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Removal of accidental degeneracies in semiconductor quantum wires
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We obtain the energy levels of carriers in rectangular GaAs/Ga,_, Al, As quantum-wire hetero-
structures with finite barriers using finite-element analysis. The energy spectra obtained are dramat-
ically different from those determined analytically with use of the infinite-barrier approximation.
The infinite-barrier approximation also introduces extra degeneracies in the energy spectra as a
consequence of the separability of the potential. These accidental degeneracies are removed when
the barrier height corresponding to the band offset of the surrounding medium is used in calculating
the energy levels. Group-theory considerations of the square are used to explain the removal of

these accidental degeneracies.

I. INTRODUCTION

The ability to confine electrons spatially in a controlled
way in semiconductor heterostructures has led to the ob-
servation of remarkable new optical and transport prop-
erties in such structures.! Consequences of one-
dimensional confinement in planar layered structures and
the resultant quantized energy levels have been explored
in great detail over the past two decades. In 1980,
Sasaki’ considered theoretically the consequences of
growing heterostructures which would confine electrons
in two dimensions, the so-called quantum wire (QW) or
the two-dimensional quantum well. Since then, control
over growth at an atomic level has allowed the construc-
tion of such heterostructures.’ As in one-dimensional
confinement, the principal effect is to profoundly change
the energy spectra of electrons which in turn influence
the optical and transport properties of the composite ma-
terial.*

In this paper we obtain the energy levels of electrons
and holes in a quantum wire of GaAs with a finite
confining potential arising from the band offset of the sur-
rounding Ga,;_, Al As medium. Earlier theoretical con-
siderations have either assumed that the confining poten-
tial is infinite,’ or have used a periodic arrangement of
QW’s which converts the problem to the determination
of narrow energy bands in a periodic structure using
tight-binding models.® Our results show that the energy
levels for the finite potential are significantly lower than
those obtained with the infinite barrier, which suggests
that the infinite-barrier approximation is not valid for
quantum wires. More striking, however, is the lifting of
the degeneracies of certain levels of a quantum wire with
square cross section when a finite-barrier potential is used
in calculating the energy spectrum.

In Sec. II, the finite-element method is used to solve
the Schrodinger equation in the effective-mass approxi-
mation. We give results for the carriers in
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GaAs/Gay 4;Al; 3;As for quantum wires of typical di-
mensions and show that certain degeneracies of the
infinite square wire are lifted. In Sec. III, we use group-
theoretical arguments to explain which of the degenera-
cies present in the infinite square well are lifted when a
finite barrier is used. We investigate the dependence of
the splitting of the doublets on the barrier height for
heavy holes over a range of concentration x of Al in the
Ga,_,Al, As barrier.

II. FINITE-ELEMENT ANALYSIS
OF THE QUANTUM WIRE

In the envelope-function approximation’ (EFA), the
differential equation for the electron’s envelope function
f(x,y) contains a nonseparable potential V(x,y) corre-
sponding to a finite barrier height,

—(#2/2m*)(3%/0x2+ 32 /3y ) f (x,)+ V (x,9)f (x,)
=Ef(x,y), (1)

where m* is the carrier effective mass m, or m; in the
well or in the barrier, respectively. The potential
V(x,y)=0 for |x|<a/2 and |y|<b/2, and V =V, out-
side the well of dimension a Xb centered at the origin.
The input parameters for the band offsets and effective
masses of conduction electrons, light holes, and heavy
holes in GaAs and in Ga,_, Al As are obtained in the
same way as in the earlier investigation of the Bastard
models.’

The finite-element method (FEM) is used to solve Eq.
(1) for the energy levels as well as the eigenfunctions
f(x,y). The FEM is a flexible variational method and
the efficacy of this method in solving quantum-
mechanical problems with nonseparable potentials has
been well established.” The region of interest is parti-
tioned into small elements in each of which the physical
conditions of the problem hold. The unknown function
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TABLE I. Conduction-electron energy levels in GaAs/Gag g;Alg 37As QW’s, with m) =0.0665m,
and m,; =0.0858m,. The quantum numbers (n,,n,) are also indicated.

Cross-sectional area Energy (meV) Energy (meV)

axb (A? V,=276 meV (n,,n,) Vo=c (g,m,)
50X 50 155.3 (1,0 452.4 (1,1)
100X 50 111.1 (1,1) 282.7 (1,1)

197.6 @, 452.4 2,1

100X 100 63.5 (1D 113.1 (1,1

155.2 (1,2) 282.7 (1,2)
155.2 @1 282.7 @1
239.6 2,2 452.4 2,2)
274.2 (1,3+(3,1) 565.5 (1,3)
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FIG. 1. Heavy-hole wave functions in a 100X 100 A? QW for (a) the ground state (1,1), (b) the first excited state (2,1), and (c) the
excited state (2,2).
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TABLE II. Light-hole energy levels in GaAs/Gag ¢Aly 1;As QW’s, with m, =0.0905m, and

my=0.1107m,.

Cross-sectional area

Energy (meV)

Energy (meV)

axXb (A V=184 meV (ny,n,) Vo= (n,,n,)
50X 50 110.7 (1,1 3324 (1,1
100X 50 79.8 (1,1 207.8 (1,1

141.3 @,1) 3324 2,1)

100X 100 46.0 (1,1) 83.1 (1,1

111.7 (1,2) 207.8 (1,2)
111.7 @2, 207.8 ,1)
171.0 2,2) 3324 2,2)

in each element is approximated by local Hermite inter-
polation functions which have the property that the ex-
pansion coefficients correspond to the values of the func-
tion and its derivatives at select points, called nodes, in
the element. The global function f(x,y) is constructed
by joining the locally defined interpolation functions and
requiring that f(x,y) and its derivatives are continuous
across the element boundaries. In the FEM, it is quite
easy to implement the boundary condition at the well-

barrier interface, which requires the continuity of f(x,y)
and continuity of the effective-mass derivative. The
resultant eigenvalue problem can be solved for the energy
spectra and the values of f,df /0x, df /3y, and 3f /3xdy
at the nodes. Details of the two-dimensional FEM are
given in Ref. 9.

In Tables I-1II, we give the FEM values for the energy
levels of conduction electrons, light holes, and heavy
holes in GaAs/Ga, ¢Alj 37As rectangular wires of di-

TABLE III. Heavy-hole energy levels in GaAs/Gag ¢;Aly 3;As QW’s, with m .} =0.3774m, and

my =0.3865m,.

Cross-sectional area

Energy (meV)

Energy (meV)

axb (A? Vo=184 meV (ny,m,) Vo=oo (n,,n,)
50X 50 46.5 (1,1) 79.7 (1,1)
112.2 (1,2) 199.3 (1,2)
1122 2,1 199.3 2,1)
172.7 2,2) 318.8 2,2)
100X 50 30.9 (1,1) 49.8 (1,1)
53.1 @1 79.7 @,1)
89.5 3,1) 129.5 (3,1)
97.4 (1,2 169.4 (1,2)
119.0 2,2) 199.3 2,2)
138.2 ,1) 199.3 @,1)
154.0 (3,2) 249.1 (3,2)
182.8 (1,3)+(5,1) 288.9 (5,1)
100X 100 15.1 (1,1) 19.9 (1,1)
374 (1,2) 49.8 (1,2)
374 @1 49.8 @1
59.7 2,2) 79.7 2,2)
74.0 (1,3)+3,1) 99.6 (1,3)
74.2 (1,3)—=(3,1) 99.6 3,1)
96.2 2,3) 129.5 2,3)
96.2 3,2) 129.5 (3,2)
123.4 (1,4) 169.4 (1,4)
123.4 4,1) 169.4 4,1)
132.2 (3,3) 179.4 (3,3)
144.2 2,4+ 4,2) 199.3 2,4)
145.9 (2,4)—(4,2) 199.3 4,2)
179.4 (3,4) 249.1 (3,4)
179.4 4,3) 249.1 4,3)
178.32 (1,5)+(5,1) 259.1 (1,5)
179.70 (1,5)=(5,1) 259.1 (5,1)
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mension 50X 50 A2, 100X50 A2, and 100X 100 A2 A
conduction-band offset of 0.6AE, at the heterointerface
was used in the calculations. Energy values reported here
are accurate to within 0.1 meV. As in the case of one-
dimensional quantum-well confinement, it is convenient
to label the energy levels using the quantum numbers
(ny,n,) associated with the infinite well, where n, and n,
are the quantum numbers for the one-dimensional infinite
square well in the x and y directions. The energy levels
obtained using the infinite barrier approximation are also
included in Tables I-III for comparison. Note that all of
the energy levels are lowered from the values obtained
with an infinite barrier. The effect of the finite potential
is greater for small a and b and for energy levels ap-
proaching V,. For the 50X 50 A 2 QW, the single bound
state of the conduction electron and of the light hole are
reduced in energy by a factor of 3 from the infinite bar-
rier result. Clearly, the infinite barrier approximation is
invalid in this case.

Wave functions for three low-lying states for heavy
holes in a 100X 100 A 2 QW are shown in Fig. 1. As ex-
pected, the FEM wave functions are similar to their
infinite well analogs except that they leak out into the
classically forbidden barrier region. The amount of bar-
rier penetration increases as the energy level approaches
the barrier height.

Note that the degeneracy for the (2,2) and (4,1) states
of the infinite rectangular well (100X 50 A ?) is removed.
This degeneracy is present only in the infinite well be-
cause the energy is simply related to the dimension of the
well and the quantum number, and the rectangular well
was chosen to have commensurate sides. It is also in-
teresting to note that there is a mixing of the states (5,1)
and (1,3) for the finite rectangular well. The state lower
in energy is predominantly (1,3), and the state which is
slightly higher in energy is predominantly (5,1). At
x =0.37 only the lower state is bound, and its energy is
reported in Table III. However, at concentration
x =0.4, both states are bound and the FEM wave func-
tions exhibit this mixing of states. Such mixing can be
expected only if two states that are close in energy have
the same symmetry in x and y. Of course, this mixing
will depend on the dimensions of the rectangular well.

We note that the currently available quantum wires
have typical dimension of the order of 1000 A, in which
we would expect the effect of the finite barrier to be less
pronounced than in the examples shown in Tables I-III.
We have calculated the energy levels of conduction elec-
trons in the square quantum wire of 1000 A, using a finite
barrier of 276 meV. The first few levels are lowered by
about 5% from the value obtained in the infinite barrier
approximation. For higher levels, the effect is accentuat-
ed as the levels approach the barrier height V,.

In the next section we examine the removal of certain
degeneracies of the infinite-barrier-square-well spectra.

III. SYMMETRY PROPERTIES
OF THE SQUARE QUANTUM WIRE

The symmetry properties of the envelope functions for
the square quantum wire are governed by the symmetry
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of the potential, C,,. The character table for the point
group C,, is given in Ref. 10. The effects of the operators
{E,C,,2C4,20,,20,} for this group on the function
f(x,y) are

Ef(x,y)=f(x,y),
C,f(x,y)=f(—x,
Cof (x,y)=f(y
C.lf(x,y)=f(—y,x),
o, f(x,y)=f(—x,y),
o flxy)=f(x,—y),
o f(x,y)=f(y,x),
ad_lf(x,y)=f(—y,-x).

,—x) ’

(2)
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FIG. 2. The dependence of heavy hole energy levels on the
barrier height in a 100X 100 A 2 QW for (a) the first 10 energy
levels and (b) for levels 11-13.
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It is straightforward to determine the representation
corresponding to the infinite-well eigenfunctions (n,,n,).
The (odd,odd) singlet states with n, =n, belong to the 4,
representation and the (even,even) singlet states belong to
B,. The degenerate states with n,7n, can be classified
as follows:

y

(even,odd) and (odd,even): E ,
A,+B,,

A,+B, .

(even,even):

(odd,odd):

Since the (even,even) and (odd,odd) degenerate states are
combinations of two distinct irreducible representations,
the degeneracy of these levels is not a consequence of the
symmetry group of the square, but rather is due to the
separability of the infinite square-well potential. Using
linear combinations of the standard (n,,n,) eigenfunc-
tions it is possible to construct eigenfunctions which cor-
respond to one of the one-dimensional irreducible repre-
sentations 4,, 4,, B,, or B,. For example, (1,3)+(3,1)
transforms as 4, and (1,3)—(3,1) transforms as B,. As
we shall see, these are a more natural choice for the basis
functions of this two-dimensional subspace in that they
are the V;— oo limit of the finite barrier eigenfunctions.

For finite barriers, the potential is nonseparable and
the accidental degeneracy which was present in the
infinite barrier case for the (even,even) and (odd,odd) lev-
els is lifted (see Table III). The state that is antisym-
metric about the diagonal of the square (B, 4,) is less
bound than its symmetric counterpart (4,,B,). As ex-
pected, the splitting of these particular energy levels de-
creases as the barrier height increases, and in the limit
Vo— o, the states are truly degenerate. In Fig. 2, we
show this dependence of level splitting on barrier height
for heavy holes in a 100X100 A? GaAs/Ga,_ Al As
wire for the compositional range 0.1>x >0.4. In some
cases, the splitting of the doublet results in one state be-
ing bound, and the other free; for example, at x =0.1, the
state (1,3)+(3,1) is bound, but (1,3)—(3,1) is unbound.
Also note that the energy levels for the (1,5)£(5,1) actual-
ly cross over the (3,4) level; hence, even the ordering of
the energy levels is a function of V.

The FEM wave functions for the square well with finite
barrier are similar to their infinite barrier analogs except
that there is penetration of f(x,y) into the barrier region.
For the degenerate states of the E representation, any
two orthogonal states which span the subspace are ac-
ceptable eigenstates. In the cases where the degeneracy is
removed, the wave functions for the finite barrier must
correspond to a single representation as required by the
group properties; the wave functions are either even or
odd with respect to reflection through the diagonals. The
FEM wave functions for the states (1,3)+(3,1) and
(1,3)—(3,1) are shown in Fig. 3 over a single quadrant
(x,y Z0) for clarity of presentation; the antisymmetric
state vanishes at x =y as expected.

By studying the symmetry properties of the confining
potential, it is straightforward to predict which of the de-
generacies present in the infinite barrier approximation
are due to the separability of the potential, and hence are
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accidental and will be removed in the presence of a finite
barrier. One can apply this analysis to the more interest-
ing case of the three-dimensional quantum cubic dot,
where the lowest 40 levels of infinite barrier spectrum
have at most threefold, sixfold, ninefold, and twelvefold
degeneracies. Degeneracies that arise from nonidentical
quantum numbers [for example, (2,2,5) and (4,4,1)] are

(ne. ny) =(3,1)+(1, 3)

(@)

(na. ny) =(3,1)=(1, 3)

(b)

FIG. 3. Heavy-hole wave functions in a 100X 100 A? QW for
(a) the excited state (1,3)+(3,1) and (b) the excited state
(1,3)—(3,1), in the first quadrant.
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automatically broken for a finite barrier since the energy
is no longer simply related to the quantum numbers. The
other degenerate states for the infinite barrier quantum
cubic dot can be analyzed by looking at the behavior of
the analytic solutions under the operations for the cubic
group O,. Since all of the representations of O, are one-,
two-, or three-dimensional,'” the energy spectra for the
finite barrier quantum dot can have at most threefold de-
generacies. Consequently, the spectrum for the finite bar-
rier will contain many doublets and triplets whose split-
ting depends on the barrier heights. Finite element calcu-
lations for the cubic quantum dot are in progress.

IV. CONCLUSION

The FEM provides realistic numbers for the energy
spectra in rectangular quantum wires. Such accuracy is
crucial in the study of linear and nonlinear optical prop-
erties of semiconductor heterostructures. In particular,
we show that the infinite barrier approximation is invalid
and leads to serious errors in both the qualitative and
quantitative aspects of the energy spectra. FEM can be
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readily applied to two-dimensional confinement problems
where the effective mass and the potential are more com-
plicated functions of the coordinates; it is also possible to
accommodate any cross-sectional configuration, includ-
ing QW’s grown on grooves. Finally, the extension of
FEM to the problem of three-dimensional confinement is
straightforward and our results will be forthcoming.
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