosov vortex lines perpendicular to the layers are
independent of each other. Abrikosov vortices exist only
if H, )H, &, they are always perpendicular to the layers
and they are created by the field component H, . No
Abrikosov vortices exist if the external field is strictly
parallel to the layers.

This theoretical description fully justifies the proposi-
tion of Ref. 1, and therefore their interpretation of ap-
parently conflicting experimental results.

%e have further calculated the torque, which is given
for most of the angles by (34). Unlike the expression used
in Ref. 1, this is still well defined at 8=90, but, of course,
it is no longer relevant very close to 8=90'. In that tiny
region, there are no Abrikosov vortices anymore, so we
have to use Eq. (36). As a result, the behavior of the
torque changes from monotonically increasing to mono-
tonically decreasing, and so the torque must be maximum
very close to 0=90', as is indeed observed. This max-
imum of the torque is a very pronounced feature of the
experimental results and denotes, as we said, the disap-
pearance of the Abrikosov vortices at the point where H,
is too small to be able to give rise to them.
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