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Constraints on s-wave pairing in the Hubbard model
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We present an exact identity between the on-site and the extended s-wave pairing amplitudes in

the Hubbard model. We prove that the extended s-wave pairing amplitude vanishes identically at

half filling for both signs of U. Away from half filling, the existence of an on-site s-wave pairing

is a necessary and sufficient condition for the existence of an extended s-wave pairing. This result

gives rise to constraints on the possible symmetries of the superconducting gap in the Hubbard

model.

Ever since the discovery of high-T, superconductivity,
most theoretical approaches have focused on the Hubbard
model. Theorists are fascinated by the simplicity of the
model and the complexity of the phases that emerge from
it. However, understanding the physics of strongly corre-
lated systems has always been a major theoretical chal-

lenge. Many approximation schemes have been developed
to treat the Hubbard model, including weak-coupling
random-phase approximations (RPA's), mean-field theo-
ries, variational approaches, and numerical simulations.
However, because of the intrinsic complexity of the corre-
lations, no universally accepted results have emerged,
despite these intense eff'orts.

In view of this, it is desirable to develop some exact re-
sults which may yield powerful constraints on the diff'erent

approximation schemes. While physically interesting
correlation functions are generally difficult to calculate
from first principle, exact identities between them can be
derived without ever solving the model. The Ward identi-

ty is an excellent example of this approach. In the follow-

ing, we shall present an exact identity between the on-site
and the extended s-wave pairing amplitudes in the Hub-
bard model and discuss various implications that result
from it.

Consider the Hubbard model given by the Hamiltonian

H t g (c, —~„+H.c.)+Urn„ln, l-pgnr,
&r,r'&;d f,d

where b runs over nearest-neighbor bonds. The time evo-
lution of the on-site pairing operator 6„ is given by the
Heisenberg equation of motion:

i [—H, 15.,) tb., —UA„+21th, . (4)

In the domain of strong couplings, Cooper pairs are ex-
pected to have sizes comparable to the lattice spacing. In
the s-wave channel, one generally considers two possibili-
ties, the on-site s-wave pairing, described by the operator

c,te, i, (2)

and the extended s-wave pairing, described by the opera-
tor

LLr ~ (Cr1cr+Sl Cr Jcr+St ) i

Equation (4) is a striking identity unique to the one-band
Hubbard model. Generally, the commutator of a
potential-energy term with a bilinear fermion operator
gives a term quartic in fermion operators. In this case,
however, since the Hubbard interaction acts only on site,
the resulting quartic term actually reduces to a quadratic
term since operators like c tc, lc, lc, l have to vanish be-
cause of Fermi statistics. (This important observation
was first made by Yang ' in his construction of some exact
eigenstates of the Hubbard model. ) Therefore, the equa-
tion of motion for the on site pa-iring operator d, closes
at the two particle -level For. any equilibrium state de-
scribed by a time-independent density matrix p with

[p,H) 0, one obtains from (4) that

(8„)-f(~,), f- (5)

P(N, ) U It(2N —N, ). —

Therefore, without loss of generality, we shall restrict our-
selves to the cases of half and less than half filling in the
following discussions, since f(N, ) —f(2N N, ) from—
(6).

At half filling, N, N, thus p U/2 from (6). We see
that this is a special point at which f 0 or (h, )-0.
Therefore, the extended s wave pairing am-plitude van

where &A& TrpA and d(h„&/dt d[Trp(t)h, )/dt 0.
For a state without spontaneous symmetry breaking, i.e.
[p,N, ) 0, where N, is the total number of the electrons,
(5) is trivially satisfied since both sides vanish. In this
case (5) should be replaced by a similar identity between
the (off'-diagonal long-range order) ODLRO correlation
functions. We shall return to this case later. However, in

the case where the symmetry is spontaneously broken, i.e.
[p,N, )WO, Eq. (5) states a nontrivial result relating the
on-site and the extended s-wave pairing amplitudes. Note
that (5) is an exact identity for the Hubbard model, valid
for all dimensions, filling factors, and both signs of U.

Let us now consider some special cases of physical in-
terest. Because of the particle-hole symmetry of the Hub-
bard model, the ground-state energy Eo in the less than
half-filled case is related to that in the more than half-
filled case by the exact identity Eo(N, ) (N, —N)U
+Eo(2N —N, ), where N is the number of lattice sites.
The chemical potentials in both cases are thus related by
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ishes identically at half ftlling both for the positive and
the negative-U Hubbard model This is not a surprising
result for the positive-U Hubbard model, since it is com-
monly believed that the ground state is Neel ordered. In
fact, the absence of the ODLRO in the on-site s-wave
pairing operators has been proven rigorously in the case,
i.e., (5,) 0. Together with our result, the absence of
both the on-site and the extended s-wave pairing in the
half-filled positive-U Hubbard model is now established.
For the negative-U Hubbard model, one generally expects
pairing to be possible. However, (5) still implies that
(6,) 0 at half filling whereas (d, )WO is possible. While
there are many ways to understand this less intuitive re-
sult, all based on the commensurability eA'ect at half
filling, a particularly instructive one is to consider the du-
ality transformation c„t ( —1)'d,

t and c, ~ d, i which
at half filling exactly maps the negative-U Hubbard model
to the positive-U Hubbard model. [(—1)' is 1 on the even
sublattice and —I on the odd sublattice. ] Under this du-
ality transformation, the on-site pairing operator 6, is

mapped onto the spin-density wave (SDW) order parame-
ter S, ( —I)'d td, ~

which is nonvanishing in the Neel-
like ground state, whereas the extended s-wave pairing or-
der parameter (6„)is mapped onto

( —I )'g(d, td, ~s~+d, ~d, +st)ce—icos(pb)(dt, '+gtdt t),1

which vanishes due to the commensurability of the SDW
with the underlying lattice, i.e., Sr=—(dt, +gtdri) =St+g.
Physically, the Neel state in the positive-U Hubbard mod-
el corresponds to a pairing state in the negative-U Hub-
bard model in which all the even sublattice sites are dou-

bly occupied and all the odd sublattice sites are empty. It
is clear that (6,) vanishes in this situation.

Now let us proceed to the less than half-filled case. In
this case, fAO since p&U/2 and we conclude that the ex
tended s wave pairing-is possible if and only if the on-site
s wave p-airing is possible. To get some feeling about the
order of magnitude of the ratio f, let us consider some spe-
cial cases. For both signs of U, but with

~
U

~
((t, p is of

the order of t, therefore, f-O(1) to the leading order.
For large and positive U (U» t), p is also of the order of t
and f-O(U/t) to the leading order. Finally, for large
and negative U, the electrons are paired, p is therefore
given by U/2 to the leading order plus a correction of the
order of J-t /U due to the second-order hopping process
of the paired electrons. Thus we have f-O(t/U) in this
case. Physically, the different leading behavior of f in the
large-U limit is simple to understand. In the repulsive
case, the wave function is pushed outwards whereas in the
attractive case, it is pulled inwards.

Let us consider some theoretical implications of the
above analysis. For the positive-U Hubbard model, it is
generally believed that the on-site s-wave pairing is
suppressed. This is strongly suggested by the numerical
evidence based on Monte Carlo simulations and varia-
tional studies. This is to be expected since a state where
electrons are paired on the same site would cost more po-
tential energy than the free-fermion state due to the on-

and similarly

S(r, r';to) -Z &o I &. I n&« I &'10&b(to —E.+Eo),

where
~
0) is the exact ground state with N, electrons and

~n) are the exact eigenstates with N, +2 electrons. Eo
and E„are respectively the energies of these eigenstates.
The matrix elements of 6, and 6, are related through (4)
by

(Eo —E.)&0 I &, I n& -«0 I &, I n& —U&01&, I n&

+2p&0 [ ~, [ n&

This relation implies that the various frequency moments
of the spectral functions

S„(r,r') de to"S(r, r'; to),

S„(r,r ') „dtoto "S(r,r';to)

are related by the following exact identity

(10)

So(, ') U 2p So(, ')+2 U 2p S ( ')t' t

+ , S2(r,r') .
1

t'
Note that the zeroth-frequency moment is nothing but the
static ODLRO correlation function, whose long-distance
property characterizes the superconducting behavior.

In conclusion, we have found an exact identity between
the on-site and the extended s-wave pairing amplitudes in
the Hubbard model which is valid for all dimensions,
filling factors, and both signs of U. At half filling, the ex-
tended s-wave pairing amplitudes vanish identically. Off'

of half filling, the on-site and the extended s-wave pairing
amplitudes are proportionally related. While a rigorous

site Hubbard repulsion, and it certainly costs more kinetic
energy since this is minimized by the free-fermion state.
Therefore, many are led to consider extended s-wave and
d-wave pairing or an appropriate mixture of the two.
In these cases, the pairing wave functions vanish when the
electrons are on the same site, thus the on-site Hubbard
repulsion is naturally avoided. However, our conclusion
provides a strong constraint on these approaches since we
proved that away from half filling, f&0, the suppression
of the on site-s-wave pairing therefore automatically en
forces the suppression of the extended s wa-ve pairing
This conclusion is consistent with the numerical results
in which one finds suppression of the extended s-wave
pairing as well as the on-site s-wave pairing, whereas the
d-wave pairing is slightly enhanced.

Finally, we consider the pairing identity for a finite sys-
tem. In this case, spontaneous symmetry breaking is ab-
sent, and a nontrivial relation can be obtained if one stud-
ies the ODLRO correlation functions rather than the or-
der parameters themselves. Let us define the general
spectral functions associated with the dynamic Cooper
susceptibilities

S(r, r';to) Z(0 I ~, I n&« I &t'10&b(to —E„+Eo)
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proof is still lacking, the absence of the on-site s-wave

pairing is plausible for the positive-U Hubbard model.
Accepting this, one would conclude that the extended s-
wave pairing is equally unlikely.

Experiments on the high-T, superconductors strongly
indicate that the Cooper pairs formed below the transition
temperature are a spin singlet and there are no nodes of
the superconducting gap over the Fermi surface. These
facts are conventionally interpreted as the signature of the
s-wave symmetry of the superconducting gap. Following
our preceding analysis, this evidence seems to disfavor the
positive-U Hubbard model as a model for the high-T, su-
perconductivity. However, other interpretations of the ex-

periments are still possible. In a doped antiferromagnet,
holes may form pockets in the magnetic zone boundary; in

such a case, the superconducting gap can have a d-wave
symmetry even though there are no nodes over the Fermi
surface. This case can only be distinguished from a con-
ventional s-wave gap by experiments which not only mea-
sure the absolute value but also the phase of the supercon-
ducting gap.

The author wishes to acknowledge a helpful discussion
with Professor Rokhsar on the large-negative-U case. He
also would like to thank Professor Scalapino for helpful
comments.
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