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Mutual drag of two- and three-dimensional electron gases in heterostuctures
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Mutual drag of two-dimensional (2D) and 3D electron gases in GaAs/Al„Gal „As/GaAs hetero-
structures is considered. The main purpose of the paper is to explain the recent experiment of Solo-
mon et al. [Phys. Rev. Lett. 63, 2508 (1989)] in which a current in the channel induced a current in

the gate and the latter changed its sign when temperature decreased. It is shown that Coulomb mu-

tual scattering gives rise to two mechanisms of the current induction. The Arst of them is the direct
momentum transfer between the 2D and 3D electron gases and induces a current in the gate in the
same direction as that in the channel. The second mechanism is connected with the presence of a
temperature gradient in the channel due to the Peltier effect on the contacts. Energy exchange be-

tween the electron gases transfers the temperature gradient to the gate where it induces a thermo-
current in the direction opposite to the current in the channel. At high temperatures the tempera-
ture gradient in the gate is small because of efficient energy exchange between the 3D electron gas
and the lattice so that the current due to the direct momentum transfer dominates. When tempera-
ture decreases, the number of phonons participating in scattering processes with 3D electrons drops
off (the Bloch-Griineisen regime sets in), and the energy transferred from the 3D electron gas to the
lattice decreases. As a result the thermocurrent dominates and the total current changes its sign.
The theory explains the principal features of the experiment.

I. INTRODUCTION
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FIG. 1. Device structure.

An advanced molecular-beam-epitaxy (MBE}technolo-

gy which allows fabrication of heterostructures between
GaAs and (Al,Ga)As not only contributes to the design
of new useful devices but also leads to observation of
unexpected physical phenomena. Recently Solomon,
Price, Frank, and La Tulipe' observed the effect of three-
dimensional electron gas (3D EG) drag in a GaAs gate
electrode caused by an electric current through 2D EG in
a GaAs channel separated from the gate by a 300-A insu-
lating of Ale 5Gao 5As (Fig. I}. The electron drag effect in
heterostructures due to Coulomb mutual scattering
(CMS) was predicted by Price, and the experiment' was
designed for the observation of this effect. The most
striking feature discovered in Ref. 1 was that the effect
changed its sign when the temperature decreased, i.e., the
drift in the 3D EG had the opposite direction to that in
the 2D EG. The reciprocal effect in the channel also was
observed when the signal was applied to the gate. The

first attempts to explain this effect with mechanisms in-
volving transmitted phonon drag, CMS, and thermoelec-
tric effects did not lead to any success. ' The purpose of
the present paper is to give such an explanation based on
the Peltier effect, very weak inelastic electron scattering,
and CMS.

It is known that CMS leads to the exchange of an ener-

gy (Price, Jacoboni and Price ) and momentum (Price,
Boiko and Sirenko } between electron gases separated by
a thin insulating layer. Under conditions of electric
current flow, the electron distribution in the 2D EG has a
nonzero net momentum. The transfer of momentum to
the gate induces there a current of the same direction as
that in the channel. The origin of an oppositely directed
current in the gate is nonuniform heating of the 2D EG
due to the Peltier effect. This effect leads to a cooling of
the 2D EG near the contact where electrons come into
the gate and to a heating of the 2D EG near the other
contact. At temperatures below 50 K (where the current
reversal was observed'), the main electron scattering
mechanism in the 2D EG is elastic impurity scattering.
Electrons give their energy to the lattice by acoustical
phonon scattering which is rather weak. So, rather
lengthy regions of 2D EG near the contacts have temper-
atures different from that of the lattice. The energy ex-
change between 2D EG and 3D EG induces a tempera-
ture gradient in the 3D EG which eventually gives rise to
thermocurrent. The magnitude of the temperature gra-
dient in the 3D EG, and therefore of the thermocurrent,
depends critically on the electron-phonon relaxation rate
which provides the main energy relaxation mechanism.
At high temperatures this rate is high and the tempera-
ture gradient is small. When the temperature decreases
the Bloch-Griineisen regime sets in, the electron-phonon

41 9921 1990 The American Physical Society



9922 B. LAIKHTMAN AND P. M. SOLOMON 41

relaxation rate falls off, and so the temperature gradient
and thermocurrent increase. This leads to the change of
the sign of the total current which is a result of a com-
petition between the current due to the momentum ex-
change and the thermocurrent due to the energy ex-
change.

This mechanism of the thermoelectric effect is substan-
tially different from the conventional one. No phonons
are involved in the energy transfer, and the lattice tem-
perature gradient, diminished by the phonon thermal
conductivity, does not play any substantial role.

The theory developed in this paper gives an explana-
tion of the following characteristics of the effect.

1. Change of the induced current sign when ternpera-
ture decreases and the decrease of the current value (with
one more possible sign change} for a further temperature
decrease.

2. The reciprocal effect, i.e., the same behavior of the
current induced in the channel when the signal is applied
to the gate.

3. The dependence of the effect on the gate voltage,
i.e., the 2D EG concentration.

4. The main contribution to the effect from the ends of
the sample in the experiments with four contacts on the
gate.

5. The nonlinear effect, with signal applied to the
channel.

The theory is essentially serniquantitative. The reason
for this is partly due to simplifications in the model con-
sidered compared to the experiment. The effect strongly
depends on details of CMS and the structure and
geometry of the contacts. CMS takes place in the gate
within a screening length of the gate-insulator interface.
The screening radius is only a little greater than the Fer-
mi wavelength so that the detailed structure of the elec-
tron wave function depending on the doping near the sur-
face and band bending is very important. Surface scatter-
ing, which is not seen in the bulk measurements and,
hence, cannot be estimated, plays a very important role in
the current induced by the momentum transfer. The
amount of energy arriving at the 2D EG due to the Pel-
tier efFect strongly depends on the microscopic structure
and the geometry of the contacts because of electron
thermoconductivity between the 2D EG and the con-
tacts. This may be the reason for a considerable variation
of the sign reversed effect from sample to sample. ' To
make the calculations simpler we consider a flatband
model and a uniform doping in the gate which is not true
in the device used in Ref. 1. Essentially the result of
these simplifications is an overestimation of the coupling
constant for CMS and underestimation of 3D EG scatter-
ing. We also often use sirnplifications justified for strong
inequalities in cases when real inequalities are not very
strong. These simplifications allow us to obtain nearly all
qualitative features of the effect although we overestimate
its magnitude.

In the next section we evaluate the electron-electron
collision term describing CMS and calculate the current
due to the momentum transfer. In Secs. III and IV the
energy balance and the electron temperature distribution
in the 3D EG are studied. In the last section the whole

picture is considered and the temperature dependency
and other traits of the effect are discussed and compared
with the experiment.

II. THE MOMENTUM TRANSFER FROM 2D to 3D EG

The authors of Ref. 4 evaluated the resistivity of a 2D
EG resulting from momentum transfer to an equilibrium
3D EG. Here we need to take the next step and calculate
the current in the 3D EG induced by this transfer. To
this end we consider the Boltzmann equation for the 3D
EG taking into account its interaction with the 2D EG
carrying a current.

For the electron concentration in the gate ng
——2X 10'

cm the inverse screening radius q, = [(4e mkz)/
(mrs )]' =2.3X10 cm ' is only a little smaller than
the Fermi wave vector k~ =3.9 X 10 cm ' (here
m=0.61X10 g is the effective mass and K=13 is the
dielectric constant). It means that the Coulomb interac-
tion decreases over a rather short distance and does not
lead to a dominance of scattering events with a very small
momentum transfer, so that one does not need to use the
electron-electron collision operator in the Landau form.
On the other hand, a large distance a =300 A between
the gate and the channel makes the transferred momen-
tum and energy small enough to neglect any dynamical
effect in screening. Thus we can use an elementary ap-
proach where the interaction between 2D EG and 3D EG
has to include static screening.

To find the interaction potential we calculate the po-
tential inside the gate caused by a point charge e posi-
tioned in the 2D channel at the distance a from the flat
gate surface. Coulomb interaction between the electrons
of the 3D EG is weak and the screening can be con-
sidered in the gas approximation. The potential
satisfies the Poisson equation

hP —2q,'"$5(z+a )=—4~e 5(z+a )5(rj ), z (0;
K

(la}

dfo 2d'kn= eP
dEk (2m }

mkF
(2)

which, strictly speaking, is justified for q, «kF only.
Here fo is the Fermi function and Ek is the energy of an
electron with the wave vector k. The boundary condi-
tions to Eqs. (1) are the continuity of P and BPIBz at
z =0. The solution to Eqs. (1) for z )0 has the form

J exp[ (q +q, )' z+i—q r~], (3)
4me d q

(2~)' g(q}

n(z), z)0,4me

K

where the z axis is directed perpendicular to the layers, r~
is the radius vector in the x,y plane, and
q,'"=2e mls' =2 2X10 is t. he screening parameter of
the 2D EG. The difference between the dielectric con-
stants of the substrate, insulating layer, and the gate usu-
ally is about 10% and we neglect it. We neglect as well
electron tunneling into the insulating layer, so that the
electron concentration n is not equal to zero only inside
the gate, and assume that
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where

g(q)=(q+q, '")[(q +q, )'/ +q]e~'

qch[(q2 +q2)1/2] —qa (3a)

where S and L, are normalization surface and length.
The integral with respect to z in the interaction matrix
element converges on a finite z which leads to an extra
factor L, in the collision operator. The normalization
length L, is chosen much greater than kF

' and q,
' but

much smaller than the electron mean free path, and that
extra factor can be replaced by 5(z}. As a result we ob-
tain the following expression for this operator:

„dk'I„f„=5(z)f ' f, [R(k,k')(1 —f„)f„.
o n (2~)2

—R(k', k)(1 fl, )fl, ],—

The interaction potential falls off inside the metal on a
scale of q,

' which is typically much smaller than the
electron mean free path. It means that transitions in 3D
EG due to this potential can take place when an electron
wave packet is reflected from the metal surface. The
transition probability is evaluated making use of wave
functions

' 1/2

e ' 'sin(k, z), k, )0,
z

fk~ fo(Ek ) eFU lx rcll
dfo

where F is the electric field, v=fik/m is the electron ve-
locity, and ~,h is the electron elastic relaxation time in the
channel. The main scattering mechanisms in GaAs lay-
ers at low temperatures are the scattering by deformation
potential of acoustical phonons and impurity scattering,
and in both cases ~,h does not depend on the electron en-

ergy. Apparently, if the electron temperature of 2D EG
and 3D EG is the same, which we assume in this section,
the first term in the right hand side of Eq. (6) does not
contribute to the collision operator.

For a typical electron concentration in the channel
n,h=5X10" cm the Fermi wave vector there kF"
= 1.8 X 10 cm ', and we can make use of the inequality

Ek =Pi k /(2m ), and q=k1 —k1 is the transferred
momentum. Quantities related to the channel are
marked with the corresponding superscript or subscript
and no appellations are made for gate quantities if this
does not cause confusion. We consider the interaction
between 3D EG and 2D EG as a perturbation for 3D
EG, so that the distribution function of 3D EG in Eq. (5)
can be replaced by the Fermi function. For 2D EG

X5(Ek Ek +Ek1 ——
E~g1~q~ ),

4 2 2

Q(,k„k,')= M2(k„k,'),
g q2

(q 2+ q 2) 1/2

M(k„k,') =
(k, —k,') +q +q,

(q 2+ q
2)1/2

(k, +k,') +q +q,

(5a)

(5b)

(5c)

where

2 d2k,
R (k, k') =f 2 Q(q, k„k,')f1,"+q(1 f1',

")—kF'"a, kFa )&1 .

The momentum transferred in one scattering event is of
the order of 1)lq &lrl/2a. The resulting transferred energy
is of the order of A' kF"/2ma —5X 10 ' erg which is less
than k&T for temperature T=35 K. Thus collisions be-
tween 2D and 3D electrons can be considered to be quasi-
elastic. In evaluation of the momentum transfer, where a
small energy transfer is unimportant, we can use the elas-
tic approximation neglecting the energy transfer in the
arguments of the distribution functions. This allows us
to reduce the collision operator to

'2
4meI„fl,=5(z) 7T dfo

A' q, (q,' )
2 2 h 2eF~ hk~TddE~

dk,' d2q 2d k, dfo qX
' q„M(k, k,')

(2n. }2 (2n )2 "
dEk " ' sinhqa

5[k, —k,' +2q(k —k, )] .

Here we neglected also q compared to q, and q,'".
A further simplification is possible if we take into ac-

count that the main contribution to the current comes
from small k„i.e., from electrons grazing the surface.
Assuming that k„k,' «q, (the real inequality is not very
strong}, we have M(k„k,') =4k, k,'/q, . At the same time
q is so sma11 that we can consider kq «k, . We use also
the inequality kz" « k~. As a result

„dk,'f 5[k, —k,' +2q (k —k, }]M (k„k,')

8 z kqk
1+

All other integrations are carried out without any
difticulty and we have
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I„fq=5(z)I„,
where

(10)

4me m.C
& eF7chmk„k, dfo

4 4 4 h 2
A q, (q, a) (q,'"a)

5 xdx
4m o e' —1

(12)

Now we are in a position to evaluate the electric current
in the gate induced by the collision operator [Eqs. (10),
(11)] which is considered as a perturbation in the
Boltzmann equation. Let the electron distribution func-
tion in the gate be fr=f0(Ek)+fz". The perturbation
affects only at the boundary and the main relaxation
mechanism is impurity scattering, so that fk" depends on
z and satisfies the equation

z 7
(13)

f (() 88
z=0 . (14)

Electrons corning to the boundary have the distribution
function fo, and f"' is not equal to zero for refiected
electrons only. Thus the induced current

where 7g is the electron elastic relaxation time in the
gate. Equation (13) can be replaced by the homogeneous
equation with the boundary condition

The current Eq. (16) does not depend on the electron
concentration in the channel. This results from the fact
that not all electrons in the channel contribute to the
current but only those which are in the energy layer with
the width equal to the drift velocity eF~,h/m times x
component of the momentum transferred, A'q . For
T~80 K the main scattering mechanism is acoustical
phonons, and ~,h and hence this portion do not depend
on the Fermi energy E~.

Comparing the magnitude of the current to the experi-
ment we encounter the problems mentioned above. We
have evaluated the interaction between 2D EG and 3D
EG making use of an ideal flatband model and uniform
doping in the gate. Actually, in the samples used in the
experiment' the gate has a spacer, an undoped layer of
about 20 A thickness near the insulating Al„oa, „As
layer. There is also possible accumulation of negative
charge on the interface between the gate and the
Al„GA, „Aslayer. Both the spacer and the accumulat-
ed charge give rise to a potential barrier preventing elec-
trons with a small k„which give the main contribution
to the current, from coming close to the insulating layer.
On the other hand, those electrons on the Fermi sphere
which have a large enough k, overcome the barrier and
screen the coupling between the 2D EG and 3D EG.
This screening can substantially decrease the estimate of
the current. If we neglect this screening and use Eq. (16)
then the mobilities in the gate 2.5X10 cm /Vs and in
the channel 10 cm /V s lead correspondingly to
~g =0.9X10 ' and hach-—0.4X10 "s so that for F=0.5
V/cm and L~ =40 pm we have J=4X10 A which is
well above the observed value of the current.

m. Ci wgkFk~T e Fw, hJ=L„
A'(q, a ) (q,'"a )

(16)

Equation (16) explains the main features of the experi-
ment' at high temperature. The temperature dependence
of the current is determined by the product T~,h. At low
temperature the main contribution to ~,h comes from im-

purity scattering, which does not depend on the tempera-
ture, and the current increases with the temperature. For
a higher temperature the main mechanism of electron
scattering is scattering by the deformation potential of
acoustical phonons, r,s~ 1/T (see, e.g., Ref. 6), so that
the current does not depend on temperature. The satura-
tion of the current with temperature takes place at T=80
K. At this temperature the mobility of 2D EG in pure
GaAs, related to the phonon scattering only, is about
1.5 X 10 cm /V s (see Ref. 7) which is quite close to the
mobility of 2D EG in the experiment. '

2d k=L,,fv &0 (2~)3
e v„~glee

where L is the sample size in the y direction. Carrying
out the last integration one can see that more than half of
the contribution comes from k, /kF &0.55 which justifies
the approximations made above. The final result is

III. HEATING OF 2D EG

In this section we evaluate the heating of the 2D EG
due to the Peltier effect. We use the electron temperature
approximation which will be shown to be justified in this
case. The distribution of the 2D EG temperature T,h

along the channel can be found from the thermal conduc-
tivity equation where the heat is transferred along the
channel electronically and from the channel to the sub-
strate by means of acoustic phonons

Tch
A,ch ~

—y,h(T, h
—T)=0 .

dx
(17)

dTch
r0 chaTF, x =0,

dx
(18)

where o.,h and a are conductivity and thermoelectric
power, and the coefficient r determines the portion of the

Here the energy dissipation term due to an interaction
with phonons is linearized with respect to the difference
between the electron and lattice temperatures (A,,h is the
electron thermoconductivity). The first problem is to es-
timate the magnitude of T,h

—T and the length on which
T,h decays to the lattice temperature T. To this end it is
enough to set the source of the Peltier heat near the con-
tact giving the boundary condition
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—x /IT
T,h

—T=(b T},he

where

(19)

Peltier heat absorbed by the 2D EG. Assuming that
T,h=Tforx~oo we have

we have an estimate' AEP/(kFT) =1.6X10 ' s at
T-30 K. This means that any possible distortion of the
distribution function at the contact dissipates very fast
and can be neglected.

The thermoconductivity of 2D EG,

~ haT 1/2(b, T},h=r, rz F, IT=(k,,h/y, h)
(~ hy h)'" (20)

7T ch ch
k

'T n
ch 3 B

so that we obtain
For an evaluation of y,h we make use of the results of
Refs. 9-12 which lead to the following expression for the
energy transferred from the 2D EG to phonons per unit
area in the case of T,h

—T &( T:
ch

ch f 2d'k d'q

ks T (2m) (2n. }

dE

e h

XN~f (E~h+q
~

)[1—fo(Ek)]

Xfi(E~h+q
~

Ek+A'—co ) . (21)

Here co and Nq are the frequency and the number of
phonons with wave vector q. An elastic anisotropy in
GaAs and Al„Ga, „Asis about 10% and we neglect it.
In the isotropic approximation electrons interact with
longitudinal photons only. We will neglect also the
screening of the electron-phonon interaction. The
screening adds the factor q~/[q~+PH(q~)] to the in-

teraction matrix element, where H(q j ) is an integral con-
taining the electron wave functions along the z direc-
tion. ' Electrons interact with the phonons which wave
vector qj 2kF"=3.6X10 cm '. On the other hand,
H(qj)&1 and in GaAs P 2me /irR =2X10 cm
Thus the neglect of screening, corresponding to the case
q j »PH(q j ), is a more or less good approximation.

The interaction of 2D EG with phonons is strongly an-
isotropic and depends on the channel thickness d,h.
In the calculation of the interaction matrix element we
used the simplest approximation for the 2D electron
wave function, (1/2d, h

)' z exp( —z /2d, h ), where

d,h
= [iraqi /(48ire n, h ) ]'~ =25 A (see Ref. 5). Thus

fin ~ d
~2 32%3

P ch ch ch

" m (1+6k'" d )
(25)

For ==13.5 eV (Ref. 7} and T=30 K we have lr-—25

pm. This estimate shows that in a sample of 70 pm
length the most prominent temperature gradient is near
the ends while the middle is at the lattice temperature.

In the case of impurity scattering we can use the ex-
pression

~2 kqTa=
6 eEchF

(26)

for the thermoelectric power of the 2D EG to estimate
the magnitude of the temperature difference, and then

(ks T)
(27)

(28}

The most important result here is the temperature and
concentration dependence. The latter comes from A,,h,

y,h, and ~,h= l,h/vz, where the electron mean free path
l,h

=const for impurity scattering. The result is

(&T),h~ T n,
„

if we neglect the second term in the
brackets in Eq. (23), and (ET),ha- T ~ n, h

~ for high
concentration when this term is greater than the first one.
The magnitude of (b, T),h is rather indefinite because of
the coefficient r. If we consider the electron gas in a con-
tact as a 2D EG then we obtain the estimate

W,„(q)= [1+(q,d, ) ]
pC

(22)

~~2 2=mk~
ch2 2y,„=

3 3 (1+6k/ d,„).
96npA dc

(23)

where = is the deformation potential, p is the material
density, and c is the longitudinal sound velocity.

Using the value c=5X10 cm/s we see that the ine-
qualities 2iiickF'"&keT and Pic/d, h &keT are satisfied
above 15 K, so that we can use the equipartition and qua-
sielastic approximation. As a result we have

where A, , and y &
are the coefficients of thermoconductivi-

ty and dissipation in the contact. Usually the conductivi-
ties of the channel and the contact are of the same order
and we can assume the same for the thermoconductivi-
ties. But the Fermi energy in the contact is much greater
than in the channel which leads to a greater value of the
phonon dissipation because more phonons can partici-
pate in scattering processes. If we take A,,h-—A, , and

y,h/y& -—10 then r =0.25, and Eq. (27) gives (bT ),h —-0.5
K.

In the calculation of y,h the assumption was made that
the electron distribution function is the Fermi function
with some effective temperature. This assumption can be
justified by comparison of the inelastic relaxation time
due to electron-phonon scattering H,h=n, hkz/y, h with
the electron-electron relaxation time. Equation (23) gives
+h-—3 X 10 s. For the electron-electron relaxation time

IV. ENERGY BALANCE IN 3D EG

The 3D EG receives energy from the 2D EG and
transfers it to the lattice. Due to this process a tempera-
ture gradient is set up there. First of all one can see that
it is a 2D temperature gradient. To check this fact it is
enough to estimate the length over which the tempera-
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where

dE = —y(T —T),
dt

eph

(30)

y= i f ) 3 fo(Ek —firoq)[1 —fo(Ek)]
pcks T (2ir) (2ir)

X5(E~k+ti~ Ek+firoq ) —. (31)

Piro~ -min(ks T, 2fickz } and it can be neglected in the ar-
gument of the 5 function. After this the integrations with
respect to angles and k can be carried out and

:-mcr=
3 24m. pA T

X N, 1+N,
0

Xln

exp
Eq /2 EF Acoq

k~T k~T

exp
,2

—EF +1
q4dq .

(32)

The logarithm in the integrand equals Acoq /kp T if
Eq&2

—EF &0 and is exponentially small in the oppo-
site case. The width of the transition region
bq -2mkii T/(fi kF) is so small that ficbq/k&T

ture gradient extends with the help of the expression
similar to Eq. (20). The evaluation of the 3D EG energy
dissipation to phonons is more complicated than the eval-
uation for the 2D EG. The problem is that one cannot
use the equipartition and quasielastic approximation be-
cause of the greater magnitude of kF compared to kF". In
fact, the energy of a typical phonon corresponds to
2AckF/k~=29 K which is within the studied tempera-
ture range. We use here a method similar to that of Ref.
15 and begin with the general expression for the electron
energy transferred to phonons in unit volume per unit
time,

dE 2 d3k d3q
3 ACOq

dt „„(2n.)' (2m. )' ' pc

X q [fk(1 fk+
—)(Nq+ I )

—fk+~(1 fk )N~
—]

X5(E~k+~~ Ek+fi—to~) . (29)

Assuming that f„is the Fermi function, in the linear ap-
proximation with respect to the difference between the
electron temperature T and the lattice temperature

=m kFk
2hckF «k&T

m pA

=2m 2k'T4
7 4 2~ckF

pA'c4

(33}

The low-temperature asymptotic form in Eq. (33) should
be used very carefully. It gives an error less than 10%
only for 2fickF/ks T) 10.

Equation (33) gives for electron-phonon relaxation time
ngka/y=1. 5X10 ' s at T=30 K. Under the same
conditions electron-electron relaxation time fiEF /
(ksT) =10 " s which justifies the electron temperature
approximation.

Now making use of the expression for electron thermal
conductivity A, =ks TrgkF/9m we obtain the following
estimate for length scale of the temperature change at
high temperature:

~3 pA kqTl'= -2 3
' 2AckF«kBT (34):-'m 'kF

For 30 K Eq. (34) gives 1=1.7 pm which is well above
the thickness of the gate d =1000 A. For lower temper-
ature this inequality becomes even stronger. It means
that while diffusing across the gate in the z direction the
3D electrons do not transfer much of their energy to pho-
nons, which allows us to consider the thermoconductivity
in the 3D EG as a 2D problem. It shows also that 1 is
much shorter than the scale of the temperature distribu-
tion in the channel, 1T. Hence, this last scale determines
the temperature distribution in the gate too, and we can
study the energy exchange between the gate and the
channel locally, as if the temperature along the channel
were constant.

The inequality l «d allows us to calculate the energy
transferred from 2D EG to 3D EG averaged over the
thickness of the gate

dE 1 f gd f 2dkEI f„.
dt „do (2ir)

(35)

The integrand here is an even function of k, and the in-
tegral with respect to k, can be reduced to that from zero
to infinity. Then we obtain a symmetrical integral with
respect to k and k, and in the linear approximation with
respect to T,„-Tgafter standard transformations come up
with the expression

—2mc /(fikz ) = 1.5 X 10 and N nearly does not
change there. As a result we have

2 2 2kF i6COqy= f N(1+N ) q dq
4 3pg2T 0 q q k T

dE
dt ee

(36)

dkzdk~ d kid qd k
ree =

2 2 q, k, k'
E~~&+q~

—
Ekld k~T (2ir )

fo(Ek)lfo(Ek }[1 fo(Ek, )]fo(Ek )5(Ek Ek'+Ek, E~k&+q~ } . (37)
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iri ln(kFa )

Fee
128wd m &k (q'i ) k T

2 (kchq )4

A' kF q~
sinh

X d
sinh(qa )

(38)

L

At high temperature, when fi kF'"/2ma «kzT sinh in
Eq. (38) can be replaced by its argument (quasielastic ap-
proximation}, and

m Ci REF'"k~
ln(kFa ), (39)

d mEFa (q'"a)Vee

where C, is defined in Eq. (12). In the opposite case the
main contribution to the integral comes from the regions
where q, «q . In this region q can be neglected in the
argument of the exponent and once again the integral is
evaluated without any difficulty,

mk~4 T'
360 d g3g ukch( cha )2

ln(k~a } . (40)

It is important to note that in this case the integrand has
a maximum at q„=3.8mk&T/(A' kF") and the condition

q, «q is satisfied for T &20 K which gives the upper
limit for the asymptotics Eq. (40). The physical meaning
of the decrease of y„with temperature is that at low
temperature the phase space of 3D electrons which can
participate in CMS is very limited because not all scatter-
ing processes satisfy the energy conservation law.

Equations (30) and (36) allows us to find the electron
temperature from the electron energy balance in the gate

T+ j TT— x+r„ (41)

At a high temperature Eqs. (33) and (39) give y/y„= 14
so that Tg

—T=(b,T), 1h/58ut in this case, as in Sec.
II, an attempt to estimate the thermocurrent according to

2e tg kF
~ dg Ly

k TAT (42)

or I =70 pm, L =40 pm, d =500 A, T=30 K
the temperature difference between the ends of the chan-

This expression can be simplified with the help of Eq. (7),
k„'"«kF, and q, a»1. After substituting the
transferred energy i' q.k, /m into fo(Ek. ) it can be
neglected in the argument of 5 function. Then this argu-
ment is reduced to k, —k,' +2q k, . The last term here is
much less than the two first terms, which means that
k, —k,'=q.ki/k, «k, . For k, —k,

' so small we can put
M(k„k,')=I/q, without a large error and integrating
with respect to k,' obtain a logarithmic integral with
respect to k, . Its lower limit is determined by the condi-
tion k, -qk, /k, -(kF/a)' and the upper one is k~.
The representation of this integration as one with respect
to angles of k makes it clear that it is separable. After
this it is possible to carry out the integration with respect
to k~ and ki, and with logarithmic accuracy

nel (bT),h=0.5 K leads to the J=2X10 A which is
about an order of magnitude greater than the observed
value.

V. DISCUSSION

The calculations made in the preceding sections show
that the current observed in the experiment' is a result of
two competing effects resulting from CMS. The first of
them is the direct momentum transfer from 2D to 3D EG
inducing the current in the gate in the same direction as
that in the channel. The second effect is the energy
transfer from 2D to 3D EG. This effect is important be-
cause the Peltier effect at the contacts to the channel pro-
duces an electron temperature gradient along it. The en-
ergy transfer results in the electron temperature gradient
in the gate which induces a thermocurrent in the direc-
tion opposite to that of the channel current. The com-
petition of the two currents explains the major features of
the total efFect.

1. A nontrivial temperature dependence of the total
current is related to different temperature dependencies
of the currents comprising it. The current induced by the
momentum transfer is proportional to the number of 3D
electrons which can interact with nonequilibrium 2D
electrons, i.e., cc T, Eq. (16). When the main mechanism
for the momentum relaxation both in the channel and in
the gates is impurity scattering and the corresponding re-
laxation times are temperature independent, it is the only
source of the current temperature dependence. At higher
temperature a phonon contribution to the momentum
scattering in the channel becomes more pronounced. It
does not happen in the gate because of a heavy doping
there. The momentum relaxation time due to the phonon
scattering ~ 1/T and the current saturates when the tem-
perature increases. The observed saturation temperature
is about 80 K which more or less corresponds to the tem-
perature where phonon scattering in the channel becomes
of the order of impurity scattering.

The temperature dependence of the current induced by
the energy transfer is more complicated. The tempera-
ture gradient which is set up in the channel is the result
of a balance between the heating or cooling of electrons
at the contacts and an energy relaxation due to phonon
scattering. Electrons interact only with the phonons
whose wave vectors are smaller than 2kF" which is much
smaller than the wave vector of the thermal phonons. As
a result, the energy relaxation time is constant, and the

temperature dependence of the temperature gradient is
caused by that of thermoelectric power and thermocon-
ductivity of the 2D EG, so that (b, T),h

cc T, Eq. (27).
The energy balance in the gate is determined by the ener-

gy coming from the 2D EG and by phonon relaxation.
At high temperature, when the energy relaxatian time is
constant, as in the channel, the incoming energy is
transferred to the lattice and the temperature gradient is
smaller than that in the channel. The thermocurrent is
smaller than the current induced by the momentum
transfer. When the temperature decreases, the wave vec-
tor of the thermal phonons becomes srna11er than 2kF,
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the number of phonons which can participate in the ener-

gy relaxation decreases rapidly, and the energy relaxation
time increases, Eq. (33). This does not happen in the
channel because of kF" && kF. The increase of the energy
relaxation time leads to an increase of the temperature
gradient in 3D EG, which approaches that in the chan-
nel. As a result the thermocurrent increases and the total
current changes its sign. The change of the electron ener-

gy dissipation in the gate happens at the temperature
T=2AckFlkI{ —-30 K which is close to the temperature
where the effect changes its sign in the experiment. ' A
further decrease of the temperature eventually leads to a
decrease of the thermocurrent (and possible change of the
sign of the total current) which can be related to a few
reasons. First of all, the Peltier effect and the kinetic
coefficient determining thermocurrent decrease with tem-
perature. Also, at low temperature CMS becomes highly
inelastic which diminishes the energy exchange between
the 2D EG and 3D EG, Eq. (40).

The temperature dependence of the current described
above (Fig. 2) qualitatively corresponds to the experimen-
tal one. Quantitative estimates of the current magnitude
give, however, values greater than the experimental ones
approximately by an order of magnitude, both for low
and for high temperatures. The physical reason for this
is an overestimate of the coupling constant between the
2D EG and 3D EG and the unknown portion of the Pel-
tier heat Bowing into the contacts. The large uncertainty
concerning these two components of the total current
also prevents one from obtaining a good estimate for the
temperature where the total current changes its sign.
There can be also other reasons for lack of quantitative
agreement, such as an uncertainty or nonuniformity of
the doping. Nevertheless, we have confidence as to the
suggested explanation of the experiment, because the
theory explains not only the temperature dependence but
also most of the other characteristic features of the effect.

2. The same physical arguments explain the reciprocal
effect, where the external signal is applied to the gate and
the effect is measured in the channel. Here the tempera-
ture gradient due to the Peltier effect arises in the gate
and the energy balance there controls the amount of ener-

gy transferred to the channel. The total current through
the channel is the sum of the thermocurrent and the
current due to the direct momentum transfer.

3. At high temperature the theoretical current does
not depend on the electron concentration in the channel
Eq. (16). This explains the observed saturation of the
current when the gate voltage increases. Both the chan-
ne1 current and the current in the gate decrease at low
values of the gate bias because the electron concentration
has decreased to the point where a continuous 2D EG
does not exist in the channel.

At low temperature an increase of the current with the
gate voltage eventually changes to a decrease due to a de-
crease of the temperature difference in the channel, Eq.
(27).

4. Solomon et al. ' also made measurements on the de-
vices with four contacts on the gate. That is, instead of
two contacts G, and G~ (Fig. 1) four contacts were made
with the distance between adjacent contacts of about 10

FIG. 2. Qualitative picture of current temperature depen-
dence. I. The current due to direct momentum transfer dom-
inates. II. The region of transition from equipartition regime to
Bloch-Gruneisen regime. III. The thermal current dominates.
IV. The thermal current decreases with temperature.

T,h
—T (eF ) r,hr', "h

T Ikey T
(43)

G) G4

G3

10pm

FIG. 3. Four gate-contact device.

p,m (Fig. 3). In these devices the main contribution to the
low-temperature effect came from the ends of the sample.
That is, the effect was observed between the contacts
comprising pairs (G, and G2 or G3 and G4) but in linear
regime no current was detected between the contacts 62
and G3 in Fig. 3. This result is easily understandable be-
cause the temperature profile in the gate follows that in
the channel, and there the temperature gradient disap-
pears in the rniddle.

5. A nonlinearity of the effect is explained by electric
field heating of the 2D EG. The increase of the 2D EG
temperature due to the electric field is determined by the
equation
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At T=30 K for voltage of 10 mV on a sample of 70 pm
length Eq. (43) gives (T,b —T)/T=0. 25. If the voltage
increases to 25 mV then ( T,t, —T ) /T = 1.6. Thus the
voltage corresponding to a pronounced nonlinearity real-
ly gives rise to a substantial heating of the 2D EG. The
increase of the electron temperature leads to an increase
of the Peltier effect and other kinetic coeScients which
increases the thermocurrent. It is important to note that
the heating of the 2D EG by the field and a heating of the
3D EG, resulting from the energy exchange, do not lead
to a lattice heating which could decrease the thermo-
current.

The field heating of the 2D EG increases lr, Eq. (25),
i.e., the part of the sample producing the thermocurrent.
It explains the fact that the nonlinear effect was also ob-
served in the middle part of the sample in the devices
with four contacts on the gate. In short samples lr can
be of the order or longer than the sample length, which
leads to an increase of the nonlinear threshold field due to
the electron thermoconductivity. This increase of the
nonlinear threshold was also observed in the experiment.
The aim of these arguments is only to make an estimate
for the threshold and to show possible results of non-
linear effects. The developed theory is essentially linear
and it does not consider, for instance, such an interesting
question as the effect of the nonuniform Joule heating of
the 2D EG which also can contribute to the thermo-
current near the contacts.

In conclusion, a theory is suggested explaining the tem-
perature dependence of the mutual drag of 2D EG and
3D EG in GaAs-A1„Ga, „Asheterostructures and the
change of the sign of the effect. It explains the depen-
dence of the effect on the gate voltage, nonlinear effect,
and the reciprocal effect too. Our results show that the
Coulomb mutual scattering is the most important mecha-
nism of energy and momentum exchange between the
layers in small heterostructure devices if there is no spa-
tial transfer. Both energy and momentum exchange can
induce a current in one of the layers when a current is
driven in the other one. The currents induced by these
two mechanisms can have opposite directions and the re-
sult of the competition between them strongly depends on
the delicate details of the electron energy relaxation. A
few problems are left unsolved. The nonlinearity of the
reciprocal effect which is nearly the same as that of the
direct effect is not explained by the current theory. An
additional study of the 3D EG properties near the surface
is necessary to obtain a better estimate for the magnitude
of the effect.
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