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Flux flow in layered high-T, superconductors
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For layered high-temperature superconductors we have calculated the current-voltage curve in
the flux-flow regime when the magnetic field is parallel or slightly inclined to the plane of layers.
We assume that there are no defects in the crystal and that the pinning is entirely intrinsic: It re-
sults from the interaction between vortices and the layered structure of the superconductor.

I. INTRODUCTION

Flux creep, flux flow, and pinning in high-temperature
superconductors are now under intensive investigation
(see, e.g., Refs. 1 —7) since it was suggested' that Aux

creep plays an important role in magnetic measurements.
Usually, pinning is produced by various defects and inho-
mogeneities of the material such as dislocations, twin
boundaries, etc. Moreover, most high-temperature su-
perconductors are layered compounds. In layered com-
pounds there is an additional pinning, an intrinsic inter-
layer pinning, which works when the vortices are parallel
to the layers and the Lorentz force produced by the
transport current acts perpendicular to the layers. This
intrinsic pinning results from the interaction between
vortices and the layered structure and does not depend
on a concentration of defects. It can be observed in
sufFiciently perfect single crystals.

The intrinsic pinning was first discussed in Ref. 8. In
Refs. 9 and 10, the authors have calculated the depinning
current for layered superconductors using the Ginzburg-
Landau theory in two limiting cases, i.e., when j,( T) »s
and g, (T)—=sl&2. [Here g, (T) is the coherence length
along the crystal c axis and s is the interlayer distance. ]
In Ref. 11 we studied the flux creep due to the intrinsic
pinning.

In Ref. 4 a strong anisotropy has been found of the de-
pinning current as a function of the angle between the
magnetic field and the plane of layers: The depinning
current had narrow maxima near magnetic-field direc-
tions parallel to the layers (the Cu-O planes). This behav-
ior can be certainly attributed to the intrinsic pinning.
The fact that the intrinsic depinning current should be
very sensitive to the magnetic-field orientation can be ex-
pected on the basis of rather general considerations. In
the present paper, we will discuss this problem by consid-
ering the vortex motion in the flux-flow regime when the
magnetic field is parallel or slightly inclined with respect
to the layers. We show that the intrinsic depinning
current decreases rapidly already at rather small tilting
angles of the magnetic field, according to the angular
dependence observed experimentally. We calculate also

the current-voltage curve for a layered superconductor in
the flux-flow regime using the time-dependent Ginzburg-
Landau (TDGL) theory for layered superconductors.

The analysis of experimental data shows' ' that the
coherence length in the crystal c direction, g, ( T), exceeds
the interlayer distance s in a rather broad temperature re-
gion near T, for the high-temperature YBa2Cu307 corn-
pound. One can consider, therefore, the YBa2Cu30$
compound as an essentially three-dimensional anisotropic
superconductor with a weakly layered structure [having

g, (T)»s] at least near T, . On the other hand, Bi-Sr-
Ca-Cu-0-type compounds are closer to two-dimensional
superconductors and have more pronounced layered
structure with g, (T)-s practically at all temperatures
except for, maybe, a very narrow vicinity of T, . The case
with g, ( T)-s we call the highly layered structure. In the
present paper, we consider both structures.

Both limits can be described by the Ginzburg-Landau
model which considers a layered superconductor as a sys-
tem with the Josephson interaction between layers. ' '
We use its time-dependent modification for nonstationary
problems. To justify the TDGL approach, one can argue
that, in high-temperature materials, superconductivity
should be nearly gapless, at least close to T„because of a
strong electron-phonon interaction. ' .

We restrict ourselves to magnetic fields close to H, 2.
Strictly speaking, pinning effects can be suppressed con-
siderably by thermal fluctuations in the region close to
the H, 2 curve on the phase diagram. As is known for the
usual pinning by defects, the region, on the phase dia-
gram, where vortices are pinned and the region where
they are depi. nned by fluctuations are separated by the
so-called depinning {or irreversibility) line. The depin-
ning line is rather far from the H, 2 curve. The intrinsic
pinning, however, is not yet well studied, and it is diScult
to establish, on the basis of experimental observations,
where the depinning line lies in this case. On the other
hand, theoretical predictions show" that the activation
energy for the intrinsic pinning is quite high, especially
for low currents. One can expect, therefore, that the de-
pinning line should be very close to the H, z curve. In any
case, using the approximations pertaining to the limit
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H ~H, 2 should not change qualitatively the results in the
region where the intrinsic pinning is essential.

Now we will discuss the problem in more detail. We
suppose first that the magnetic field is parallel to the lay-
ers. We choose a coordinate system with the z axis per-
pendicular to the layers and the y axis along the magnetic
field. The potential energy of the intrinsic pinning is a
periodic function of the vortex displacement u, in the
direction perpendicular to the layers with the period
equal to the interlayer distance. According to Ref. 11,
the displacement u, should be measured with respect to
the equilibrium positions of vortices in a lattice whose
configuration corresponds to the minimum of the pinning
energy V, i.e., with respect to sites in a lattice commens-
urate with the layered structure. We call the lattice com-
mensurate if one of its unit-cell vectors is parallel to the
layers and the other has a z projection in a rational pro-
portion to the interlayer distance. The lattice can be in-
commensurate when the pinning energy is small com-
pared with the elastic energy of the deformation needed
to make the lattice commensurate. In Ref. 11 we came to
the conclusion that the depinning current should have a
nonmonotonic dependence on the magnetic field with
maxima corresponding to fields at which the vortex lat-
tice is commensurate with the layered structure. If the
lattice is commensurate, the vortex displacement in equi-
librium is zero. On the other hand, if the lattice is incom-
mensurate, the vortex displacements u, are nonzero in
equilibrium and depend on coordinates. As a result, the
pinning energy ( Vz) averaged over the sample volume
would not depend on vortex positions. This implies that
the intrinsic pinning vanishes.

A similar situation holds when the magnetic field (and
thus the vortices) are inclined with respect to the layers.
If the vortex displacement u, due to an inclined magnetic
field varies by more than one interlayer distance s on the
sample width along the y axis, the averaged pinning po-
tential ( V ) would not depend on the vortex positions
and the pinning would vanish. In this case the vortex
ends lie in different valleys of the potential V . A vortex
will have infiections (kinks) in places where it passes from
one valley of V to another. These kinks can slide easily
in the y direction along the layers under the action of the
Lorentz force produced by the transport current flowing
in the x direction. The sliding of kinks results in a vortex
motion across the layers (see Fig. 1).

This takes place, of course, if there is no pinning
preventing from the motion of kinks along the layers. In
practice, however, a sample may have defects, such as
twin boundaries, which pin the vortex motion along the
layers (i.e., perpendicular to twin boundaries), but do not
affect much the vortex motion perpendicular to the layers
(i.e., parallel to twin boundaries). Under these condi-

J(z

Vy= pQ/

FIG. 1. Motion of vortex lines in an inclined magnetic field.
Ends of each vortex lying in different valleys of the pinning po-
tential are fixed, but the kinks are moving under the action of
the Lorentz force produced by the transport current.

II. VORTEX MOTION
IN A %'EAKLY LAYERED SUPERCONDUCTOR

A. Basic equations

We will use the time-dependent Ginzburg-Landau
theory for layered superconductors with the Josephson
interaction between layers in the form

a
y —+2ieg P(n, r)=-

At
L

where the free energy is'

5F
5$'(n, r)

tions the flux creep across the layers would be determined
by the intrinsic pinning even if the magnetic field is
slightly inclined with respect to the layers.

In the present paper, we will assume that there are no
defects affecting the vortex motion. We calculate the
current-voltage curve in the flux-flow regime in presence
of the intrinsic pinning. We do not take into account the
flux-creep effects, assuming that the activation probabili-
ty is small according to Ref. 11, so that the resistivity of
the superconductor is mainly due to the flux flow at
currents higher than the depinning current. In Sec. III
we consider a weakly layered structure. A similar prob-
lem was solved earlier ' but for a different region of
magnetic fields. In Sec. III we calculate the flux-flow

conductivity for a highly layered structure.

F=f d r sg a[/(n, r)( + ,'P)@(n, r)) —+ [( iV —A)@(—n, r)(
2m c

+ ~f(n + l, r)exp
1

2Ms

2 I + ~
d ~ )~

1

y
H —HH dr.
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Here H is a microscopic magnetic field, H is an applied
magnetic field, g(n, r) is the order parameter at the nth
layer, and y is a phenomenological "viscosity" parame-
ter. In case of a gapless superconductor, one can use the
microscopic value y=1/2mD, where D=UF~/2 is the
two-dimensional (in the plane of layers) diff'usion

coefficient. The electric current density in the plane of
layers is

j=j'"'——f' V — A g —c.c.
m c

(3)

where j'")=cr,'"„'E is a normal current. In Eqs. (2) and
(3), r, V, and A are two-dimensional vectors in the plane
of layers.

In this section we restrict ourselves to the case of a
weakly layered structure with g, ( T) &)s. Let us take first
the magnetic field parallel to the y axis, so that
A=(0, 0, Hx).—The solution of Eqs. (1)-(3) for a sta-
tionary commensurate vortex lattice has been found in
Ref. 10. It is

The quasimomentum p determines the supercurrent in
the x direction:

& ly,")I'&= y IC„I'
k=1

m 2c2g

16me «Ms PqHc2
(10)

Here « =1,,„/g, t, is the Ginzburg-Landau parameter, m

and M are the elective Ginzburg-Landau masses in the
plane of layers and perpendicular to it, respectively. To
the leading approximation in 6, the upper critical field
can be found from the equation a+ h /2Ms =0 and is

C

~ (s) 2 P ( ly{0)I2)'"='
ap

The order parameter normalization is given by nonlinear
terms in the Ginzburg-Landau equation

N

gz '(n, x)= g Ckexp
k=1

2nikn

hack

X+
N ~ eHsN

1 B 1 2eHsx
1 —cos

2m ax' Ms' c

The energy spectrum of the lowest-energy band is

A commensurability of the lattice suggested by Eq. (4)
comes from the fact that the number N (i.e., the size of
the "Brillouin zone" with respect to the index k ) is an in-
teger In .Eq. (4), 1t (x) is the Bloch function of the
lowest-energy band e(p):

Bg (x)=e(p}P (x), (5)

of the Hamiltonian

The factors C„ in Eq. (4) satisfy some periodicity condi-
tions. In a weakly layered superconductor, the vortex
lattice and, thus, the factors Ck difFer only slightly from
those for a three-dimensional anisotropic superconductor
and the lattice parameter P„—= l. 16. '

Now we apply a small magnetic field H, along z in ad-
dition to H„. Vortices will be inclined with respect to the

y axis, and this can be described by a displacement u, (y).
One can use the perturbation theory if u, is a slowly
varying function of y (and also of t). When the vortex
lattice is displaced by u„ the vector potential
A„=—H u, arises due to flux quantization. It corre-
sponds to the magnetic field with the induction

B,=H { ).
h 5 n.cpe(p}= ——cos

2 eHs
When the vortices are displaced by u = ( u„,u, ), the order
parameter transforms as

16h ' 8
exp

Ms m'~

2mikP= g Ckexp n—u 2ieH
(x —u„)u,

Here
hack

Xfp —2eA /c x ux+
X eHsN

(12)

1/2
2eHs M

c m
Substituting Eq. (12) into the free energy [Eq. (2)], we
get"

'2

F= dV + +
2 Bx Bz 2

'2 2 2
BQ M BQ m BQ BQ

+ + +
Bx m Bx M Bz Bz

2

+
2

Bux

By

2
BQ

+
By

Hju, +V (u, )
c

(13)
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This free energy contains the elastic energy of the vortex
lattice, the Lorentz force produced by the transport
current and the pinning energy V . The latter is obtained
from Eq. (8) by a substitution, p ~p+2eH~u, /c:

P' =[E(p+2eH u, /c) —h/2Ms ]( ~P~ )

'Q=Hq2of /c

where

u0 H2 —H
tXf =0 ay 1+

(19)

H, 2j,s

2&c
7TCp Q

cos +27T—
eHs s

(14)

The critical current j, has been calculated in Refs. 9 and
10:

is the (lux-liow conductivity [uo=m /14$(3)=-5. 79].'
This expression is similar to that for an isotropic super-
conductor. '

Now, from Eqs. (13) and (16) we can derive the equa-
tion for u, . Assuming that u, is a function only of y and
t, we get

4c(H, 2 H» )m-

v'n I3„tr sM s

8g
exp

$2 au, au, Hj
'I

at 44a 2
V

avt . . mcpj=2e =j,sin +2m
ap

' eHs s
(15}

As in Ref. 11, we will assume for simplicity that the
sample thickness along z is less than the corresponding
effective penetration depth A,; -A,, (1 H/H, 2)—' . In
this case we may assume that u, does not depend on z,
and u„=0, and omit the term divu in Eq. (13).

To incorporate a time dependence of u„we present the
TDGL equations in the form'

dF = —fwdr,3

t

where the dissipation function is

W=2y +2iegf +tr,'"bIE
ae

(16}

(17)

The dissipation function can be calculated using Eq. (12).
We employ the gauge with /=0, so that

1 aa, H, au,
E = ——

c at c at

The Bloch function g~ can be expressed in terms of Wan-
nier functions

In presence of a vortex-lattice displacement, the trans-
port current is H j,+ sin

C

Q'~+2~ ' =0.
eHs s

(20)

(21)

but still H, 2
—H «H, 2. This region is more wide and

more practical from the experimental point of view than
that considered in Refs. 9 and 10. Slow variations of u,
suggested earlier require that

Equation (20) is different from the time-dependent
equation used in Refs. 9 and 10. Though both equations
are valid near the upper critical magnetic field, their ap-
plicability regions are still difFerent. The equation used in
Refs. 9 and 10 is valid when the magnetic field is so close
to H, 2 that the nonlinear terms in the Ginzburg-Landau
equation are small compared with the energy bandwidth
[Eq. (7)]: P( ~P~ ) &&h. We would like also to draw at-
tention to the fact that the statement in Ref. 10 concern-
ing possible negative difFerential resistivity does not actu-
ally hold within the applicability region.

Equation (20), as well as the equation used in Ref. 11, is
based on the order parameter representation in the form
of Eq. (12). It is valid in the opposite limit when the ener-

gy bandwidth 5 is less than the nonlinear terms in the
Ginzburg-Landau equations, i.e., when

8g, Hq H»—
exp

C s H, 2

f~(x) =g exp(ipxom )Po(x xom ), 8, «H -=H„. (22)

where

(n) 2
~ah Hc2

+y
c

' 1/2
2eH, 2

(18)

Using the microscopic expression @=1/2mB, we get,
from Eqs. (16) and (18),

where xo =etc/eHs is the period of the potential energy
in the Hamiltonian (6). The Wannier function po(x} for
the lowest-energy band is close to the oscillator function
when x «x0. Calculations give

'2
BQ

(w )=q
at

B. I-V curve of a weakly layered superconductor

In this section we consider the commensurate vortex
lattice. For a principal commensurability, for example,
when the period projection on the z axis is Zo =Ks (K is
an integer}, the magnetic field H» should satisfy the can-
dition

v'3 m
H =

]/2
0

s E
(23)

According to Ref. 11, commensurate configurations of
the lattice have regions of attraction on the magnetic-
field axis.

Let us consider first the vortex motion when the mag-
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netic field is strictly parallel to the layers. One can put
Bu, /By =0 in this case. We get, from Eq. (20),

where u+ =u, (y =+ 00 ). If 8, is positive, then

Q+ —Q =s and

c aQ =j—j,sin
H, 8t

2$ Qz
(24)

~

~

jc

2
C'Tiv» f ~ Buz

sH 2j —oo Bp
(29)

(we have incorporated a constant p into u, ). When j&j„
a nonzero averager velocity appears. To calculate it we
find the time to needed for the motion of a vortex by one
interlayer distance. Integrating Eq. (24), we get

) (J2—J2) —&/2
0 H c

c2

The average velocity is

27TQz

For the kink velocity we have

At low currents, j ((j„the form of the kink can be
found from EQ. (26) with j=v» =0. To the first approxi-
mation, we get

2
Ro B =1—cos
2s Bg s

The electric field induced in the sample is

H, Bu,
(

2 2)l/2/~
c Bt

mRoH 2j

4csg

Since the average electric field is

(E„)= 8,v /e- ,

we find that the effective conductivity is

(30)

(31)

Bu, Bu, H2
pv» +C44 2

+ j—j,sin
By By

2 c

27TQ =0.

Multiplying this equation by Bu, /By and integrating it
over dy from L /2 to y, we—get

2
R o Buz 2~j uz 2&Qz+ +cos

J~ s s

where

Ro=

'2
27Tc Y/U»» Buz+ y =const,
SH g L/2 By—

1/2
2&CC44$

H,2j,

(26)

(27)

For the case of small tilting angles when the distance
between kinks is much larger than R o (i.e.,
8, /H «s/Ro), one can put Bu, /By=0 far from kinks.
For one kink we get, from Eq. (26),

2~j Q+ Q 27TQ ++cos
s s

cos

'2
21TC Ttv»

~
~ Bu

SHc2Jc
(28)

This current-voltage curve is similar to that for a resis-
tively shunted Josephson junction. ' The critical current

j, is just the depinning current.
If the magnetic field is inclined slightly to the plane of

layers so that 8, /H» & s/L, where L is the width of the
sample along the y axis, the ends of each vortex lie in
different valleys of the potential V~ and the depinning
current vanishes. The vortex kinks formed where vor-
tices pass from one valley of V to another can now move
along the layers. We look for a solution of Eq. (20) in the
form u, =u, (y v t). W—e have

(.ab)
4s

~ee=~f (32)

This conductivity is much larger than O.f due to a small
density of kinks (small 8, ).

If now we increase the z component of the magnetic
field so that 8, /H & s/Ro, the effect of the intrinsic pin-
ning will decrease. When 8, /H »s/Ro, the layered
structure would not affect the vortex motion any more.
Indeed, in this case Bu, /By =8, /H» and is constant. Ac-
cording to Eq. (26), we get j =trfE, i.e., just as for a
three-dimensional superconductor.

III. VORTICES
IN A HIGHLY LAYERED SUPERCONDUCTOR

A. Model

We recall first the static solution. ' ' The limit

g, ( T)~s /&2 corresponds to h && 1 in Eq. (8). The solu-
tion of Eqs. (5) and (6) for the lowest energy
EH(0) =(1—h )/Ms is

Materials with g, (T)-s we call highly layered com-
pounds. This criterion is satisfied, for example, by Bi-Sr-
Ca-Cu-0-based superconductors. The case of g, -s can
also be considered on the basis of Eqs. (1)—(3). The most
simple situation is when the coherence length

g, (T)=s/v 2. This p—ossibility has been pointed out in
Ref. 15. We wi11 also consider this limit in the present
paper. The upper critical field in the direction parallel to
the layers is now large and diverges as g, (T)~sl&2.
One can understand this as if the vortex cores fit just in
between the layers so that the order parameter taken at
the layers is not affected.

In this section we discuss the vortex behavior in an in-
clined magnetic field and calculate the effective flux-flow
conductivity.
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w(x)=1+2h cos(2eHsx lc)+(h /2)cos(4eHsxlc) .

4o I
c2

27TS

j,( T)

[g, ( T) s /—2]'
(34)

With Eq. (33) one can construct the function

(33}

The condition Eb (0)= la l gives the upper critical field'

F=L, Jdx dy [a+EH (0)]lgl +

V — A
c

+ (H —2HH}
Sm

2

g(n, x)=g cqexp(iqsn)w x+ cq
2eH

(35)

Equation (1) will have the same form also for the function
P since w (x)=—l. It is just the usual TDGL equation, but
with the characteristic length of variations of P replaced
by

similar to Eq. (4), which is to describe the vortex lattice.
The lattice parameter

h4b, H
v2 H„

' —1/2

g,g T') = [2~ [lal —e„(0)]]-'"

(41)

is then equal to
T

Pt g cq cq cq cq q +q
q) q2q3

y lc l'
q

(36)

The length g,s is considerably longer than the period xo
of w(x).

8. Vortices in an inclined field: Dissipation

g(n, x)=Cw(x), (37)

and the lattice parameter PL = 1.
Equation (37) suggests that the supercurrent flows only

along the z axis: j =0 and

2e (rt +1)$j,= Im f'(n +1,x)g(n, x)exp A, dz
Ms C ns

since w (x)—= 1. Thus the lattice parameter PL is propor-
tional to the number of terms in the sum (35). Since the
lowest PL value is the most favorable one, we can con-
clude that there should be only one term in the sum (35).
A n-dependent phase factor in Eq. (35) can be incorporat-
ed into the vector potential A, . Therefore, we have

The static equation which results from Eqs. (1) and (40)
has the form

—2 '2

Pl/i f+ — V — A /=0. (42)

Equation (42) together with Eq. (3) for the current in the
(x,y) plane are completely similar to the usual set of the
Ginzburg-Landau equations with g,s instead of g. This
implies, in particular, that the problem of vortices in an
inclined magnetic field for highly layered superconduc-
tors in our model reduces to the problem of vortices in
usual superconductors, but in a field H, . On the basis of
this similarity, one can conclude that there exist the
lower H,'1' and the upper H,'2' critical fields. The lower
critical field is

2eHsx
(38)

r

H(&)— 40
4n.X,~

lnv, (43)

Such distribution of currents corresponds to a rec-
tangular vortex lattice. The fact that g(n, x}does not ac-
tually depend on n implies that the vortex lattice is al-
ways commensurate with the layered structure, and its
period along z is just Zo =s. The commensurability takes
place over the whole region of magnetic fields where non-
linear terms in the Ginzburg-Landau equations are small,
i.e., when H, 2

—H &&H,2.
We assume now that, in addition to the current j, and

the magnetic field H, there are small currents in the
(x,y) plane and a magnetic field H, along z. The order
parameter will have the form of Eq. (37), but the factor C
will now be a slow function of x and y (and also of t). To
obtain the equation for this function, let us put

where

pncP

16qre [ l
a

l

—eH (0}]

f-exp elH, ly'

lH l=H'*'= 4o
2m.pit

(44)

To find the upper critical field, one can take
A„= H,y. The solutio—n of the linearized equation (42)
has the usual form

f(n, r, t) =g(x,y, t)w (x) .

The free energy [Eq. (2)] then becomes

(39) If H,2(6) is the upper critical field for the angle 6 be-
tween the magnetic field and the plane of layers, then
H,'2' =

Hz( 6)si n60ne has, from Eq. (44) for small 6,
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H (0)h
H„(e)—H„(O)= — "

hei,
c2

(45)
H"
Bz

'2

+ V — A /=0.1 2le

2@i c
(46)

The problem of a vortex motion in fields strictly paral-
lel to the layers seems to be more complicated in this case
than for a weakly layered superconductor. It resembles
probably the problem of the resistive state in thin super-
conducting films (see, for example, Ref. 22 and references
therein}. We will not consider here this problem which,
surely, deserves a special study. One can find the critical
depairing current from Eq. (46) assuming a homogeneous
distribution of the current:

C NlJc=
eS3 M

3/2
2 H

3&3m@ h H, z

It coincides with the result obtained in Refs. 9 and 10.
The vortex motion in an inclined magnetic field can be

considered on the basis of Eqs. (3) and (46) in a way simi-
lar to that for usual superconductors. Using the results
obtained in Refs. 18 and 23, we get the effective conduc-
tivity

where H, 2(0}and H, 2(m. /2) are the critical fields in direc-
tions parallel and perpendicular to the layers, respective-
ly. Equation (45) coincides with the result of Ref. 15 and
resembles the angular dependence of the critical field for
thin films. '

When the magnetic field H, inside the superconductor
is less than H,", , there are no vortices parallel to the z
axis which could be produced by H, and tP nowhere
turns to zero. This can be understood as if the vortices
produced by the total field H=(O, H, H, ) remain parallel
to the layers when H, is small enough. When H, inside
the superconductor is larger than H„, the vortices paral-
lel to z are created, and there appear points where /=0.
One can say that the vortices produced by the total field
now cross the layers. The vortices exist until the magni-
tude of the total field reaches H,2(e}. A qualitatively
similar picture of a vortex penetration has been con-
sidered in Ref. 7. The existence of vortices parallel to the
z axis at small tilting angles of the applied magnetic field
depends very much on the sample shape: For example,
for a thin plate with L, (&L, a vortex penetration begins
for very small angles, since H, outside the sample is equal
to 8, inside due to the boundary conditions.

The dynamic equation for the new order parameter re-
sults from Eqs. (1) and (40) and has the form

r —+2 'fit( +

&ee
"p Hc2 —B2(~)

~(n)
ab 2 P H(~)

A c2
, B, H,','.

This result does not depend on the orientation of the
transport current with respect to the magnetic field
within the plane of layers. The reason is that the vortices
created by the magnetic-field component H and parallel
to the layers fit completely in between the layers. There-
fore, the energy dissipation does not depend on whether
or not the vortices are moving along the x axis parallel to
the layers. The dissipation is mainly due to the motion of
vortices produced by the magnetic-field component per-
pendicular to the layers.

IV. CONCLUSION

The authors are grateful to V. L. Pokrovsky for valu-
able discussions. N.B.K. expresses his thanks to Low
Temperature Laboratory at Helsinki University of Tech-
nology for hospitality.

We have considered the flux flow in layered supercon-
ductors when the magnetic field is parallel or slightly in-
clined to the plane of layers. It was assumed that there
are no defects in the crystal so that the pinning is entirely
due to an intrinsic mechanism, resulting from an interac-
tion between vortices and the layered structure of the su-
perconductor. We discussed the cases of g, ( T)))s
(weakly layered) and g, (T)-s (highly layered structures).
A weakly layered structure is realized in the YBa2Cu307
compound near the critical temperature, and a highly
layered structure is the one which is present in materials
like Bi-Sr-Ca-Cu-0-type compounds.

For a weekly layered superconductor, we have calcu-
lated the current-voltage curve for fields parallel and
slightly inclined with respect to the layers. The intrinsic
depinning current has very sharp maxima at small angles
between the magnetic field and the layers. At higher an-
gles, the vortices move in a flux-flow regime. The
effective flux-flow conductivity decreases with an increase
in the magnetic-field component perpendicular to the lay-
ers, and finally, the effect of the layered structure on the
vortex motion vanishes at still rather small tilting angles.

In a highly layered material, the magnetic field parallel
to the layers does not affect much the superconductivity.
Vortices are created mainly by the magnetic-field com-
ponent perpendicular to the layers. In an inclined mag-
netic field, the vortex motion is a flux flow. The corre-
sponding flux-flow conductivity is calculated on the basis
of effective TDGL equations.
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