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Positron trapping into vacancies in semiconductors is studied on the basis of Fermi’s golden-rule
calculations. The empbhasis is put on the comparison of the trapping properties into defects in
different charge states. In particular, the temperature dependences are investigated. Important
features for vacancy-type defects in semiconductors are the localized electron states within the for-
bidden energy gap and (in the case of negatively charged defects) the weakly bound Rydberg states
for positrons. Compared to vacancy-type defects in metals, these features make possible new kinds
of trapping mechanisms with electron-hole and phonon excitations. For charged defects the
Coulomb wave character of the delocalized positron states before trapping determines the ampli-
tude of the wave function at the defect and thereby strongly affects the magnitude of the trapping
rate. As a result, trapping into positively charged defects is effectively forbidden while negatively
charged defects show remarkable properties which differ from the picture established for positron
trapping in metals. The trapping rate into negative defects increases strongly with decreasing tem-
perature and at very low temperatures “gigantic”’ values may result.

I. INTRODUCTION

Studies of defects in semiconductors by positron an-
nihilation techniques have increased rapidly during the
last years.’> Positron lifetime measurements have given
new information about various properties of native and
introduced defects. Theoretical work has had an impor-
tant role in deepening the understanding of the positron-
defect interactions in semiconductors.’~> One of the key
questions is how a positron makes a transition from a
delocalized bulk state in the crystal to a localized state
provided by a vacancy-like defect. This process is called
“positron trapping.” The most important issues in trap-
ping are the capture mechanisms which determine the
trapping coefficient, i.e., the magnitude of the transition
rate, and its temperature dependence. Positron trapping
has been much less studied in semiconductors than in
metals where the subject is well documented both
theoretically and experimentally.%” In semiconductors,
there is experimental evidence that the characteristics of
positron trapping into vacancy defects vary considerably
between different semiconductors and with the position
of the Fermi level in a given semiconductor.®”!! Posi-
tron capture at negative ions has also been observed.'?
Different capture mechanisms have been discussed to ex-
plain the positron behavior but the present paper is the
first one to report on a systematic theoretical survey and
to present calculations of the resulting trapping coef-
ficients.

The process of positron trapping into defects in metals
is more or less well understood.*” In the case of spatially
small traps such as vacancies the trapping process is tran-
sition limited.!* The trapping coefficient is a temperature
independent constant of magnitude ~10' s~!. The
dominant process taking care of the energy transfer from
the positron to the host is electron-hole pair creation.
Phonon creation is usually not important because the
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binding energy liberated is so large that it cannot be tak-
en by a single phonon and multiphonon processes are
very ineffective. In the case of larger voids the trapping
process eventually becomes diffusion limited, and the
trapping coefficient can depend on temperature.!* There
have also been numerous suggestions of shallow traps
(such as dislocations) which are operative only at low
temperatures where thermal detrapping is slow and/or
act as precursors to deeper traps (such as jogs in the case
of dislocations).’> It has also been suggested that low-
energy scattering resonances could strongly enhance the
trapping rate of epithermal positrons into small vacancy
agglomerates.'®’

The knowledge of positron trapping in metals cannot
be directly transferred from metals to semiconductors.
The existence of the band gap modifies the densities of in-
itial and final electron states in the electron-hole creation
process. According to theoretical calculations™* the pos-
itron binding energy at a vacancy can often be smaller
than the electron band gap so that electron transfer from
the valence band to the conduction band becomes impos-
sible. On the other hand, there are localized electron
states in the band gap induced by the defects themselves.
The excitation of electrons from these localized levels can
provide an efficient channel for consuming the positron
binding energy. In addition, electronic screening is re-
duced in semiconductors in comparison with that in met-
als. Thus the net positron-electron interaction is stronger
in semiconductors, which has an enhancing effect for
trapping.

Another important difference between metals and
semiconductors is that defects in semiconductors may ex-
ist in several charge states. Positive defects are expected
to repel positrons. Negatively charged defects are ex-
pected to be strongly attractive to positrons due to their
attractive long-range Coulomb potential. This Coulomb
tail can affect the capture mechanism into vacancies by
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inducing several positron Rydberg states with low bind-
ing energies. These states may act as precursor states in
the trapping process and thereby enhance the overall
trapping coefficient for the defect.

According to several measurements® '® the positron
trapping rate in semiconductors may in some cases de-
pend strongly on temperature: when temperature de-
creases the trapping rate increases rapidly. For example,
in a recent work Mikinen et al.'” reported that the trap-
ping rate into vacancies in Si increases by a factor of 10
when temperature decreases from 120 to 20 K. On the
other hand, in the case of heavily P-doped Si Makinen
et al. found that the positron trapping rate is tempera-
ture independent as in metals. There exist only a few es-
timations for the trapping coefficient in semiconductors
because the concentration of defects is rather difficult to
estimate in most cases. The room-temperature trapping
coeflicient for divacancies in Si has been found to be simi-
lar to those in metals, ie., (2-3)X 10" s~ 1139 The
values estimated for As vacancies in GaAs and vacancy-P
pairs in heavily P-doped Si are slightly larger: 6X10'*
s~ (Ref. 19) and 2X 10'® s71,10 respectively. In the case
of the strongly temperature-dependent trapping into va-
cancies in Si, Mikinen et al.!® estimated that the trap-
ping coefficient at low temperatures reaches a “gigantic”
value of 107 to 108571,

Positron trapping in semiconductors is to some extent
analogous to the capture of free carriers at defect
centers.’®2! The capture processes of electrons and holes
have been extensively studied in semiconductor physics
for decades. There are, however, important differences.
The density of free carriers is nonzero whereas there is
only one positron in the sample at a time. The single-
particle picture for a positron is thus more obvious.
Secondly, band-structure effects for thermalized positrons
are much less severe than for electrons and holes in
several valleys with effective masses differing consider-
ably from unity. In order that trapping by a vacancy-
type defect is actually seen in positron lifetime experi-
ments a positron has to reach its ground state in the de-
fect which is a rather localized state separated from the
possible Rydberg states. This implies also that each stage
in the trapping process has to be faster than the relevant
positron annihilation rate (~10'°s™!) in the final trapped
state. In the case of free carriers, trapping at defects only
involves sticking into a localized excited state and the
concomitant loss of mobility. There is no need for the
carriers to reach the ground state as there is for posi-
trons. Direct mobility measurements for positrons, on
the other hand, are very difficult, but useful indirect in-
formation is obtained from back-diffusion studies utiliz-
ing variable energy positron beams.

In this paper we present results from calculations for
positron trapping in vacancies and negative ions in semi-
conductors. We rely on recent first-principles calcula-
tions® for electron and positron states in semiconductors,
and model the relevant trap potentials and wave func-
tions so as to make explicit numerical calculations of the
trapping rates feasible. First, we consider positron trap-
ping processes in which a delocalized positron is trapped
into the ground state at a vacancy. We examine two
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energy-loss processes in which electrons carry away the
energy released by the positrons: electron-hole excitation
(i) from the valence band to the conduction band and (ii)
from the localized defect-associated levels to the conduc-
tion band. Secondly, we investigate a (iii) phonon-
assisted capture in which a delocalized positron is
trapped into a Rydberg state at a negative vacancy or
ion. Thirdly, we study two capture processes in which a
weakly localized positron makes a transition into a
deeper localized state. The first of these processes is (iv)
phonon assisted and concerns transitions between Ryd-
berg states at negative vacancies and ions. The second
takes place at a negative vacancy (v) from a Rydberg
state to the ground state and is mediated by the electron-
hole excitation process (i). The temperature dependen-
cies of the five transition mechanisms are considered. Fi-
nally, we propose a two-state capture model which de-
scribes positron trapping into negative vacancies at low
temperatures. In this model a positron is first trapped
into a Rydberg state by the emission of a single phonon
and thereafter the transition into the ground state occurs
via the electron-hole excitation process (i) or (ii).

II. THEORY

Positrons implanted with a high energy of about 1
MeV into metals thermalize within a few picoseconds
through various excitation processes.®’ This is also true
when the target medium is a semiconductor.”? At high
positron energies, ionizations and electron-hole excita-
tions dominate the energy loss. When the positron kinet-
ic energy is lowered to approximately 0.5-1.0 eV cou-
pling to the phonons starts to take over. Because in semi-
conductors the energy gap is of similar magnitude, the
cutoff of the electron-hole excitations due to the energy
gap is not very important. Therefore positrons reach
thermal equilibrium within a few picoseconds also in
semiconductors, and the starting point for trapping into
defects is a thermal equilibrium distribution for delocal-
ized positron states. In the present calculations we use
the Maxwell-Boltzmann distribution.

In this work we calculate the transition rates from
delocalized positron states to the localized ones, i.e., the
trapping coefficients for the different capture processes
(i), (ii), and (iii) and the rates for the transitions between
two localized states, (iv) and (v). We described these pro-
cesses at the end of the Introduction and they are also il-
lustrated schematically in Fig. 1. For the capture pro-
cesses in the transition-limited region the trapping
coefficient is given to first order by Fermi’s golden-rule
formula (atomic Hartree units are used)?

v=4r 3 P,P/|M, (|*8(E,—E,), (1)
Lf

where P; is the probability that the initial combined
positron-host state |i ) is occupied and P the probability
that the final state |f ) is allowed (in the case of electron-
hole excitations the final electron state has to be unoccu-
pied). M,/ is the matrix element of the interaction po-
tential taking care of the energy transfer from the posi-
tron to the host and is calculated between the initial and
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FIG. 1. Positron capture (i), (ii), and (iii) and transition pro-
cesses (iv) and (v) with energy-loss mechanisms.

final states. The summations are extended over all possi-
ble initial and final states fulfilling the energy conserva-
tion. When the initial positron distribution is described
by the Maxwell-Boltzmann form the trapping coefficient
for a given temperature T is calculated as the average

_ 2
wT)= (kg TV
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where kj is the Boltzmann constant and m . the positron
effective mass. The positron effective mass is assumed in
all calculations of this work to be equal to the free-
positron mass (m =1 a.u.). The transition rates be-
tween two localized states are also given by Eq. (1) (see
Sec. ITe).

In a sample containing one type of positron traps, the
populations of delocalized and trapped positron states are
conventionally described by the kinetic equations of the
so-called two-state trapping model.?* Three independent
parameters are used in the equations: (i) the trapping rate
k giving the probability per unit of time that a positron
gets trapped, and the annihilation rates in (ii) the delocal-
ized state and in (iii) the localized state. In the
transition-limited regime, « is proportional to the concen-
tration ¢, of the traps. The factor of proportionality is
the trapping coefficient v. Moreover, if the binding ener-
gy of the positron to the trap is low (@ shallow trap), the
escape (detrapping) of the positron back to a delocalized
state has to be taken into account at nonzero tempera-
tures. When the delocalized and the trapped states are in
thermal equilibrium (the principle of detailed balance),
the detrapping rate & and the trapping rate x at a given
temperature T are related as?’
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Above, E, is the positron binding energy in the (shallow)
trap.

In order to perform numerically the various integra-
tions implied by Eq. (1), we need to make explicit the in-
teraction potential and to define the initial and final posi-
tron and host wave functions. We describe first the mod-
el which we use in calculating the positron wave func-
tions and then for each capture mechanism we detail the
models for the interaction potential and the host wave
functions. We take the host semiconductor in our calcu-
lations to mimic Si and as the traps we consider the Si va-
cancy in its four charge states +, 0, —, and 2—. Some of
the results are also representative for negative acceptors
like boron.

A. Positron states

In the case of the capture mechanisms (i), (ii), and (iii)
described in Fig. 1, the initial positron wave function is
delocalized whereas the final wave function is localized at
the defect. The transitions (iv) and (v) occur between lo-
calized positron states at the defect. The delocalized pos-
itron states in Si and the localized positron ground state
at the Si vacancy have been recently calculated by using a
self-consistent Green-function method.> For the present
purpose it suffices to use the following simple model, the
parameters of which have been chosen to match the
relevant properties of positrons as calculated in Refs. 3
and 4. For the neutral vacancy, the positron states are
taken to be solutions for a square-well potential (Fig. 2).
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FIG. 2. Positron model potentials for singly negative, neu-
tral, and singly positive Si vacancy.
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TABLE 1. The model parameters for the positron and elec-
tron states used in the calculations. The parameters correspond
to the model for neutral vacancies. The construction of poten-
tial for the charged vacancies is explained in Fig. 2. For the
charged vacancies the spatial extent of the bound wave func-
tions is practically the same as that for the neutral vacancy but
the bound state energy levels are shifted by the same amount
[Q X 0.1 eV] as the potential near the vacancy.

Positron states:

Potential box width 4.8a,
depth 35 eV
1s bound state binding energy E, 0.94 eV
Average radius (r, ) 4.3a,
Electron states:
Potential box width 6.4a,
depth 42 eV
1p bound state binding energy E, 0.53 eV
Average radius (r, ) 6.0a,

The width and depth of the potential well (see Table I)
are chosen so that the s-like ground state has a binding
energy and spatial extension identical to those obtained
in Refs. 3 and 4, respectively. Charged vacancies are
modeled by adding a 1/€(0)r tail to the square-well po-
tential, where €(0) is the static dielectric constant. The
resulting potentials sensed by positrons at the negatively
charged vacancy ¥V~ and the positively charged vacancy
V'* are shown in Fig. 2. The Coulomb tail has to be cut
off when approaching the vacancy from infinity in order
to mimic the weak localization of the “extra” electron
charge. Therefore near the vacancy we shift the potential
by the amount of Q X(0.1 eV),?6 where Q is the charge
state of the vacancy and 0.1 eV the value of the Coulomb
potential at the cutoff. This constant potential shift does
not change the positron localization in the bound state
and the energy eigenvalue is simply shifted by the same
amount as the potential. But the potential shift and the
Coulomb tail can have a large effect on the delocalized
positron wave functions at thermal energies.

The delocalized positron states are scattering states in
the above potentials. In the case of the state with a wave
vector p we write

u[,p(r)=‘i%— 3 i Y YRR, (), @
ILm

where (1 is the normalization volume and Y;™s are spher-
ical harmonics. R,, is the radial function solved for the
square well in question. The solution of the Schrodinger
equation also gives the phase shifts §,. The final bound
positron state wave function is denoted as

u (=Y ®)Tpr) . (5)

It is important that as an exact solution for the potential
well the delocalized state shows scattering resonances as
a function of the positron energy. At a resonance the
positron trapping coefficient can enhance even orders of
magnitude relative to the off-resonance values.!®!?

In the practical calculations of this work the partial

waves in Eq. (1) have been obtained by integrating nu-
merically the Schrédinger equation from the origin out-
wards. The normalization of the delocalized wave func-
tions and the determination of the phase shift have been
done by fitting the integrated function to the asymptotic
solution at a given cutoff radius. The asymptotic solution
for a neutral vacancy is a plane wave whereas in the case
of charged vacancies it is a Coulomb wave.

B. Interband electron-hole excitation

In the case of the interband electron-hole excitation the
energy given by a positron in the trapping process raises
an electron from the valence band to the conduction
band. In a real semiconductor the valence and conduc-
tion bands have complicated structures (e.g., light- and
heavy-hole bands) due to the discrete lattice structure
with several ions in the unit cell. Moreover, the
minimum band gap may be, as in the case of Si, an in-
direct band gap. Our purpose being to obtain the qualita-
tive features of the interband electron excitation, we
neglect all these complications and describe the electrons
by the following simplified model illustrated schematical-
ly in Fig. 3. The valence and conduction bands are taken
as parabolic, separated by the energy gap E,, and de-
scribed by effective masses m, (valence band) and m,
(conduction band). The maximum k vector of the
valence band has the magnitude of k, =(37n,)!’? deter-
mined by the valence electron density #, in Si. The initial
and final electron states in this process are thus con-
sidered as plane waves. In the transitions the electron k
vectors of the initial and final states may differ from each
other.

Within the above model the transition rate (1) can be
calculated as

vip)=473 3 IM(p,q)|*O(k, —k)8(E,—E/;) , (6)
k q

where the k summation runs over the initial electron k
values in the valence band and q is the momentum
transfer. © is the step function. A straightforward cal-

t E(k)

Conduction
band (m_)

Valence
band (m,)

FIG. 3. Interband electron-hole excitation.
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culation gives

v(p)=4n 2[da, |M(p,q)|2( 9)3
xf dk21rk2 1z,
(7
where
=X ®)
m(.‘
and
2 2 2
__p- _ k? _k°  q
z 2m, 2m, ~E 2m, 2m, ©)

In order to get the trapping coefficient (i.e., the trapping
rate per unit defect concentration in the transition-
limited regime) the normalization volume () has to be
chosen as the volume per atom in the lattice.

The matrix element in Eq. (7) reads

1 iq-
M,-,f=EV(q)fdrui',‘p(r)uf(r)e’q‘ , (10)
where V(q) is the Fourier transform of the screened
Coulomb potential describing the positron-electron in-
teraction. Inserting the expansion (j; is the spherical
Bessel function)
e'9T=45 >

)
I",m

YR QY (R)jgr) , (11)

and the initial and final positron wave functions, i.e., Egs.
(4) and (5), in Eq. (10) and integrating over the angles of r
and q we obtain

2
Jdo, M (p,q)2= A, (12)

where

© 2
=3 @+ ([ ar PRyITonsian ]
1

when I'=0; (13)

— ® 2p * : 2
4,=33 [z[fo drr R,,,(r)le,_l(qr)]

U+ | [ "dr PRENT ()
2
Xj,+1(qr)} ], when [I'=1.

(14)

Above, the summation over the final positron state m'’
quantum numbers has been performed.

For the electron-positron Coulomb interaction we use
the statically screened form

ar (15)
e(q

V(q)=

with the wave-vector-dependent dielectric function e(q)
suggested by Penn?’
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€(qQ)=1+(w,/E, F[1+(Ep/E,)q/kp)F'?]7%,
(16)

where F=1—}(Eg /Eg). The Fermi energy E and Fer-
mi momentum K as well as the plasma frequency w, are
calculated in the model from the average valence electron
density. Eg is an “‘average” band gap determined so that
€(0) calculated from Eq. (16) is equal to the experimental
static dielectric constant.

C. Electron excitation from localized states at the vacancy

Vacancy-type defects in semiconductors induce bound
electron states localized around the vacancy and with en-
ergies located in the band gap. We have studied positron
trapping processes in which these bound electrons are ex-
cited into the conduction band. We consider the case of
the Si vacancy and in order to describe the localized elec-
tron states we make the same simplified model as for the
positron states (see Sec. I A): The neutral vacancy VOis
a square well and the charged vacancies ¥ * and V'~ are
square wells with an additional 1/€(0)r tail. The parame-
ters of the well used for the electrons are given in Table 1.
They are chosen so that the first p state of the square well
reproduces the binding energy and the spatial extension
calculated in Ref. 3 for the bound T, state induced by the
vacancy in the T; symmetry of the diamond lattice. The
T, state vanishes at the center of the vacancy and its
wave function has maxima in the region of the dangling
bonds of the four Si atoms surrounding the vacancy. In
the case of charged vacancies the bottom of the potential
well is shifted by the amount of —Q X (0.1 eV) analo-
gously to the changes in the positron potential (see Sec.
II A). This shift is directly transferred to the binding en-
ergies of the localized electrons.

The trapping coefficient is then written as

Nym, Qk
vp)=—""— [aa; S lMP (17)

where N, is the number of deep level electrons and k is
the electron wave vector in the final state. Due to energy
conservation it has the magnitude
172

) (18)

2
2m

k= |2m, —E,+E,

where E; is the deep level energy relative to the bottom of
the conduction band. The integration in Eq. (17) is per-
formed over possible orientations of the electron k vector
in the final state and the summation runs over the
different m quantum numbers of the initial p state (i.e.,
m=—1,0,+1). The matrix element "M in Eq. (17)
reads

(@) 7I1_-(q") . (19)

Above, I, and 'I_ denote the integrals

fdru* (r)e'd Tup(r) (20)
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and
mI_(q)= [dr (e, (1) . @1

In Eq. (21) the initial [4; ,(r)] and final [u,(r)] positron
states are as above in the case of the interband transi-
tions, i.e., they are obtained from the potential well given
in Fig. 2. The initial electron wave function {"v;(r) is a
bound p state similar to Eq. (5) and the final electron
wave function v, ,(r) is a scattering state similar to Eq.
(4). The initial states are calculated for the vacancy with
a charge Q, the final states are calculated for the vacancy
with the charge Q + 1 since in the final state the vacancy
has lost an electron. The angular integrals over Q,, Q..,,
and (), can be performed analytically, but the radial ¢
and r integrals have to be calculated numerically.

D. Positron trapping into Rydberg states
via phonon emission

The long-range attractive Coulomb tail of the negative
vacancies supports weakly bound Rydberg states for posi-
trons. The positron binding energies for these states are
typically much smaller than the band gap so that the
electron excitation processes discussed above are unavail-
able for mediating the trapping. However, as the binding
energies are smaller than the Debye energy, a process in
which one phonon is emitted is possible. The trapping
coefficient for a phonon process has been derived previ-
ously for longitudinal-acoustic phonons using the defor-
mation potential and Thomas-Fermi-screening models.?®
For a general case, the equation reads as

4E2[ V(q)]2q3k2
W[nw,ﬂﬂ]m , (22)

where V(q) is now the Penn-screened Coulomb potential
given in Eq. (15). The wave vector ¢ has the value

V,r(p)=

_ p*/2m+E,

9= (23)
N

and the factor A, is defined in Eq. (13) or (14) with T,
and T referring now to Rydberg states. E, is the posi-
tron deformation potential constant, s the sound velocity,
p the mass density, and n(q,T) is the Bose-Einstein dis-
tribution function for longitudinal-acoustic phonons.

E. Transitions between bound positron states

Fermi’s golden rule [Eq. (1)] can naturally be used to
calculate also the transition rates between two localized
positron states. In the case of the negative vacancy V'~
we consider the transitions between different Rydberg
states or between a Rydberg state and the ground state.
In the practical calculations it suffices to use in Eq. (12)
or (13) for the initial state (with angular momentum /) the
bound state radial wave function instead of R, (r), omit

the summation over /, and multiply the expression by
Q/[4m(21 +1)].
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TABLE II. Host parameters mimicking Si used in the calcu-

lations.
Volume per atom () 136a}
Number of valence electrons per atom 4
Electron energy band gap E, 1.12 eV
Static dielectric constant €(0) 11.7
Velocity of the longitudinal
acoustic waves s 9130 m/s
Mass density p 233 g/cm’
Positron deformation potential E, 6.2 eV

III. CAPTURE MECHANISMS
INVOLVING ELECTRON EXCITATION

A. Interband electron-hole excitation

We begin the presentation of our results with the case
of the neutral vacancy and then discuss the results for the
negative and positive vacancies. In the calculations for
the neutral vacancy, the initial and final positron states
correspond to the potential box with parameters given in
Table I. The positron binding energy in the final local-
ized state is 0.94 eV. This implies that in order to satisfy
the energy conservation law, the interband transition
must take place in a semiconductor with a band gap
smaller than 0.94 eV. The parameters of the generic
semiconductor we consider for this section are given in
Table II. They are taken from Si with the exception of
the electron band gap and the effective band masses
which are chosen as variable parameters.

Firstly, we present in Fig. 4 the dependence of the
trapping coefficient on the width of the band gap. The
calculations have been made for the temperature of 100
K and for the effective valence and conduction electron
masses equal to the free-electron mass. The trapping
coefficient decreases linearly from 10'* s™! as the energy
gap increases and vanishes at the value of 0.94 eV when

_,-\12 T T T T

(e ¢}

H

Trapping coefficient (104

o

0 02 04 06 08 1.0
Eg (eV)

FIG. 4. Positron trapping coefficient vs the width of the band
gap in the interband electron-hole excitation process [(i) in Fig.
1]. The positron states are calculated using the model potential
for a neutral vacancy (Fig. 2). The results correspond to the
temperature of 100 K and the electron mass for the valence and
conduction band is equal to the free-electron mass.
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FIG. 5. Dependence of the positron trapping coefficient on
the effective electron masses in the interband electron-hole exci-
tation process [(i) in Fig. 1]. The trapping coefficient is shown
as a function of the effective valence-band mass m, for three
different conduction-band masses m.. The positron states are
calculated using the model potential for a neutral vacancy (Fig.
2). The results correspond to the temperature of 100 K and the
band gap is 0.7 eV.

the gap equals the positron binding energy. The values of
the order of 10'° s™! at the zero gap are similar to those
found in metals.%’

Secondly, we show in Fig. 5 the effects of varying the
effective electron masses with the band gap fixed arbi-
trarily at E;=0.7 eV, a value which is slightly smaller
than the positron binding energy in the neutral vacancy.
The trapping coefficient decreases from 4X10'* s~ to
10" s~ ! when either of the band masses decreases from 1
to 0.1 a.u. This behavior reflects the fact that the phase
space allowed for the transition shrinks when either of
the band masses decreases. Moreover, the decrease of the
trapping coefficient is symmetric with respect to changes
of the valence- and conduction-band masses. The main
conclusion from Fig. 5 is that the use of realistic band
masses [(0.2-0.4) X (free-electron mass)] decreases the

10" ‘ I : l f
'-I.V)
< ) \ V“2 ]
e 10 [
.2
8 \"
(3]
o0
=] 15 -
é 10 0
=

1014 s | s | )

0 100 200 300

Temperature (K)

FIG. 6. Temperature dependence of the positron trapping
coefficient for neutral (V°), singly negative (V¥ 7), and doubly
negative (¥?7) vacancies. The interband electron-hole excita-
tion process [(i) in Fig. 1] with positron states from the model
potentials of Fig. 2 is used. The electron mass for the valence
and conduction band is equal to the free-electron mass.
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trapping coefficient: the value obtained by using free-
electron masses has to be divided typically by a factor of
10.

Figure 6 shows the temperature dependence of the
trapping coefficient for the neutral vacancy V°. In this
calculation the electron band gap is fixed to be 0.7 eV and
the electron band masses are equal to the free-electron
mass. According to Fig. 6 the trapping coefficient for a
neutral vacancy shows an increasing trend as temperature
rises from O to 300 K: it increases by a factor of 3 from
1.5 to 5X 10 s~!. This increase is due to a p-type
scattering resonance for delocalized positron states at en-
ergies above the typical thermal energies. If the positron
kinetic energy is near the resonance the initial positron
state is strongly enhanced at the vacancy, which increases
the overlap of the initial and final states and thus also the
positron trapping coefficient. When temperature rises,
the kinetic energy of the positron increases and the con-
tribution from the resonance region to the thermal aver-
age integral [Eq. (2)] becomes more important causing
the trend seen in Fig. 6.

For the negative vacancy ¥V ~, the initial and final posi-
tron states are calculated using the potential with the at-
tractive Coulomb tail (Fig. 2) and the initial scattering
states are then Coulomb waves. At 300 K, the trapping
coefficient is about 4 X 10" s~ !, which is about one order
of magnitude larger than the coefficient for the neutral
vacancy. The difference increases towards lower temper-
atures as shown in Fig. 6. The trapping coefficient for the
negative vacancy diverges at low temperatures being pro-
portional to T~ !/ and at 5 K it reaches the value of
5% 10" s™1. This divergence is a direct consequence of
the normalization of the initial positron wave function.
The square of the amplitude of the Coulomb wave at the
origin (i.e., in the center of the vacancy) is at maximum
and it behaves as?’

O = =2, (24)
e 2T _
where
_m.Q
a= 0 (25)

For a negative charge state Q, the square of the matrix
element (10) and the ensuing positron trapping coefficient
are inversely proportional to the square root of the posi-
tron energy. In Eq. (2), the integral over energy becomes
then proportional to temperature and consequently, due
to the prefactor proportional to T ~3/2, the resulting trap-
ping coefficient is proportional to T~ !/2. For a values
close to zero the amplitude in Eq. (24) approaches a con-
stant value and the wave function becomes a plane wave.
Thus neutral vacancies do not produce a trapping
coefficient diverging at low temperatures. Moreover, it is
seen from Eq. (24) that for a positively charged vacancy
the initial positron wave function at the vacancy and
therefore also the trapping coefficient should be vanish-
ingly small. The further discussion concerning positive
vacancies is postponed to the next subsection dealing
with the electron excitation from the localized levels.

For the doubly negative vacancy V?~, the trapping
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coefficient diverges also as T ~!/2. According to Eq. (24),
the trapping coefficient is directly proportional to Q so
that the ratio of the trapping coefficients for V>~ and ¥~
should be a factor of 2. This is obeyed very well by the
actual calculated results shown in Fig. 6.

One should bear in mind that the trapping coefficients
for the interband electron excitation processes shown in
Fig. 6 are upper-limit estimations. In the case of the
wide-gap semiconductors the gap may be of the same or-
der as or even larger than the positron binding energy in
the defect. The increase of the band gap diminishes
strongly the trapping coefficient (Fig. 4). The trapping
coefficient is also expected to be small in narrow-gap
semiconductors in which the electron band masses are
much smaller than unity (Fig. 5). Only in those narrow-
gap semiconductors in which electron band masses are
close to unity, can the trapping coefficient become rough-
ly as large (neutral vacancies) or larger (negative vacan-
cies) than that calculated for vacancies in metals.!” The
two major differences between the present calculations
and similar calculations describing metallic systems fol-
low: (i) The phase space for allowed transitions is deter-
mined by valence and conduction bands in semiconduc-
tors, which are a parabola opening downwards and up-
wards, respectively, whereas a metal can be mimicked by
a parabolic free-electron band and the excitations take
place over the Fermi surface. This difference in the to-
pology of the phase space favors trapping in metals as
compared to semiconductors. (ii) The screening of the
electron-positron interaction is less efficient in semicon-
ductors than in metals: the Penn model [Eq. (16)] is used
in semiconductors instead of the Thomas-Fermi screen-
ing in metals. The less efficient screening tends to in-
crease the trapping coefficient. The trapping coeffcient is
smaller approximately by a factor of 10 if the Thomas-
Fermi screening is used instead of the Penn model.

B. Excitation of localized electrons:
Ionization of the vacancy

The excitation of electrons from localized defect levels
is expected to be a more efficient way to dissipate the pos-
itron energy in the trapping process than the interband

*excitations because the initial electron wave functions in-
volved are localized near the vacancy. On the other
hand, there are now only a few discrete levels available
whereas in the case of interband excitations there is a
continuum of delocalized initial electron states. The re-
sults in this subsection will show that the localization
compensates the limited number of available states, and
therefore there exists an efficient trapping mechanism
also in wide-gap semiconductors. The present calcula-
tions are based on the localized and delocalized electron
and positron states constructed by using the potential
wells described in Table I for the neutral vacancy and
represented in Fig. 2 for the positive and negative vacan-
cy. The effective electron mass in the conduction band is
in the calculations equal to the free-electron mass. '

The temperature dependence of the trapping coefficient
for a neutral vacancy is plotted in Fig. 7. The trapping
coefficient for a neutral vacancy is practically indepen-
dent of temperature. The s contribution dominates over
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FIG. 7. Temperature dependence of the positron trapping
coefficient for neutral (V°), singly negative (V' ~), and doubly
negative (¥?7) vacancies. The process of electron excitation
from the localized states [(ii) in Fig. 1] is used. Positron and
electron states are constructed according to the model poten-
tials of Fig. 2 and parameters in Table 1.

the higher / components in the sum over the positron an-
gular momentum quantum numbers in the equation for
the matrix element. Thus, the p resonance for delocal-
ized positron states has little effect on the trapping
coefficient in this case in contrast with the case of the in-
terband excitations. The magnitude of the trapping
coefficient is about 4 X 10 s~ !, which is of similar order
as that for the interband excitation at 300 K in Fig. 6.

The temperature dependences of the trapping
coefficient for the singly and doubly negative vacancies
are also shown in Fig. 7. They are similar to those ob-
served for the interband excitation capture: They show
the T '/ divergences due to the character of the
Coulomb waves. The trapping coefficients at 300 K are
now about 2.5X 10" s~ ! and 6X10" s~ ! for ¥~ and
V27, respectively. These values are very similar to the
corresponding values shown for the interband excitation
process in Fig. 6. Because the trapping coefficient is now
proportional to the number of bound localized electrons
(four for V2~ and three for V' 7), a simple estimation
based on Eq. (24) would give the ratio of ~2.7 between
the trapping coefficients for the doubly negative and sing-
ly negative vacancies. The actual calculation gives a
slightly smaller value.

The temperature dependence of the trapping coefficient
for a positively charged vacancy is plotted in Fig. 8. The
coefficient falls to zero as temperature decreases. This is
because according to Eq. (24) the positron wave function
near the vacancy vanishes exponentially as the positron
kinetic energy decreases. According to Fig. 8 trapping
into positively charged vacancies before annihilation
could be possible at temperatures higher than ~200 K.
However, only for very high vacancy concentrations of
the order of ¢~10"2 atom ! positron trapping rate
K=cv at the highest tempeatures shown in Fig. 8 is larger
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FIG. 8. Temperature dependence of the positron trapping
coefficient for a positive (¥ *) vacancy. The process of electron
excitation from the localized states [(ii) in Fig. 1] is used. Posi-
tron and electron states are constructed according to the model
potentials of Fig. 2 and parameters in Table I.

than the typical positron annihilation rates in semicon-
ductors which are of the order of ~5X10° s™!. Howev-
er, the trapping coefficient into positively charged vacan-
cies is much smaller than the rate into neutral or nega-
tively charged vacancies. Moreover the trapping
coefficient is very sensitive to the height and width of the
potential barrier surrounding the positive vacancy. For
example, if the barrier height is raised from 0.1 to 0.2 eV
the trapping coefficient sinks over 4 orders in magnitude.
This explains why positive vacancies have not been seen
in positron lifetime experiments although the existence of
a bound positron state at them is predicted theoretically.?
The positron simply does not have enough time to tunnel
through the repulsive Coulomb barrier.

In the case of the neutral vacancy, we have studied the
effects of varying the potential well parameters and the
ensuing binding energy for the positron states. The tem-
perature dependence of the trapping coefficients is shown
in Fig. 9 for four different potential wells. The width of
the well is varied while the depth is kept as a constant
equal to 3.5 eV. The positron binding energy increases
rather linearly from 0.51 to 1.36 eV when the well width
increases from 4.3a, to 5.8a,. For the three smallest well
widths, i.e., 4.3a,, 4.8a, and 5.8a, the results are very
similar: the magnitude of the trapping coefficient is near-
ly the same in every case and it increases only slightly as
a function of temperature. But when the well width is in-
creased to 5.8a, the behavior changes dramatically. A p
resonance for the delocalized positron states is near the
typical thermal energies and as a consequence the trap-
ping coefficient rises very strongly by a factor larger than
10 when temperature increases from 0 to 300 K.

In the case of the neutral vacancy we have also studied
the effects of varying the electron states. The variations
which are allowed are small because the potential well
has to satisfy two requirements: (i) a bound p state must
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FIG. 9. Temperature dependence of the positron trapping
coefficient for a neutral (V°) vacancy in the process of electron
excitation from the localized states [(ii) in Fig. 1]. Four different
potential well widths (R) are used to construct the positron
states. Otherwise the positron and electron states are construct-
ed according to the model potentials of Fig. 2 and parameters in
Table 1.

exist and (ii) the electron binding energy to the localized
level has to be smaller than the positron binding energy
in the vacancy. There is no change in the temperature
dependence of the trapping coefficient for the small varia-
tions we have considered. But at a given temperature,
the trapping coefficient shows a strong dependence on the
electron binding energy E;. This is illustrated in Fig. 10.
When the well width increases, the electron binding ener-
gy E; increases and the trapping coefficient decreases
linearly as a function of E;. This behavior reflects the de-
crease of the phase space for allowed transitions. As the
electron binding energy becomes higher than the positron
binding energy, the positron trapping coefficient vanishes.
This behavior as a function of E; is similar to that ob-
served as a function of E, in Fig. 4 for the case of the in-
terband electron excitations.
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FIG. 10. Positron trapping coefficient vs the binding energy
E; of the localized electrons in a neutral (V%) vacancy for the
process of electron excitation from the localized states [(ii) in
Fig. 1]. The binding energy is varied by changing the potential
well width in constructing the electron states. Otherwise the
positron and electron states are constructed according to the
model potentials of Fig. 2 and parameters in Table 1.
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To conclude this section: for semiconductors electron
excitation from a localized state to the conduction band
provides an efficient channel for positron trapping. At
300 K, the trapping coefficient for the neutral vacancy is
about 4X 10" s ! and the coefficient increases by a factor
~4 when its charge changes from neutral to singly nega-
tive and by another factor of 2-3 when the charge
changes from singly negative to doubly negative. These
ratios are in good agreement with the recent experimen-
tal estimations!! of the positron trapping coefficient for Si
divacancies at different charge states. However, the ex-
perimental temperature dependencies are much stronger
than those seen in Fig. 7. This suggests that other types
of trapping mechanisms, in which detrapping is possible,
should be important. But the ratio between between the
trapping coefficient for the singly negative and the doubly
negative defects is a property of the initial positron states
in the Coulomb potential, and therefore it is expected to
be valid also for other capture mechanisms.

IV. CAPTURE MECHANISMS
INVOLVING PHONON EXCITATION

A. Capture from a delocalized state to a Rydberg state

The attractive Coulomb tail in the potential for nega-
tive vacancies supports positron Rydberg states charac-
terized by a low binding energy and a large spatial extent.
The small positron binding energy makes electron-hole
excitations impossible. However, because the energy
release in the trapping process is usually smaller than the
Debye energy, phonon emission is possible. The large
spatial extent of the Rydberg state is expected to lead to
large values for the matrix element between the initial
scattering state and the final Rydberg state. As shown
below, it is effectively the case.

In this section we consider singly negative vacancies in
Si described according to Fig. 2 and Table I. The calcu-
lated trapping coefficients for s-type and p-type Rydberg
states are shown in Fig. 11 as a function of the quantum
number n. The results correspond to the temperature of
10 K. Figure 11 shows that for a given n the trapping
coefficient increases when the / quantum number of the
final Rydberg states increases. This is mainly because of
the increase of the degeneracy and the delocalization of
the Rydberg wave function. The increase is less marked
for larger n: the factor of increase is about 100 for n
equal to 4 but about 10 for n equal to 7. For a given [,
Fig. 11 shows also that the trapping coefficient increases
rapidly when n increases. For the p-type Rydberg state,
the trapping coefficient increases by a factor of ~100
from 7X 10' to 4X10'® s ™! when n increases from 3 to 6.
This behavior can be understood as follows. The matrix
element for the positron trapping coefficient depends on
the integral of the product of a Rydberg state wave func-
tion, a Coulomb wave, and a spherical Bessel function
[Egs. (13) and (14)]. Figure 12 shows typical positron
wave functions for some Rydberg states and a Coulomb
wave for the low kinetic energy of 25 meV. It can be seen
that the functions oscillate in the phase near the origin.
They are, however, orthogonal because they are driven
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FIG. 11. Positron trapping coefficient for the s- and p-type
Rydberg states as a function of the quantum number n. The en-
ergy is transferred to a phonon [(iii) in Fig. 1]. The positron
states are calculated using the model potential for a singly nega-
tive vacancy (Fig. 2). The results correspond to the temperature
of 10K.

out of phase at large distances. When the quantum num-
ber n increases the oscillations stay in phase to larger and
larger distances. The main contribution to the total in-
tegral in the matrix element comes from the region near
the origin where the Rydberg state wave functions and
the Coulomb wave are in phase and the Bessel function
does not yet oscillate. For large » values this region be-
comes larger, which makes the matrix element and the
positron trapping coefficient increase.

The quantum number n of the Rydberg state into
which positrons can be trapped has from the experimen-
tal point of view a maximum value. In a sample contain-
ing a finite vacancy concentration, this maximum value
corresponds to the quantum number n for which the
Rydberg states belonging to neighboring vacancies start
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FIG. 12. Positron wave function for the 5s and 7s Rydberg
state and a Coulomb scattering state at the energy of 25 meV.
The states are calculated for the singly negative vacancy (Fig. 2).
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to overlap and form a “Rydberg band.” For example, for
a typical vacancy concentration of 10% cm ™3 (=2X 1078
atom ™ !) the volume per vacancy is equal to the volume of
the sphere with the average radius of the Rydberg state
with n =10. The quantum number 7 can also be limited
because of the screening due to the charge carriers in
highly doped semiconductors. Extrapolation of the
curves in Fig. 11 to an n value as large as 10 would yield
sucih “gigantic” values of the trapping coefficient as 10'®
s” .

The temperature dependence of the trapping coefficient
for a Rydberg state is shown in Fig. 13. The final state is
the 7s state. The trapping coefficient decreases strongly
when temperature increases. The decrease is caused by
the properties of the Coulomb waves as discussed in the
context of the interband transitions above. The other
reason for the decrease of the trapping coefficient is that
the integrals in Eq. (13) or (14) depend strongly on the g
value [Eq. (23)] appearing in the spherical Bessel func-
tion. The value of ¢ (Eq. 23) is proportional to the sum of
the initial kinetic energy and final binding energy in the
Rydberg state. For the Rydberg states the binding ener-
gies E, are small so that the contribution from the initial
state kinetic energy dominates as temperature increases.
When g increases the Bessel function oscillates more rap-
idly which decreases the values of the integrals. Note
also that this effect is strong because the final state is
rather delocalized: if the final state were well localized at
the vacancy, the Bessel function would not start to oscil-
late within this region until g has rather a large value.

In the case of a negative vacancy, the trapping
coefficient for an excited Rydberg state (Fig. 13) can be
compared to coefficients obtained for trapping into the
ground state (Figs. 6 and 7). At room temperature the
trapping coefficients are of the same order, i.e., 10'° to
10'¢ s~ However, detrapping occurs from the Rydberg
state because of the low positron binding energy. Conse-
quently, the probability that a positron occupies a Ryd-
berg state is small compared to the probability that the
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FIG. 13. Temperature dependence of the positron trapping
coefficient for the 7s Rydberg state in the phonon emission pro-
cess [(iii) in Fig. 1]. The positron states are calculated using the
model potential for a singly negative vacancy (Fig. 2).
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positron occupies the ground state. Annihilation occurs
in the ground state and the positron trap can be identified
as a vacancy. At low temperatures, the trapping
coefficients for Rydberg states are of the same order (for
n <7) or larger by an order of magnitude (for n > 7) than
for the ground state. Because at low temperatures the de-
trapping rate is low [see Eq. (3)] annihilation from a Ryd-
berg state becomes highly probable. However, positron
trapping at vacancies is still experimentally observed at 4
K.!° This means that a positron does not annihilate in a
Rydberg state but it makes a transition to the ground
state once it has been trapped into a Rydberg state. Two
ways are in principle possible. Either (i) positrons reach
the ground state through successive transitions between
Rydberg states in a mechanism analogous to the Lax cas-
cade’® ™32 suggested for the carrier capture at charged
centers or (ii) positrons are directly trapped into the
ground state. The transition rates for these processes are
calculated in this work and discussed in the next subsec-
tions.

The energy eigenvalues and the wave functions of the
Rydberg states calculated for the charged vacancy be-
come independent of the shape of the potential near the
origin when the quantum number n increases. Therefore
also the trapping coefficients for the Rydberg states and
the transition rates between the Rydberg states do not de-
pend in practice substantially on the details of the poten-
tial near the origin when n=5. This means that the
features of the trapping coefficient for Rydberg states dis-
cussed above are also valid for Rydberg states generated
by negative ions. Several authors have reported on exper-
imental evidence for positron trapping at negative
ions.!>3 For these ions we expect that “gigantic” cap-
ture coefficient of the order of 10'® s™! can be observed at
low temperatures.

B. Transitions between Rydberg states

The energy differences between the different Rydberg
states are so small that the transitions between them can
effectively take place via phonon emission. The transi-
tion rates can be estimated from the trapping coefficients
for the Rydberg states given above in Fig. 11. For exam-
ple, the transition rate from the 6s state to the 5s state
can be estimated by multiplying the trapping coefficient
for the Ss state by the ratio of the volume per atom and
the volume corresponding to the extent of the 6s Rydberg
state. The average radius (en2a,) for the 6s state is about
420a,, which gives a transition rate of ~8X10" s~
This is a small number when compared to the annihila-
tion rate in semiconductors. The actual calculation gives
an even smaller transition rate of ~10° s, as Fig. 14
shows. The transition rates in Fig. 14 are between s
states at 10 K; the transition rates involving higher !/
quantum numbers are even smaller because the wave
functions for these states are repelled strongly from the
origin, i.e., from the center of the vacancy, due to the
centrifugal potential. The small rate means that the posi-
tron cannot make a transition between two Rydberg
states within its lifetime. Thus if the positron trapping
process into the ground state at the vacancy uses the
Rydberg states as intermediate precursor states, only one
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FIG. 14. Transition rates for positron between s-type Ryd-
berg states. In the transition the quantum number n changes to
n' and energy is transferred to a phonon [(iv) in Fig. 1]. The
positron states are calculated using the model potential for a
singly negative vacancy (Fig. 2). The results correspond to the
temperature of 10 K.

Rydberg state can be involved. There is no analog for the
Lax cascade’® 32 suggested for the carrier recombination
at charged centers. However, if the second transition is
directly to the ground state the energy release is so large
that it can effectively occur via electron-hole excitation.
In the next subsection, the combined mechanism involv-
ing one phonon-mediated step to a Rydberg state and a
subsequent electron-hole excitation is discussed in detail.

C. Transitions from Rydberg states to the ground state

We have calculated the transition rates for a positron
from Rydberg states to the ground state at a negatively
charged vacancy by assuming that in the process a local-
ized electron at the vacancy is excited to the conduction
band. This transition rate could be again approximated
from the values obtained for the direct transitions from
the delocalized states to the ground state by the volume
scaling. The results from the actual numerical calcula-
tions are shown in Fig. 15 in which the transition rates
from the s- and p-type Rydberg states are given for n
varying from 2 to 7. The transition rate decreases when
the quantum number n for the Rydberg state increases
reflecting the decrease in the localization of the initial
state. For all s states shown and for the p states with
small n, the transition rates are larger than the bulk an-
nihilation rate in Si (denoted by the dashed line in Fig.
15). For the states with higher ! values the transition
rates fall below the bulk annihilation rate. This indicates
that while not relevant as precursor states to deep trap-
ping the states with high / values could act at low temper-
atures as shallow traps for positrons: as discussed in the
preceding section also the transition rates between the
different Rydberg states are so small that the positron
cannot leave this kind of state before annihilation. So far
there exists no experimental evidence from this kind of
shallow traps.
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FIG. 15. Transition rates for positron from s- and p-type
Rydberg states to the ground state as a function of the quantum
number n. In the transition an electron is excited from a local-
ized state to the conduction band [(v) in Fig. 1]. Positron and
electron states are constructed according to the model poten-
tials of Fig. 2 and parameters in Table I.

D. Two-state capture mechanism via a Rydberg state

The above calculations show that at low temperatures
the delocalized positron can reach the ground state once
it has been trapped into a Rydberg state. The Rydberg
state acts as a precursor state. This kind of positron trap-
ping in two stages is analogous to the model presented by
Smedskjaer et al.!’ for positron trapping into jogs or
kinks at dislocation lines. In that model the weakly
bound positron state delocalized along the dislocation
line is the precursor state and the open volume at a point
defect serves as the final trap. For a negative vacancy or
other vacancy-type defects, the trapping process is a little
more complicated because the different Rydberg states
act in parallel and in addition direct transition to the
ground state exists too. Figure 16 shows the diagram for
the trapping process at low temperatures. It is assumed
that the annihilation rates for the bulk state and for the
weakly localized Rydberg state are equal and denoted as
A,. The annihilation rate for the ground state at the trap
is A,. For a given vacancy concentration ¢, transitions
from the delocalized states to the Rydberg state (n,/)
take place with the trapping rate kg, from the Rydberg
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FIG. 16. Schematic view of positron trapping into a negative
vacancy in a semiconductor.
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state to the final trap state with the rate 1z, and from the
delocalized state directly to the ground state with the
trapping rate k. The positrons escape due to thermal ac-
tivation from the weakly bound Rydberg state with the
rate 8§z but cannot escape from the ground state. The de-
trapping rate 8z and the trapping rate k into the Ryd-
berg state are related according to Eq. (3). If the rate at
which positrons enter the solid is assumed to be constant,
the numbers of positrons in different states (n,, n,, and n,
according to Fig. 16) can be solved by applying steady
state conditions to the kinetic equations (see Appendix).
The detrapping from the Rydberg state leads to a strong
decrease in positron trapping as temperature increases.
Finally at higher temperatures the direct transition into
the ground state takes over.

V. CONCLUSIONS

We have investigated the various trapping mechanisms
operative for positrons in semiconductors. In particular,
attention is paid to positron trapping into vacancies with
various charge states. The relevant energy release mech-
anisms are both electronic excitations and phonon emis-
sion. The magnitudes and temperature dependencies of
the trapping coefficients have been determined in various
cases.

In the case of positive vacancies the trapping
coefficient depends strongly on the height of the repulsive
Coulomb barrier. However, the coefficients obtained
with reasonable barrier heights are too low in order that
positive vacancies could effectively trap positrons during
their lifetime in a semiconductor.

For neutral vacancies the dominant trapping mecha-
nism is found to be electron excitation from a localized
state at the vacancy to the conduction band. The trap-
ping coefficient is generally independent of temperature
and is about 10'5 s™!. If there is a scattering resonance
near thermal energies, the trapping coefficient can in-
crease rapidly with rising temperature and reach a value
of the order of 10!® s™! or even higher at room tempera-
ture. The trapping coefficient may reach values as high
as 10" s~ ! also in electron excitation processes from the
conduction band to the valence band, if the host is a
narrow-gap semiconductor with electron band masses
close to unity.

The trapping coefficients for negative vacancies are at
all temperatures larger than those for neutral vacancies.
The difference is enhanced at low temperatures, in which
negative vacancies show a T~ !/? divergence. The diver-
gence results because the initial positron wave function
behaves like a Coulomb wave, the amplitude of which
rises strongly at the vacancy when its energy eigenvalue
decreases. This feature is independent of the trapping
mechanism in question. At room temperature the dom-
inant capture mechanism is electron excitation from a lo-
calized state at the vacancy to the conduction band and
the trapping coefficient is of the order of 10'®s~!. At low
temperatures, trapping into Rydberg states via phonon
emission can lead to “‘gigantic” trapping coefficients of
the order of 10! to 10'® s™!1. The Rydberg states act
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mainly as precursor states to trapping into the ground
state. The transition occurs in one step via the electron
excitation. There is no multistep, cascade capture pro-
cess for positrons, because the trapping from one Ryd-
berg state to another is too slow to happen during the
positron lifetime. Because detrapping from Rydberg
states increases exponentially when temperature rises, the
capture via Rydberg states leads to a trapping rate, which
decreases strongly as a function of temperature. It may
also happen that at low temperatures, when detrapping
from the Rydberg states is small, trapping into negative
ions effectively competes with trapping into vacancies.
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APPENDIX

In this appendix we derive a relationship between the
two-stage capture mechanisms introduced in Sec. IVD
and the two-state trapping model used traditionally in
analyzing the experimental positron lifetime data. The
two-state model is illustrated schematically in Fig. 17. In
the model the precursor states are not explicitly treated,
but they affect the trapping rate x' which is the quantity
actually deduced from the measured spectra. We simpli-
fy also our two-stage capture mechanism shown in Fig.
16 by assuming that there is only one weakly bound state
which describes in the sense of some average all the Ryd-
berg states.

The quantity which can be extracted from the experi-
mental data is the probability that a positron will be
trapped and annihilated from the ground state at the de-
fect. For the simplified two-stage trapping mechanism
this probability is

4= A.n, _ k(A +8g +1g)+NrKg
T b (A kg FK)A, +ng)F8g(A, +K)

_ TIRKR

(A1)

where b is the rate at which positrons enter the solid.
The last form above is obtained by approximating
nr >>A, and k <<A,. The detrapping rate 6; and the
trapping rate kg between the Rydberg state and the delo-
calized state are related by Eq. (3). In the two-state mod-

Ny Delocalized
\J state
}\b K'
Y _ n Ground
E ; state
Ay

FIG. 17. Two-state positron trapping model.
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el of Fig. 17 the probability for the positron to be trapped
and annihilated at the trap state is

’

K

A'::};i;;T'

(A2)

If this probability is required to be equal to that in Eq.
(A1) for the precursor model, one obtains for the mea-
sured trapping rate the following equation:
. MRCKR
K=
m_ kgT

2m#?

- . (A3)
chv+KR _ER/kBT

9993

Thus at low temperatures the trapping rate k' reaches
asymptotically k; which is the trapping rate into the
Rydberg state. When temperature rises the detrapping
from the Rydberg state becomes more and more probable
and the trapping rate ' starts to fall strongly below k.

Equation (A3) can be used in fitting experimental trap-
ping rates analyzed in the two-state trapping model.
There are three independent parameters in Eq. (A3): kg,
Epg, and the product 7zc,. If the trapping rate k is kept
as a temperature-independent constant the trapping rate
saturates to a constant value at low temperatures. There
is evidence for this kind of saturation in the data pub-
lished by Mikinen et al.'

*Also at Centre d’Etudes Nucléaires de Saclay, Institut National
des Sciences et Techniques Nucléaires (INSTN), F-91191
Gif-sur-Yvette CEDEX, France.

1S, Dannefaer, Phys. Status Solidi A 102, 481 (1987).

2G. Dlubek and R. Krause, Phys. Status Solidi A 102, 443
(1987).

3M. J. Puska, O. Jepsen, O. Gunnarsson, and R. M. Nieminen,
Phys. Rev. B 34, 2695 (1986).

4M. J. Puska and C. Corbel, Phys. Rev. B 38, 9874 (1988).

SM. J. Puska, and S. Mikinen, M. Manninen, and R. M. Niem-
inen, Phys. Rev. B 39, 7666 (1989).

SR. M. Nieminen and M. Manninen, in Positrons in Solids, edit-
ed by P. Hautojarvi (Springer-Verlag, Heidelberg, 1979), p.
145.

"R. M. Nieminen, in Positron Solid State Physics, edited by W.
Brandt and A. Dupasquier (North-Holland, Amsterdam,
1983), p. 359.

8S. Dannefaer, S. Kupca, B. G. Hogg, and D. P. Kerr, Phys.
Rev. B 22, 6135 (1980).

9M. Shimotomai, Y. Ohgino, H. Fukushima, Y. Nagayasu, T.
Mihara, K. Inoue, and M. Doyama, in Defects and Radiation
Effects in Semiconductors, Inst. Phys. Conf. Ser. No. 59, edit-
ed by R. R. Hasiguti (IOP, London, 1981), p. 241.

10y, Mikinen, C. Corbel, P. Hautojirvi, P. Moser, and F. Pierre,
Phys. Rev. B 39, 10162 (1989).

1P, Mascher, S. Dannefaer, and D. Kerr, in Defects in Semicon-
ductors 15, Materials Science Forum, edited by G. Ferenczi
(Trans Tech, Aedermannsdorf, 1989), Vols. 38-41, p. 1157.

12K. Saarinen, P. Hautojirvi, A. Vehanen, R. Krause, and G.
Dlubek, Phys. Rev. B 39, 5287 (1989).

13T, McMullen, J. Phys. F 7, 2041 (1977); 8, 87 (1978).

14R. M. Nieminen, J. Laakkonen, P. Hautojirvi, and A.
Vehanen, Phys. Rev. B 19, 1397 (1979).

I5SL.. C. Smedskjaer, M. Manninen, and M. J. Fluss, J. Phys. F
10, 2237 (1980).

16T, McMullen and M. J. Stott, Phys. Rev. B 34, 8985 (1986).

17M. J. Puska and M. Manninen, J. Phys. F 17, 2235 (1987).

18§, Dannefaer, W. Dean, D. P. Kerr, and B. G. Hogg, Phys.
Rev. B 14, 2709 (1976).

I9M. Stucky, C. Corbel, B. Geffroy, P. Moser, and P.
Hautojarvi, in Defects in Semiconductors, Materials Science
Forum, edited by H. J. von Bardeleben (Trans Tech, Aeder-
mannsdorf, 1986), Vols. 10-12, p. 265.

20M Jaros, Deep Levels in Semiconductors (Hilger, Bristol,
1982).

21B, K. Ridley, Quantum Processes in Semiconductors (Claren-
don, Oxford, 1982).

22H. H. Jorch, K. G. Lynn, and T. McMullen, Phys. Rev. B 30,
93 (1984).

23C. H. Hodges, Phys. Rev. Lett. 25, 284 (1970).

24W. Brandt, Appl. Phys. 5, 1 (1974).

25M. Manninen and R. M. Nieminen, Appl. Phys. A 26, 93
(1981).

26C. 0. Rodriquez, S. Brand, and M. Jaros, J. Phys. C 13, L333
(1980).

27D, R. Penn, Phys. Rev. 128, 2093 (1962).

28R. M. Nieminen and J. Laakkonen, Appl. Phys. 20, 181
(1979).

2N. F. Mott and H. S. W. Massey, The Theory of Atomic Col-
lisions, 3rd ed. (Oxford University Press, Oxford, 1987), p. 57.

30M. Lax, Phys. Rev. 119, 1502 (1960).

3IR. A. Brown and S. Rodriquez, Phys. Rev. 153, 890 (1967).

32y, N. Abakumov and I. N. Yassievich, Fiz. Tekh. Poluprovo-
don. 12, 3 (1978) [Sov. Phys.—Semicond. 12, 1 (1978)].

3C. Corbel, F. Pierre, P. Hautojirvi, K. Saarinen, and P.
Moser, Phys. Rev. B (to be published).



