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Pbotoexcited quantum wells: Nonlinear screening, bistability,
and negative dill'erential capacitance
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The dielectric response of an electron-hole plasma confined to a slab is calculated within the Har-
tree approximation for electric fields perpendicular to the slab walls. The results are used to infer
the capacitance behavior of photoexcited quantum-mell structures under different rate conditions.
Case studies show that nonlinearities in the carrier-density dependence of the energy spectrum and
scattering times can lead to bistability and negative differential capacitance.

I. INTRODUCTION

Semiconductor systems based on ultrathin (=100 A)
quantum wells that show strong nonlinearities in their
response have received much attention in recent years. '

This refers in particular to resonant tunneling struc-
tures' and to optical bistable devices ' relying on the
so-called quantum-confined Stark effect. ' In this
work, we discuss a novel kind of microscopic nonlinearity
arising from two-dimensional confinement. Specifically,
we consider the capacitive behavior ofphotoexcited quan-
tum wells. Using a simple model, we find that the dielec-
tric response of such a system exhibits two markedly
diferent regimes which cross when the external charge
and the electron-hole areal densities become equal.
Focusing on particular rate conditions, we predict that
nonlinearities in the response and rate equations can lead
to bistability and negative differential capacitance To the.
best of our knowledge, there are no capacitors known to
exhibit these properties. '

The organization of this paper is as follows. The
theoretical model is described in Sec. II. In Sec. III, we
discuss the nonlinear screening properties of a quasi-
two-dimensional electron-hole plasma considering its
density as an independent variable. Section IV deals with
particular scenarios giving unstable capacitors. In Sec.
IV A we show that photoexcitation at photon energies in
the vicinity of the quantum-well absorption edge can lead
to capacitance bistability. The mechanism responsible
for such a behavior relies on specific nonlinearities of the
generation rate. Section IVB discusses an example of
negative differential capcitance associated with
tunneling-related instabilities. The latter requires a rapid
increase in the tunneling time with increasing plasma
density. A summary of our results is given in Sec. V.

II. THEORY

Consider a quasi-two-dimensional electron-hole plas-
ma, generated by a monochromatic photon source of Aux
S and frequency cuL, which interacts with an external
electric field due to uniformly distributed charges +Q, of
a parallel-plate capacitor. The plasma is confined to a

d'VH 4~~e~
nje je Z njh jh Z

dz
(2)

where n, (nj t, ) is the electron (hole) steady-state con-
centration in the jth subband (transients can be account-
ed for if the n s are adiabatic variables; i.e., if the ratios
An/n are negligible compared to intersubband energies).
The wave functions in Eq. (2) are norinalized.

The nonlinear eigenvalue problem, Eqs. (1) and (2), can
be solved using standard numerical methods. ' Its solu-
tions j P, „A,, j and I P,„,AJ t, j are expressed in terms of
the input parameters Q, and the populations t nj, j and

I n1„j. In photoexcitation experiments, however, the
subband concentrations are not determined a priori: the
recombination, scattering, and tunneling times entering
in the rate equations depend, in turn, on [Q.„A1,j and

IP,. t„A,t, j. This leads to a system of coupled nonlinear
equations which can exhibit multiple solutions for given
values of S, toL, and Q, . In the following, we present re-
sults for a neutral plasma of electrons and holes of equal
masses confined to a slab, i.e., A, =Eh= ~. Further-

semiconductor quantum well of thickness 2L and
effective-mass potentials W, h(z) =5, h for ~z~

~ L and

W, t, (z) =0 for ~z~ & L (the z axis and the field are normal
to the layers, and 6, and bh are the conduction- and
valence-band offsets) In .the Hartree approximation, the
envelope functions and eigenenergies are of the form

$=, (z)exp(iit r) and A=A +irt ~k~ /2m, t„where
j ~0 is the subband index, k is a wave vector parallel to
the interfaces, and m„mh are the electron and hole
masses. The Hartree equations for the subband eigen-
functions PJ(z) are'

—(iri /2m)d P /dz

+ [W(z) 4~qQ, z—/Att+qVH(z) A]P =—0, (1)

where P =$,(ttt t, ), A =A, (A t, ), m =m, (mt, ),
W = W, ( Wh ), and q = —

~e~ (+ ~e~ ) for electron (hole}
states; ~ is the appropriate dielectric constant of the semi-
conductor and A is the area of the capacitor plates. The
electrostatic mean-field potential VH(z} satisfies the Pois-
son equation'
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more, it will be assumed that the only occupied levels are
those associated with the ground state of the well, i.e.,
n, =n

i, =np5. p (note that this condition imposes thege J h 0 g0

upper bound no & —,'mL on the lowest subband concen-
tration}. This limiting case contains the necessary in-
gredients for nonlinear and bistable behavior while sim-
plifying considerably the calculations.

For 4, =4z and m, =mz =m 0, it follows from symme-
try considerations that P, (z)=Pii, ( —z). Moreover, if
the well is infinitely deep and states other than those of
the lowest electron and hole subbands are not populated,
the equations for electrons reduce to

)00-

60

40

2V

—d g /dz + [ U ( z) E]1(t =—0, (3) 0 50
I

)00
]

150

after the transformations z~Lz, Pi~L '~ g, and
A ~LE~ [A, =fi /(2mpL )) with boundary conditions
1(i(+I ) =0. The expression for U (z) is

[f ',P(z)dz =1]:
U (z) =Qz +o f z'[gp(z') —

gp(
—z') ]dz'

z

—20z 0
z' —

0
—z' dz', 4

where o =2me Ln

playland

Q, =4m IeILQ, /aA, A. The in-
tegration constant is chosen so that U(0}=0. Defining
the total potential drop across the slab as 2VA, /IeI, one
finds

1V=Q+2o I zfp(z)dz .

The inverse of the total differential capacitance of the sys-
tem is C ' =4~(d 2L)/ir'A—+(8mL /a A )(dV/dQ),
where d is the distance between the electrodes and a' is
the dielectric constant of the medium surrounding the
slab.

Equation (5) and the self-consistent numerical solution
to Eqs. (3) and (4} give V= V(g, o ). Our problem con-
sists of simultaneously solving the latter and the ap-
propriate rate equation. This is discussed in Sec. IV with
specific examples. In the next section, we focus on
V = V( g, cr ) alone treating o as an independent parame-
ter.

III. NONLINEAR SCREENING

Figure 1 shows the calculated V(g, cr ) together with a
diagram of the system (bars on top of variables denote
specific values}. At low carrier densities, V varies linearly
with o. The slope is determined by fz(g, rr=0). With
increasing o, V crosses over (at o =Q/2) to a regime
showing a much weaker dependence on the concentra-
tion. The large a limit shows some unusual features. Us-
ing Wentzel-Kramers-Brillouin (WKB) methods, ' it can
be proved' that V(Q, rr) ~ o 'r and that the electro-
static potential U oscillates with a period of order cr

for cr~oo. The %'KB results are supported by the nu-
merical data. Finally, the asymptotic limits of V(Q, o )
are Va-'Q (Q/2«o, BV/Bg &1) and V=Q —2cr
(Q/2 »o ). The latter refiects the fact that imp ap-
proaches 5(z + 1) as Q ~ ao .

FIG. l. V vs o for Q =100. Inset: diagram of the system
showing 1(p(z) and U(z) for Q =o = 100.

IV. CAPACITANCE INSTABILITIES

A. Near-band-gap photoexcitation

Electric fields produce a red shift of the quantum-well
absorption edge 8'. ' Therefore, if 8ir(Q=0) is
slightly larger than AcuL, the condition for creating a plas-
ma (firer & Sii ) will eventually be met at a certain value
of the field. The photogenerated plasma itself compli-
cates this picture. Its effect on Sir opposes that of Q
and, provided S is sufBciently large, there will be a strong
competition between the field and the plasma to define
the state of the system. Under certain conditions
(specified below) this competition can lead to multistable
behavior.

As before, we consider a situation where the photogen-
erated carriers populate predominantly the lowest sub-
band (with fico, =8ii, this requires in most cases
kii T «A, , T is the lattice temperature). In addition, the
time evolution of the electron (or hole) density is assumed
to obey the rate equation dnp/dt=g np/rn wh—ere

g =(i)irp~ } '2LSa is the photogeneration rate (a is the
absorption coefficient at fuui ) and rx is the radiative
recombination lifetime. Such a decay mode applies to,
e.g., degenerate plasmas if field-induced tunneling can be
neglected (also, note that nonradiative recombination can
be easily accounted for by redefining rR ).

In terms of o., the rate equation reads
riido /dt=G —o with G =(firpzirA, ) '4ne L Shia.
The dependence of 6 on the state of the plasma involves
the product v.za. Let ao and ~z be the absorption
coefficient and the radiative lifetime at zero geld. Within
the envelope-function approximation,

Accordingly, for AcoL =0~ and ignoring band-filling
effects G ~ rii a = rii ap(fiQ), where fiQ =

[fibril—8 (Q rr)].
In the above formulation, the field and plasma lead to



41 PHOTOEXCITED QUANTUM WELLS: NONLINEAR. . . 9955

Xao(iricoL b G 2AEo(Q o ) (6)

Given S, col, Q, ao(iris'), and Eo(Q, O ) [Eqs. (3) and (4)],
Eq. (6) can be solved for o. Equation (5) is then used to
obtain V(Q). Whether or not Eq. (6) shows inultiple
solutions depends mainly on the form of ceo. For in-

stance, uncorrelated electron-hole pairs give a0=0 (i.e.,
cr =0) for iriII & 0 and a nonzero constant absorption (den-
sity) for i)iQ 0. Since these possibilities are incompatible
the two solutions cannot coexist (note that Eo increases
with increasing o ).

An analysis of Eq. (6) indicates that multiplicity gen-
erally requires the existence of an absorption maximum. '

Quantum wells showing sharp excitonic features should,
therefore, exhibit multistable behavior. An example is
shown in Fig. 2. The calculations are for
G =30.0[4EO+(I /A, ) ] '

[iriroL =b, G in Eq. (6)], where
I'/A, =1.5. Corresponding parameters for a 400-A-thick
GaAs well are S= 1 kW/cm and I =2 meV (the max-
imum concentration is = 5 X 10"cm ).

The origin of the multiple solutions in the example,
and also in a more general case, can be understood as fol-
lows. First, we note that stability against density fiuctua-
tions requires that B(drr/dt)/Brr =BG/Bcr —1(0. Ac-
cordingly, multistable behavior results when the latter
cannot be satisfied. For this, r)ao/r)Q needs to be nega-
tive and the photon Qux S needs to be large enough so as
to overcome the restoring recombination term. In Fig. 2,
the lower and upper branches, but not the middle branch,
satisfy the stability requirement. At small Q s, the condi-
tions are such that the photon energy is below the ao
maximum; the system is stable because BG/Bo is nega-
tive. With increasing Q, cr increases first as the absorp-
tion profile shifts to lower energies. This continues until

i I I I l I I I

'o

FIG. 2. V vs Q for near-band-gap photoexcitation. Parame-
ters are given in the text. o.M«denotes the largest density, ar-
rows indicate the direction of increasing cr, and dashed lines
show the V range of bistability.

rigid shifts of the generation-rate profile through the Q
and o. dependence of 8~. Noting that e~=h&+2A, EO,
where Eo is the ground-state energy defined in Eq. (3) and

AG is the bulk-semiconductor gap, the steady-state solu-
tions satisfy

rr=G =[(%col ~k),'4rre L SrR]

ficoI coincides with the maximum of ao (largest plasma
density) and, from then on, cr decreases with increasing
Q. The lowest branch terminates at the point where
r)G/c)o =1 (in our example, this occurs very close to the
state of largest o ). A further increase in Q leads to a sud-
den jump into the upper branch showing o. « V, i.e.,
V=Q at large Q's. The existence of the third, middle,
branch follows from the continuity of Eq. (6). As men-
tioned above, this branch is unstable against o. Auctua-
tions (however, note that dV/dQ )0) implying that the
light-controlled capacitor should operate as a switch.

B. Tunneling-induced negative differential capacitance

In this section, we consider effects due to carrier tun-
neling on the capacitance. Our considerations apply
qualitatively to the photoexcitation behavior of a reverse-
biased double-barrier heterostructure, such as
Al Ga& „As-GaAs-Al„Ga& „As, sandwiched between
p+- and n+-doped (GaAs) layers. Referring to Sec. II,
the tunneling barrier for an electron (hole) at the bottom
(top) of the jth subband is given by [b,,„—A,(V+E, )].
In what follows, we will assume that this barrier is large
enough for our infinite-well model and the WKB approxi-
mation to apply, and that b., =El, =h. The WKB ex-
pression for the tunneling time ~T is

rr=T exp 2(ms/mo)'~

X f [aa-' —V E —Q(z ——1)]' dz, (7)

where m~ is the barrier effective mass and T is a constant
(the integral is over the barrier layer of width Ls, i.e.,
0~z —1~Ls/L) The depe. ndence of the barrier height
on the plasma density follows a pattern similar to that of
V(Q, ~r) (see Fig. 1). Unlike the latter, however, the
height and therefore ~T increase with increasing o.. In
cases where the ground-state population is limited by
tunneling losses, this behavior implying negative feed-
back can give rise to instabilities. To approach such a sit-
uation, we adopt the following scenario for the photoex-
citation process: (i) the photon energy is chosen so that it
resonates with a higher-lying j-subband exciton, i.e.,
RroL =hG+2AE„noting that, for large j's, E, depends
only weakly on the field, the generation rate g will be
treated as a constant; (ii) the photogenerated electrons
and holes in the jth subband are assumed to either tunnel
out of the well or decay (with time constant r, ) into the
corresponding lowest subbands; (iii) a single decay time
~& is used to characterize the radiative recombination at
the ground state. For the given rate conditions, the
steady-state plasma density is n o

=g ~, where
1 ( 1 +rs Irr ) 'rz or, alternatively,

o =(rlr~)G; G =g27re Lr~(~A) (g)

The results in Fig. 3(a) illustrate the dependence of
(8„/r)o on Q and cr Calculati. on parameters are j =5,
5=150K,, m~/m0=1. 96, L~/L =0.8, T '=40000/w~,
and ~, =2v.z. These values correspond approximately to
those for electrons in a structure consisting of 160-A-
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multistable behavior (see also the constant-Q data of the
inset). The solution to cr =(r/rz )G for G = 13.0 is given
in Fig. 3(b) [for reference, the inset shows V(Q, o )). As
anticipated, it exhibits a Q region for which the plasma
contribution to the differential capacitance is negatiue (we
notice that, unlike Q, the tunneling current monotonical-
ly increases with increasing V). The range for which
d V/dQ & 0 is unstable against density fluctuations, i.e.,
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B(do/dr)/Bo =r)tr„'[o(r'—/r„)G]]/Bo &0 .

%e conclude with a few remarks on the validity of our
approach to the case just discussed. Our model only ac-
counts for carriers in the lowest subband and, therefore, a
sufficient condition for it to apply is ~, &&~z. The calcu-
lations in Fig. 3 fulfill this condition. Nevertheless, we
note that ~, &&~z is much too restrictive since the weak-
er Q dependence of higher states leads to a stronger can-
cellation of electron and hole charge distributions. These
considerations indicate that the one-subband model is
valid for a wider range of parameters.

V. SUMMARY

I

30 40
I

50

FIG. 3. Data for o =(~/~&)G, Eq. (8). For parameters, see
text. (a) (rq/r)o vs Q for various densities. Inset: (rz/r)cr as
a function of cr. The constant (adimensional) generation rate G
is indicated by dashed lines. (b) V( Q) showing negative
differential capacitance. The concentration increases in the
direction of the arrows. Inset: V vs Q at various densities.
Dashed line is V=Q.

%e have described a model revealing large nonlineari-
ties in the response of a quantum-confined plasma and
presented examples showing negative differential capaci-
tance and bistability. The cases studied correspond, in
some sense, to limiting situations. More generally, one
should expect instabilities resulting from a combination
of those we have associated with resonant photoexcita-
tion and tunneling. The experimental verification of our
predictions holds promise for a wide range of studies in
the areas of nonlinear phenomena and optoelectronic ap-
plications.

0
thick Ala 3Gao 7As barriers surrounding a 400-A-thick
GaAs well (for actual values, see, e.g., Refs. 12 and 23).
At low Q's, r=v.„and(r„/ )ormonotonically increases
with increasing density (note that 8~a /Bo &0). This also
applies to the tunneling-dominated high-Q regime where
~z- is nearly independent of the concentration. The cross-
ing of curves in the intermediate range is the signature of
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