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We demonstrate to O(q ) the correspondence between the response in the Gersch and the
multiple-scattering approach. In the course we establish a rigorous requirement for the preference
of one scaling variable over another. %'e also show that the reduced response, when computed by
means of a particle-hole (spectral function) approach, does not lead to a systematic 1/q expansion.
For liquid He and nuclear matter we calculate components of the dominant final-state interaction.
The asymptotic region for liquid He is reached, for not too large y, when q 10 A . Results for
nuclear matter obtained by means of spectral functions indicate that even for momentum transfers
as high as q -9 fm ' the convergence is slow, except for the smallest y values.

I. INTRODUCTION

Modern studies of the dominant final-state-interaction
(FSI}part of the linear response of a nonrelativistic sys-
tem for large momentum transfer q have followed various
paths. Historically, there is first the direct and rigorous
approach of Gersch and co-workers. ' For systems with
an interaction v possessing a finite Fourier transform,
these authors derived an exact series for the (incoherent
part of the) response in powers of 1/q. The coefficients
are functions of a kinematic variable y, which is a given
function of the energy transfer co and q. For not too
strong v and not too large densities, that series converges
and the first terms thus determine the dominant parts of
the FSI.

In a second approach one expands the response in an
alternative series, corresponding to a multiple scatterings
of the knocked-on particle with the medium. Versions
exist which are valid for regular forces of the type above,
as well as for others which are strong and/or singular.
In both cases, the coeScients of the resulting series de-
pend on a different variable yo =yo(qco). The latter is not
entirely of kinematical origin and contains some average
separation energy which, in principle, relates to dynam-
ics. (A seemingly different theory by Silver has been
shown to lead to results which are closely related to those
obtained in the multiple-scattering approach. }

In the past few years increased efforts have been direct-
ed towards an accurate calculation of the response of
nonrelativistic fermion systems, specifically of nuclear
matter. In one approach in this class, emphasis is on the
determination of ground and excited states which build
the response. Starting from some unperturbed basis, one
modifies ground and excited states by one and the same
correlation function thus constructing so-called

orthogonalized-correlated-basis (OCB) states. The pa-
rameters in the correlation function are variationally
determined by minimizing the ground-state energy. '

These calculations presently incorporate what, in the
language of perturbation theory, is called lp-lh and (ap-
proximately) 2p-2h correlations over and above those
present in the zeroth-order states (see Ref. 7 for an alter-
native discussion on the influence of 2p-2h states).
Another approach is based on the observation that the
response is in essence the exact interacting p hpropag-a-
tor (IPHP), to which there exist both nonperturbative
and perturbative approximations. In a popular approxi-
mation one links the response there to the spectral func-
tion (SF) for removing a particle ("hole spectral func-
tion"). " The latter are measured in single-particle
knock-out reactions [cf. (e, e'p}] which is just the retained
level of approximation to the fully inclusive cross section.

There is no doubt that, independent of the course fol-
lowed, in the end all exact theories produce the same
answer. There then remains the question to what extent
this also holds for selected parts or approximations. All
theories above appear to have the same asymptotic limit
(q~av at fixed y). However, except for potential mod-
els, ' we do not know of attempts to demonstrate the
measure of correspondence for terms or contributions
beyond the limit above. Part of the following note just
explores that relation for many-body systems.

In Sec. II we establish the relation between the dom-
inant 1/q FSI contribution to the response, calculated by
the Gersch and multiple-scattering series, and the spec-
tral function approach. Other theories for the response,
e.g., OCB and (interacting) particle-hole propagator
[(I)PHP] theories are shown not to lead to a systematic
1/q expansion. In See. III we report on numerical results
for FSI relevant to nuclear matter and liquid He. Em-
phasis is on the relative magnitude of various com-
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ponents of the dominant FSI and the rate of convergence
of 1/q expansions.

II. DOMINANT PARTS OF THE LINEAR RESPONSE

We address the linear longitudinal response of an 3-
particle system described by a nonrelativistic Hamiltoni-
an Hz with wave functions and energies 4~ and c, z.
The dominant incoherent part of the response per parti-
cle may be written as

with coei5cients I', dependent on the Gersch-West vari-
able 1, 13

y = —(q/2)(1 2—mco/q ) .

The first two coefficients in (2.2) are

(2.3)

the reduced response permits the asymptotic expansion'

p(qy )=Fo(y )+(m/q)[F1(y )+F1 0(y )]+0(q )

(2.2)

S'"""(q~)=y ~&C „~e '~C "A ) ~
S(~+eA —e"A)

= —n. '1m&4'„~e

X(al+s„HA+—irj) 'e ')4„) .

Fo(y ) =(2n )
'f n (p)p dp

ly I

and for an infinite medium with density p (Ref. 1),

F, (y ) =(2in p )
' f [exp(iy s) ]ds

(2.4)

(2.1)

We now compare in three di8'erent approaches the lead-
ing parts of the reduced (incoherent) response
(t)(qy)—= (q/m)S(qy) with m the mass of the constituent
particles and y =y(qco), some scaling variable replacing
N.

A. The Gersch series

Assuming only the existence of the Fourier transform
of the elementary interaction v, it has been shown that

X p2 r —sqOr 0 r

X f v(r —oq}do .
0

(2.5)

Their calculations requires the single-particle momentum
distribution n(p) [normalized as (2n)f n. (p)dp=1]
and the partially nondiagonal two-particle density matrix

p2 of the fully interacting system.
The term F, 0 in (2.2) (in Ref. 1 included in the

definition of F
1 } reads (p, =p.q)

F, 0(y )=i (2mp) ' f [exp(iy s)]s ds fp2(r-sq, O;r, O)v(r)dr

= (2m. ) p p, —y r2 - rg eg* p, r2, . . . , rg V] rp, , rg eg p, r2, . . . , rg (2.6a)

with

~l g vlj HA HA —1 ~1
j~2

The average of V], the interaction of particle 1 with
the medium as required in Eq. (2.6a), is easily evaluated

by insertion of a complete set of eigenstates of
H g ]+h &, the latter being the kinetic-energy operator of
particle 1. Introducing the spectroscopic amplitude

r„(p)= (~'„ la', ~"„,&, fP(pE)dE =n (p) .

We now define

(2.8)

4„=c.„—c"„& is the particle separation energy when
the residual A —1 particle system is left in the excited
state n.

Equation (2.6b) may be evaluated by means of the
properly normalized spectral function for the removal of
a particle

P(pE)= g ~r„(p)~ 5(E+6„),

with a a creation operator for a particle with momen-
tum p, one may rewrite Eq. (2.6a) as

[pA =[(A —1)/A]m )

Fl 0(y ) =(2n )
de~

x(p) —= y s„~r„(p)~'

2

n (p)+ (4„~a~ [a, W] ~4„),
= fdE( E)P(pE), —

(2.9a)

(2.9b)

(2.9c)

X y f dp a„—P ~r„(p)~'S(p, —y. ) .
2pw

(2.6b)

with 8'the total potential-energy operator. ' '
Using (2.4) and the fact that X, I'„, and the single-

particle momentum distribution n are functions of
~ p ~,
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one then finds from (2.6b)

2

F& 0(y ) =(4H) 'y„n (y )
2pa

b,(y)=X(y)/n(y) .

—&(y )

(2.6c)

P(qy. ) =F,(y. ) 5—y(q)F,'(y. )

+(m/q)[F, (y ) —D(y~)]+O(q } .

S. The multiyle-scattering series ayyroach

(2.12}

It will be useful to rewrite (2.6c). We thus introduce an
as yet unde6ned average separation energy 5 in

In the multiple-scattering series (MSS} approach one
writes the full Hamiltonian as H„=H„+V, and ex-
pands the corresponding propagator

5V(q)=(m/q)(y„/2p„— Z)+O(q 2) .

With [cf. (2.6c)]

D (V ) =V l—(4tt )n (y) [d(y) —Z]

one subsequently Snds

F, ,(y )= 5V(q)(—q/m)Fv(y ) —D(y ) .

(2.10)

(2.11)

(2.6d)

G(tu+e„)—=(tu+s„H„——V, +irt)

in (2.1) by means of

G()(z) = (z H„,——h
&

)

Thus,

G (z) =G()(z) g [V] Go(z)]" .
n~p

(2.13)

Equation (2.6d) can now be used to reach an alternative
expression for the first terms in the Gersch series (2.2)

Using eigenstates of H„&+h
&

as in (2.7), the lowest-
order (n =0) term in (2.13) gives, for the reduced
response including recoil

(qru)=(2w) x Jdp)(„(p)l 5(m+5„—[A/(A —1)]eo(p+q))
n

=(2n) ' JdE fdpP(pE)5(tu E —[A—/(A —1)]eo(p+q)), (2.14)

where ev(p) =p /2m is the energy of a free particle, and
P {pE}is the single-particle spectral function {2.8).

The appearance of state-dependent separation energies
b,„ in the argument of the 5 function above presents an
exact conversion of the expression (2.14) by means of a
purely kinematic scaling variable. This is only possible if
6„ is replaced by an average Z. Introducing the cus-
tomary impulse-approximation (IA) scaling variable

1/2
A —1 A —1 2

gp = g+
A A

2m (tu+Z)—
A

{2.15)

one establishes 5y(q), Eq. (2.10), as the difference of
the two y variables discussed. One may then expand
(2.14) and obtain for the reduced response (we write
y7 V')

P{"}(qy) =Fu(y )+{m /q)[F&(y, [v])—D(y)]+0 (q ) .

(2.16)

Contrary to the Gersch expansion (2.12), apparently y,
and not y, is the natural variable of the coefficients
F„(y) in MSS expansions.

In (2.16) we explicitly mention [u] as a reminder, that
we use the v expansion in (2.13), thereby assuming the ex-
istence of the Fourier transform of v. We now relax this
restriction and expand the full propagator G, Eq. {2.13},
in the so-called Watson series, where a singular or strong
u (in the momentum representations) is replaced by the

corresponding scattering matrix v ~v'—:t. One easily
generalizes

P{'}(qy) =F0(y )+(m lq) IF, (y, [t (q)])—D(y ) I

+O(q ),
{{'}(qy )=F()(y ) 5y(q)Fv(y )— (2.17)

+(m/q)[F&(y~, [t(q)])—D(y~)I+O(q ) .

The same D appears whether the MSS (2.16) in u or the
Watson analogue (2.17) in t is used in the expression for
F, in the momentum representation. Notice from Eq.
(2.6a) that, even for a singular "bare" v, D is finite.

Although one cannot directly derive a Gersch series in
t, we give in the second equation above the MSS result
when (2.15) is substituted in the MSS result in y. Since
[cf. (2.15)] 5y(q)=O(q '), the two expressions are for-
mally identical to order q

In spite of this expected result, we do not know of a
previous derivation which, even to O(q ), appears not
to be trivial. In fact, in the MSS expansions (2.16) and
(2.17) for the reduced response, ' the correction D has
been overlooked. ' The same holds for Silver's expres-
sion for the response, which, we recall, can be derived
from the MSS expansion.

The formal identity of the two series discussed is not
the last word on this issue. Consider, for instance, the ex-
pressions (2.12} and (2.16) to O(q 2) at fixed large q.
De5ning the ratio



42 VARIOUS APPROACHES TO THE LINEAR RESPONSE IN THE. . . 10 007

Co(q, y) =5y(q)FO(y)/Fo(y), (2.18)

it is conceivable that, locally in y, I C()(q,y) I

~ 1.
In that case, two series for the reduced response in q

have numerically dissimilar lowest-order parts and the
question arises which series should be used, or equivalent-
ly, which scaling variable is "best." There clearly is a
simple and sharp criterion. Define

(PWIA) term (2.14). Disregarding recoil one has

(t) "(qco)=(2m) fdE fdpP(pE)5(co E——eo(p+q)) .

(2.20)

One now observes that the last two factors in the in-
tegrand in (2.20) relate to the spectral function for a free
particle above the Fermi level. In general,

C, (q,y)=(m Iq)F, (y)IFO(y),

CD(q, y) =(m Iq)5(y) IFO(y) .
(2.19)

P (pE) = —n 'Im
I [E—eo(p) —X(p, E)] I

n 0
A+1 A

(2.21)
The variable for which the relative correction
IC, (q,y) —Cn(q, y}I is smallest is [in the region where
(2.17) holds] manifestly the preferred one.

C. Spectral-function approaches,
interacting particle-hoke propagator,

and orthogonalized-correlated-basis theories

1. SF

It has been shown in Sec. IIB above that the lowest-
order term of the MSS expansion (2.14) can be written in
a form which features the single-particle spectral function
and a 5 function, containing the energy of a bare single
particle. The two dominant 1/q expansions terms have
been given in (2.16) and, in principle, expressions for
higher-order terms in the MSS can be derived.

Unrelated to the above, spectral functions have been
used to compute the response without reference to either
a systematic MSS or a 1/q expansion. In order to indi-
cate how these developments emerge, we return to the
lowest-order so-called plane-wave-impulse-approximation

P(pE)=+n 'ImI[E+eo(p)+X(p, E)] )],
E & C."A

0

with X the self-energy of the particle, and on thus obtains

S(qco)=(2n) fd p fdEP(pE)P~(p+q, co E) . —

(2.22}

Equation (2.22) doe not appear to be related to either
theory discussed above. However, it emerges as a well-
defined approximation in nonperturbative approaches.
Notice, at this level, the symmetric appearance of the
knocked-on particle before and after absorption of the
momentum transfer q ("hole" and "particle" in perturba-
tion theory}.

Next we explore a few simple approximations to the
particle propagator in (2.22} and consider first the quasi-
particle approximation to the spectral function, which is
the probability for adding a particle to the A-particle
ground state:

S(q )=(2 ) d p dEP(pE)
[~—E —e(p+q)]'+ [Z(p+q)r(p+q}l'

=(2n) 3f d'p f dE P(pE)Z(p+q)5(~0 E —e(p+q)—) .

Here

e (p) =ep(p)+ V(p),

V(p) =ReX(p, e (p)),
Z (p) =

I 1 —[(}ReX(p, E)/BE]s =,(q) J

r(p}= ImX(p, e (p) ),
with e (p) the pole position of the spectral function (2.21) with ImX~0. Equation (2.23b) is obtained by using

(2.23a)

(2.23b)

(2.24)

lim m
y~0

z'(p)r(p)
[~—e(p)]'+[Z(p)r(p}]'

=Z(p)5{~—e()(p) }, (2.25)

which is the correct limit for large p. Equation (2.23b) is similar to (2.20) but has, in the 5-function argument, dressed
single-particle energies and features in addition to the quasiparticle strength Z.

Consider now the high-q behavior of IA (2.23b), sometimes called the impulse approxiination. ' Introducing, for in-
stance, the West variable, one obtains

(t) "(qy )=(2m) f d p f ds fdEP(pE)Z(p+q)exp(is(y —p q —(rn/q)[E+eo(p)+V(p+q)]j) . (2.26)

First we recall that for k ~ ()0, the real part of the self-energy V(k) ~0 and, as a consequence, IA and PWIA are identi-
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cal to order q
Taking the limit above, one may perform the E integral by means of (2.8) and (2.9). The same algebraic manipulation

used there leads to

(qy )=(2m) f d p f ds exp[is(y —p.q)]fdEP(pE)I1 —is(m/q)[E+eo(p)])+O(q )

=Fo(y )[1—Co(q, y )]=(m/q)D(y )+O(q ),
P'"(qy)=F, (y) —(m/q)D(y )+O(q ') .

(2.27)

Comparison with Eq. (2.16) shows that the response com-
puted in either the IA (2.23b) or the PWIA (2.20) misses
the term (m/q)F, (y) which is generated by the MSS,
while both expressions do contain some higher-order
terms. The missing term can therefore only be generated
by interacting p-h propagators, which is, of course, pre-
cisely what emerges from Sec. II B. The same is the case
for generalizations of (2.20) using relativistic kinematics.

2. IPHP

Expression (2.22) appears in nonperturbative theories
for the response expressed in terms of the interacting
dressed particle-hole propagator in which only the nonin-
teracting part is retained. As such, it is equivalent to the
I.indhard function calculated with dressed propagators. "

The widely used random phase incorporates some in-
teraction between particles and holes, but the propaga-
tors there usually refer to bare particles. ' ' Moreover,
the specific interactions retained in the random-phase ap-
proximation (RPA) emphasize long-range correlations,
and, hence, describe small- and not large-q behavior of
the response.

Reference 21 is an example of an ancient and rather
primitive attempt to incorporate some dressing as well as
interaction effects. At present there are no realistic re-
sults available for the interacting p-h propagator beyond
the content of (2.22). Yet, as is the case for noninteract-
ing propagators, those theories do not produce systematic
1/q expansions.

3. OCB

A number of recent calculations address directly the
response by means of ground and excited OCB states. '

Those are obtained by orthogonalizing the results of the
application of a common correlation function to the un-
correlated basis states. The correlation function is deter-
mined by a variational calculation of the ground-state en-
ergy.

The procedure described may be suf5cient for some
purposes, but is obviously not exact. However, the claim
is made that, in the language of perturbation theory, 1p-
1h excitations are treated exactly and 2p-2h states ap-
proximately. In the MSS formalism this translates to ex-
act retention of all terms in v and of some in v .
Di8'erently stated, the reduced response, expanded in
powers of 1/q, should be exact to order q . It would be
of great interest to check that claim, to extract the corre-
sponding expansion coef5cients and to compare the two
lowest-order ones with their counterparts discussed in

Secs. II A and II 8 above. Failure to do so for an ideally
exact calculation would directly call into question the
basic tenet of the OCB model for the response, namely,
the sufficiency of one correlation function for the ground
and all excited states.

III. NUMERICAL RESULTS

or

5=(2n)f dpX(p). . (3.1)

Using (2.9c), one infers that the so-defined b, is just
minus the average removal energy as defined by Kol-
tun. ' One can then use his sum rule for b, in terms of
the kinetic and total energy per particle. Assuming the
interactions to be of purely two-body nature, one has

(3.2)

In addition to (3.2), one may evaluate the right-hand side
of (3.1) with X(p) computed by Eq. (2.9c). We proceed to

Equation (2.6a) and Eqs. (2.6c) and (2.9) show two ways
to calculate the correction F, 0(y„). Those require
knowledge of either the half-nondiagonal two-particle
density matrix p2, or the single-particle spectral function
P(pE). None depends on the average separation ener-

This is not the case for the reduced response P(qy) as
function of the IA variable y, Eqs. (2.16) or (2.17). We re-
call that, for suSciently strong or singular v, there is no
way to avoid that approach. One is then led to, the scal-
ing variable y and to split Fi 0 as in Eq. (2.6d). As a re-
sult, y and the component D of the correction above de-
pend on the average separation energy b as do expres-
sions for (() to any finite order.

Since, in practice, approximations will be involved in
each calculation, a comparison of the outcome would
serve as a test. Unfortunately this does not appear to be
possible. To our knowledge, for no system are both
sources of information simultaneously available.

%e proceed to the average separation energy 6, which
is not uniquely defined: every choice defines a corre-
sponding y and 5y(q) and in the end a E dependent D as
appearing in the reduced response (2.16) or (2.17). It is,
in particular, impossible to cause vanishing of the func-
tion D(y), Eq. (2.11), by choice of a constant. However,
one may care instead that D vanishes in the mean, i.e.,

(2n) fdpn(p)[h(p) —5]=0
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illustrate the content of the remarks above for liquid He
and nuclear matter.

pz(r —sq, 0:r,O)-pp, (0,s)g([g]) . (3.3)

p is the number density and p, (O,s)/p is the (reduced)
off-diagonal single-particle density matrix, which is the
Fourier transform of the single-particle momentum dis-
tribution. Finally, y is some functional of the pair distri-
bution function g ( r). We have used, in particular, '
pz(r —sq, 0;r, O) =pp, (O,s)g ( ~

r —sq/2~ ) (3.4a)

=pp, (0,s)[g (r)g ( ~r —sq~ )]' . (3.4b)

In order to avoid, for the present purpose, irrelevant
complications due to a condensate, we shall present re-
sults computed for T=4 K, i.e., above the transition
temperature T, =2. 17 K. Analyses for T~ T, with the
erroneous omission of D in (2.12) can be found in Ref. 16
(see Ref. 2 for the same using Silver's formalism). A
reanalysis, using the correct expression (2.17) as well as
new predictions for q =13 and 18 A ', can be found in
Ref. 25.

In Fig. 1 we present, for a typical q =13 A ' and a

A. Liquid He

With (T„), (E„)=14.82, respectively, —21.58
K, 2mB, E is estimated to be —0.17 A, which, in

—2(2.10), is small compared to typical y values —1 —4 A
Co. Approximating the single-atom momentum distri-

bution n (p) by a Gaussian with width po-1.28 A ', one
has Co(q, y)-y /qpo. For q ) 10 A ', values

Co(q, y) ~ 1 only occur in the very tails of actually mea-
sured responses, and there the difference between y and

y matters indeed. In the same region the coefftcient func-
tions F„(y), n &2 may not be negligible compared to
lower-order terms retained.

FSI: The exact expression for the dominant, large-q
FSI [Eqs. (2.5) and (2.6a)] requires knowledge of the
half-nondiagonal two-particle density matrix pz. Unfor-
tunately, there are, as yet, no available accurate values in
a compact form. We shall therefore continue to use
previously proposed approximations, which all are of
the form

standard y range, the C ratio (2.18) and (2.19), computed
with the model of Ref. 2 and the required input elements
of Ref. 26; the total dominant FSI relative to Fo is given
by C, —Co —CD. For small y it starts out with negative
values and then changes sign. It remains relatively small
except, again, in the extreme wings and, indeed, He for
medium- and large-q values is ideally suited to study
dominant FSI.

1/q expansion: Table II in Ref. 16 contains ample ma-
terial demonstrating that the convergence is satisfactory
for q & 10 A ' and y (2—3 A ' which is also inferred
from the C ratios.

B. Nuclear matter

IOO I I I I

We shall restrict ourselves in the following to results
for the response (2.23b) obtained with spectral functions.
Sources of information on the former are on the OCB cal-
culations reported in Ref. 10 for the Urbana U, 4 interac-
tion, and the results obtained by means of a self-
consistent Green's-function method. In the last refer-
ence, the central part of the S]- D] channel of the Reid
soft-core potential is used only in L =0 states.

The result, which can be derived from Ref. 10, is
6= —36.5 MeV and thus 2mzh = —0.069 GeV, which
is relatively small compared to typical y values 0.4—0.6
GeV in present-day large-q experiments. For substan-
tially lower y, one can no longer neglect 6 in D. For
completeness we also mention Koltun's results for finite
nuclei: 2m~6= —0.055 GeV (Ref. 15) (Capitani et al.
cite slightly smaller values ).

Since the interaction used in Ref. 27 does not bind,
only (3.2) provides an estimate. With a quasiparticle ap-
proximation for the spectral function, one obtains
6= —32.9 MeV, reasonably close to the outcome above.

b(p): In Fig. 2 we show the ratio h(p), Eq. (2.6c) ob-
tained with the spectral functions from Refs. 10 and 27.
Since the Fermi rnomenta in the two references differ
(pF=1.33, respectively, 1.4 fm ) a comparison is most
naturally made for an abscissa p/pF. The difference in

h(p) is due to the missing partial-wave components in the
interaction v used in Ref. 26. We also show the comput-

2.0—
4He

T=4K
q=l5A

O
0) 50—

0.0
I t I I I I I

0.5 1.0

O.O 0.4 0.8 I.2 1.6

v. (A )

I I

2.0 2.4 2.S

FIG. 1. Ratios Co, Eq. (2.18); C&, CD, Eq. (2.19), for liquid
He at T =4 K and q =13A

FIG. 2. h(p), Eq. (2.6), for nuclear matter. Solid and dashed
lines correspond to results for spectral functions from Ref. 10,
respectively, 26. The mean values 6 are indicated by a horizon-
tal bar.
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2.0—

200 p„300

y„(MeV/c)

400 500

FIG. 3. Same as Fig. 1 for nuclear matter for q =mN GeV.

IV. CONCLUSION

We have been concerned above with the description of
the approach to the asymptotic limit of the (reduced)
linear response for a nonrelativistic system [y =y(qco)]

One of our main results is a proof that the dominant
final-state interaction between the knocked-on constitu-
ent and the material is formally the same, whether the
underling description is the theory of Gersch and his co-
workers in terms of the Gersch-West scaling variable y
or a version of the standard multiple-scattering theory in
terms of the IA variable y. The two approaches above
differ only in the scaling variable y used and which re-

ed average 6: The smoothness of h(p) shows that the es-
timate (3.1) is a plausible one.

Co: For nuclei probes at q =1 GeV, Co(q, y) ~ 1 only
for quite small y & 0.2 MeV.

FSI: At present, no results exist on the "true" interac-
tion part F„Eq. (2.5) in (2.2) or (2.12}. We therefore
only entered in Fig. 3 for q/m&=1 (mz is the nucleon
mass) (q/m)CO, CD, Eqs. (2.18) and (2.19). Notice the
typical discontinuities which reflect the same in n(p).
The different behavior of the two ratio's is due to the y
increase of Co.

1/q expansion: We considered the numerical outcome
of calculations (2.23b}, i.e., the response computed by
means of spectral functions. The corresponding reduced
responses, when written in terms of the West, respective-
ly, the IA scaling variables were considered to be "data"
and were expanded in a 1/q expansion. Since the
response spreads over orders of magnitude, it is hard to
represent the limited input by stable expansion functions.
It is therefore somewhat surprising, but gratifying, to find
that, for y &0.3 GeV, the extracted two lowest-order
coefficients agree with the theoretical expressions of
P "(qy), Eq. (2.27), for the model. Higher-order
coefficient functions appear poorly determined by the set
of data and their extraction awaits more accurate results.

places the frequency variable co (the energy loss in an in-

clusive scattering experiment}. Incidentally, in the devel-
opment we encountered a term in the second series of or-
der m/q, which has been overlooked in previous publica-
tions.

The equivalence above has been called formal, " indi-
cating that the two series as functions of q are identical to
order 0(q }. However, since the coefficients of the
series are functions of scaling variables with a difference
a: q ', these may, locally in y show quite appreciable nu-
merical difFerences. Under those circumstances, a series
in one y variable may represent the response S(qco) to
given order in q

' better than a series in an alternative
variable to the same order in q '. The question then
arises which scaling variable is preferable and we dis-
cussed a simple criterion.

A somewhat undesirable feature of the multiple-
scattering series or IA scaling variable is the appearance
of some average energy, on which all terms in the series
and the ultimate result depend. Yet we could suggest a
motivated and simple choice.

%'e further investigated a third approach which has
been applied for fermion systems. There, one links the
response to the interacting particle-hole propagator
which, in an approximation, relates to the single-particle
(hole) spectral function. The latter theory has the correct
asymptotic limit, but appears to contain only part of the
exact dominant final-state interaction. Those are only
recovered if interactions are included between the parti-
cle and hole propagators.

The various approaches have been tested on liquid He
and nuclear matter, each in a q, y regime which suggest
an approach to the asymptotic region. For both forms of
matter, we determined parameters and functions related
to, and relevant for, the dominant FSI. These indicate
that, for He, one is indeed near the asymptotic region for
not too large y and also that there the particular choice of
this scaling variable hardly matters.

The situation is apparently difFerent for nuclear matter.
We considered the response computed by means of spec-
tral functions as "data" and performed a series expansion
in powers of 1/q. The extracted first two coefficients in
the series are indeed close to their theoretical values
(2.27) but the "data" are not smooth enough to reliably
extract higher-order coeicients. The order of magnitude
of their size indicates, that, even for q as large as 9 fm
convergence is only found for rather small y.

This last, still somewhat incomplete, result is yet of
relevance for the quest of scaling of actual data. That is
the possibility to represent those by Fo(y), the asymptotic
part of the reduced response, function only of a scaling
variable. With FSI effects, which are of the same order
as Fo(y}, it seems not too meaningful to try to extract
from even lower-q data information, like the single-
particle momentum distribution present in Fo.

There is clearly a need for an accurate determination,
both theoretically and experimentally, of systematic FSI
effects as discussed above. In the meantime it would be
of great interest to obtain maximum information from
OCB calculations of the response. Albeit not giving a
systematic series in 1/q, their information might very
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we11 be useful. Clearly, the study of the approach of the
response to its asymptotic limit discloses most valuable
information and its gathering will continue to be reward-
ing.
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