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E gaps for surface polaritons on gratings: Excitation by fast electrons
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We have derived the equations for light emission due to fast particles impinging on a metallic

grating. We have solved these equations numerically to study the emission peaks due to the decay
of surface polaritons (SPO's) on a Ag grating bombarded by 80-keV electrons. The SPO dispersion

curve can be inferred from these peaks. Our calculations reproduce the anomalous behavior (k gap)
of the SPO dispersion curve that was observed by Heitmann et al. near the 2m/a Brillouin zone

boundary, a being the period of the grating.

I. INTRODUCTION

The dispersion curve of surface polaritons (SPO's) (Ref.
l) on a metallic grating has been measured by various ex-
perimental techniques. In optical reflectivity experi-
ments, dips in the reflectivity of light trace out the SPO
dispersion curve. ' In experiments where the SPO is ex-
cited by fast electrons (50—80 keV) impinging on a thick
metallic grating and the SPO subsequently radiates
through the periodic grating, peaks in the emission trace
out the SPO dispersion curve. Another experiment that
is of technological interest is light emission due to tunnel-
ing current in a corrugated metal-oxide-metal (MOM)
junction. Again peaks in the emission spectrum trace out
the SPO dispersion. ' In all of these experiments the
SPO dispersion curve is determined from the dips (peaks)
through the kinematic condition

K, =E+nG=(to/c)sin8+nG .

G =2m/a is the basi. c reciprocal lattice wave vector, co is
the angular frequency of light, c is the speed of light, n is
an integer, and 8 (measured relative to the normal to the
mean surface) is the direction of the outgoing photon that
corresponds to minimum (maximum) intensity. We recall
that the SPO wave vector for the flat surface of a medium
of (complex) dielectric constant « is

1/2

K, =Re t+1
On a grating, the SPO dispersion relation is expected to
depart from Eq. (2} by the appearance of energy gaps (co

gapa) at the Brillouin zone boundaries. The surprising
fact is that all of the preceding methods have revealed

anomalous behavior of the SPO dispersion near the 2n/a.
zone boundary. ' ' The extreme form of this anomaly
can be described as the appearance of a momentum gap
(E gap) rather than an energy gap (co gap) at the zone
boundary. Recently Celli, Tran and co-workers ' have
shown that near the 2m/a zone boundary the interference
between the forward and backward propagating SPO can
alter the position of the dips in the reflectivity experiment
in such a way that the dispersion curve inferred from
these dips is anomalous. To compare with experiment a
full calculation of the system's response to an external
field is necessary; it is not enough to find the poles of the
response function in the complex to (or E) plane. Thus a
separate calculation must be carried out for each experi-
ment. In this paper we focus on the surface plasmon ra-
diation excited by electrons (SPREE) experiment, in
which fast electrons are used to excite the SPO. The cou-
pled equations for the emitted light will be derived and
solved numerically to study the SPO dispersion near the
2n /a zone boundary.

II. THE EQUATIONS FOR LIGHT EMISSION

In this section the general equations for the emitted
fields from a two-dimensional grating will be derived.
The thick film used in the experiments is replaced in the
calculation by a semi-infinite medium bounded by the
surface

z =g(x,y} .

The medium, characterized by the dielectric function
«(to), occupies the region z (g. Since the incident elec-
trons have energy in the keV range, we can treat them
classically and neglect recoil. The current due to one
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electron is then given by

j(r, t }= —ev5(r —vt —Ro), (4)

The inhomogeneous field, generated by the current in Eq.
(4},is

where v = (V, —
U j ) is the electron's velocity and Ro is the

impact parameter. In this notation vj and e are positive
quantities. Because the impact parameter for each elec-
tron is random we must average over Ro in the final
analysis.

The electric field on the vacuum side, E„,can be writ-
ten as the sum of two parts, a homogeneous field EI, and
an inhomogeneous field E;. Within the range of validity
of the Rayleigh ansatz, EI, can be expanded in the form"

E (r t)= g f E.(K co)e' e
2 lT

where (see Appendix A) for a surface of area I.

v&12 C C

with

(8)

E„(r t)=y E (K a))eiK Ref(Pz —~ )dco

K 2K
(5) K V —co

Ce=
vj

(10)

where K is the momentum in the x-y plane, R:—(x,y),
and p satisfies the equation

p = — —E2

C

The magnetic fields are given by

. cB=—i—VXE .
CO

We can further decompose this field into s and p polariza-
tion as follows:

Et, (K,co)=(K—zE/p)A (K,co)+(zX K)A, (K,to) .

The vacuum fields, E, and B„must be matched on the
boundary to the fields in the medium, E and B . We
avoid having to compute E and B explicitly by mak-
ing use of the vector equivalent of the Kirchhoff in-
tegral' with sources, which for z )g(R) gives

f dp' i—G(n'xp' )+(n'xE' )xV'G+(n' E' )V'G =f dr'G i
2

j' — V'p' + fd&'n'Gp'
c z'&g c E'

(12)

(13)

The notation a'—:a (r') has been used; n' is the normal directed into the vacuum region; G:—G(r —r') is the Green's
function of the medium, obeying the equation

2
NV' +e — G(r —r')=5(r —r') .
c

The current j and the charge density p must satisfy the continuity equation,

V.j—icop=O . (14)

We can eliminate E and B by using the boundary conditions

nXB„=nXB (15)

nXE, =nXE (16)

nE =enE
U m

Using Eqs. (5)—(11) and Eqs. (15)—(17), we get, from Eq. (12), two coupled equations for the unknowns A~(K, to) and
A, (K,co) (see Appendix 8),

and

i(q —q)g
4mie (e }x—tc

UiL' z (q,
'

q}(q,' p'}— —+q,' K+ — —K K' ~ e
c c c c E

i (p' —q)g

[(EE'+K.K'qp') A~(K', co) —qp'(K x K' z) A, (K', to)]
p p
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eider'
—eC

[K K'A, (K', co)+(KXK' z)A (K', co)]

where

i(q, —q)g
4nie

UiL' K (q,
' q}—(q,' p'—}

g ~ v ~ w —jK'.R—KX —z —(KXK' z)K' e
c c

(19)

CO

q =e —K2 — 2

C2

and, for a surface of area L,
(e lag) d R e tag(R)e —iK.R1

L2

(20)

(21)

Equations (18) and (19) are the main results of this section. They provide a starting point for numerical calculations
in the case of a periodic grating. Perturbative solutions can also be generated from these equations and can be applied
to a randomly rough surface. In either case the solution must still be averaged over Ro. As a result, each term of the
sum over K on the right-hand side contributes incoherently to the total intensity. This is demonstrated explicitly in
the next section for the particular geometry of interest, but is clearly true in general.

III. NUMERICAL RESULTS

In this section we apply the results of the preceding section to the case of a one-dimensional grating. A typical
SPREE setup is shown in Fig. 1. For a one-dimensional grating profile only Eq. (18) is needed. Its solution is of the
form

A~(K, co}=g A(K, K'}e
K'

where it is understood that A (K, K') depends on co. The average over impact parameters gives then

(22)

R A K, = A K K' (23)

Because the grating is one-dimensional, modes with different momentum along the groove do not mix, and Eq. (18}
reduces to a set of coupled equations for modes with different momentum perpendicular to the groove but with the
same momentum along the groove.

Numerical calculations were carried out for a one-dimensional sinusoidal Ag grating with a period a =433.6 nm and
a height h =17 nm (2h is the peak to valley height) to correspond to the work of Heitmann et al. ' The electron energy
is 80 keV and the incident angle is 45'. The plane formed by the incident electron and the outgoing photon is perpen-
dicular to the grating groove as shown in Fig. 1. From Eqs. (18) and (20), with a slight change of notation, ' the equa-
tion for A (K,E') reduces to

+q,' K+
C C

I

(e'" "~) 4 (e '
)

(KK"+ ")A (K",K') =
p "(p" q) — Uil. i (q,

'
q)(q,

' p' )— —
co V———E' q

(24}

K,K',E" are of the form 2mn/a, wit.h n integer. This
equation is solved for N values of K' by truncating in
each case the infinite series after N terms; N is increased
until no change occurs to three significant digits in the
averaged emitted intensity (23).

The quantity to be compared with experiment is the
power emitted per unit solid angle and unit wavelength

dP
dQdA,

L2 4

g I
A (rc, &') I' .

32c2m4 ~.
(25)

FIG. 1. Illustration of surface plasrnon radiation excited by
electrons (SPREE) experiment.

In Fig. 2 the calculated emission peaks at fixed A, are
plotted along with the corresponding experimental data.
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FIG. 2. Plot of the emission peaks from constant frequency
scans. The experimental data are from Ref. 1.

The theoretical calculation is a little higher in energy, but
the agreement with experiment can be improved by de-
creasing the real part of the dielectric constant, which is
interpolated from the data of Johnson and Christy, ' by
about 5%. Another possible explanation of the small
discrepancy is that random roughness, which is always
present, has not been taken into account. The size of the
k gap, which is at 2n/a, shows excellent agreement.
Both theory and experiment show the absence of a peak
for 8)0 around X=470 nm. However, the theory pre-
dicts that the intensity of the peaks increases only slightly
as one goes to higher frequency, while Heitmann et al. '

report that the intensity of the peaks increases sharply at
higher frequency. Figure 3 shows the computed constant
frequency scans.

In conclusion, we have obtained a set of coupled equa-
tions that can be used as a starting point for a perturba-
tive or numerical solution of a general SPREE problem
on a shallow grating. We have solved them numerically
and found the anomalous dispersion of surface polaritons
near the 2m. la zone boundary on a one-dimensional Ag
grating that has been observed experimentally.

APPENDIX A

1.5 476nm
In this appendix we derive the fields due to a current in

a medium characterized by a dielectric constant e(co).
The current is of the form

0.5
j(r, t)= ev5(r Re—vt) .— —

The Fourier transform of j with respect to R and t is

(Al)

e~
C

6$

1.5
6$

0)
LLI

0.5
Z

j(K, co, z)= fdRdte'"'e ' '"j(r, t)= — e ' e
Uj

(A2)

where

KV —m
q, =

Vj

The Hertz vector potential A (K, co,z) obeys the equation

1.5

(c)

r

d2 co+e — —K A(K, a), z)=-
dz

4m.i .j(K,co,z) .
N6'

(A4)

The solution to (A4) when j(K,co,z) is given by (A2) is

0.5

iq z —iK-Ro
v 4m.i e 'e

A(K, co,z) =( —e)
Vj NE q

—
q

(A5)

0 I

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

where

K (units of 2n'a) q =e — —If
co

C
(A6)

FKJ. 3. Constant frequency scans corresponding to Fig. 2. The E Geld is given by
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'2

E(r, co) =V[V A(r, (v)]+e — A(r, (v}
C

(A7)
A(r, (v) = g e' A(K, (v, z) .1

K
(AS)

with Inserting (A5} into (A7} we get

4qrie iK.(R—R, ) iq, z ri) v qeK+ zErgo= —
2

e e q,
—

q
viL C C E

To obtain the vacuum solution, put e= 1 and replace q by p, Eq. (6}. The result is given as E, in Eqs. (8) and (9).

(A9)

APPENDIX B

In this appendix Eqs. (18) and (19) will be derived. First, to express Eq. (12) in terms of the fields in the vacuum re-
gion the boundary conditions [Eqs. (15)—(17)] are used:

f d$"' i G—(n'XB' )+(n'XE'„)XV'G+ —(n' E'„)V'G = f dr'G i, j' — V'p' + fd~'n'Gp' ..CO, p r g r 1 g i g .4m' ., 4m'

C z'&g C E
(B1)

G (r—r'), which is the solution to Eq. (13), is

G (
i
} y iK.(R—R') iq ~z

—z'(

L2
K 2q

(B2)

The current can be written as (see Appendix A)

V iK (R—Ro) iq zjr, (o = e 'e'.
L K "i (83)

By the continuity equation, the charge density is

iK (R—Ro) iq z
prcv = e 'e

v&L

Inserting Eqs. (B2)-(B4)into the first term on the right-hand side of Eq. (Bl) we get
I

f (
—i(q, —

q)C)

c' e L' „K 2iqvi(q,
' —q) c'

Similarly

—i(q, —q)g

fdS'n'Gp'= —e
2 g e' e'q'g —(K'+q,'z —K—qz)e

E L K K 2iqv(q, ' —q)

—iK' R
e

(B4)

(B5)

(B6)

where the identity

n=(z —Vg)/[I+(Vg)']' '

has been used and integration by parts carried out. The integrand on the left-hand side of Eq. (Bl) can be written as

(B7)

i G(r —r'—}(n'XB'„)+(n' X E'„)X V'G(r —r')+ —(n' E'„)V'G(r —r')

where

=g [n'X(V'XE'„}+(n'XE', ) X( —ik)+ —(n' E'„)( ik)]G(K, co—,z —z')e' ' ', (B8)
K E

k=K+qz, (B9)

G(K, co, z —z')= e'q'
2qL

Following Ref. 15 we get for the homogeneous fields,

(B10)
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fdS' i —G(n'XB'„)+(n'XE'„) X V'G+ —(n' Eh )V'G

For the inhomogeneous fields we get

k, co=g e' ' e'q'g, (1—e) —k.E&(K')— — E~(K') . (811)
2q (p' —q ) C

f i —G(n'XB,'. }+(n'XE,') XV'G+ —(n' E,')V'G
c

(
'(qe q~~)

4~ie y iK R iqz y
ujL rc K 2q(q,

' —q)(q,
' —p )

—'K' R
(k k') ——k,' k k+(k,' k')k,' —(k,' —k )k' e

E'

(812)

where

k', =K'+q, z
and

C C
e

e

(813)

(814)

Substituting Eqs. (85), (86), (Bl 1), and (812) into Eq. (81)
will give the vector equation from which Eqs. (18} and
(19) are obtained. First, we Fourier transform with

respect to R to eliminate the sum over K. Then taking
the dot product with two vectors (qk, —Ez) and
(z Xk), Eqs. (18) and (19) follow.
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