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Resonant tunneling with a time-dependent voltage
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The effects of an ac component in the voltage across a double-barrier structure are investigated in

a simple model. The transmission probability for an incoming electron is calculated as a function of
time. When the period of the ac voltage is short compared with the lifetime of an electron in the
quantum well, photon-assisted tunneling occurs. In the opposite case, when the ac-voltage period is

long, the transmission probability is governed by the instantaneous value of the voltage. In an inter-
mediate regime, interesting interference effects, similar to effects seen in level-crossing problems,
show up. We also calculate the time-dependent current through the structure.

I. iNTRODUCTION

Resonant tunneling (RT) through quantum-well struc-
tures (QWS's) has for several reasons attracted a lot of at-
tention in the last few years. From a theorist's point of
view resonant tunneling is nice because it illustrates the
principles of quantum mechanics in a simple way. Elec-
trical engineers like resonant tunneling since the effect
can be exploited when building devices such as mi-
crowave generators. When a QWS is used to generate or
detect microwaves the structure will inevitably experi-
ence some perturbations that are varying in time with a
frequency equal to the microwave frequency. In this pa-
per we study what happens when the voltage across a
QWS has an ac component.

The work of Sollner et al. ' is the experimental starting
point for studies of the effect of time-dependent perturba-
tions in RT. Their experiment presented the first evi-
dence at room temperature for negative differential resis-
tance (NDR}, which is an essential feature if one is going
to use RT for generation of microwaves. Moreover, they
studied the inhuence of electromagnetic radiation on the
tunneling.

Theoretical work on tunneling devices acted on by
external time-dependent fields has quite a long history.
Tien and Gordon studied the effect microwave radiation
has on superconducting tunneling devices. Several work-
ers ' have investigated the effect time-dependent terms in
the potential will have in different tunneling problems.

In this paper we calculate how the transmission proba-
bility for electrons in RT is changed due to an ac-voltage
component across the structure. We do this by using a
model based on a simple tunneling Hamiltonian. Soko-
lovski ' has studied the interaction between radiation
and resonantly tunneling electrons in a thorough manner.
His model involves a detailed description of the double-
barrier structure and the interaction with the radiation
field. Sokolovski in his treatment uses explicit electron
wave functions. The present work gives an alternative,
and as we believe simpler treatment of the same problem.
Given the tunneling Hamiltonian we solve the equations
of motion for the electron operators and calculate the
transmission probability for the electrons.

The results of the two calculations are quite similar in

a number of limiting cases. This should be no surprise
since as long as the probability for tunneling through one
single barrier is small the detailed form of the wave func-
tion in the barrier region is of little importance and all
the essential physics is described by the tunneling Hamil-
tonian. In our calculation we have also tried to put more
emphasis on the time dependence of the transmission
probability than has been done in earlier work. We inves-
tigate in some detail the crossover from high-frequency
external fields to low-frequency fields.

Our work was initially inspired by theories on the in-
teraction between a tunneling electron and an internal
time-dependent perturbation, namely the optical pho-
nons. "We will indeed see that under appropriate con-
ditions, an ac voltage (photons) will have the satne effect
on the resonant tunneling as have phonons. There is,
however, also a crucial difference between the two cases
in that the photon field is coherent and thus has a certain
phase while the phonon field is incoherent. The result of
this is that an ac voltage will give an ac current. The
phonons, on the other hand, just modify the magnitude of
the dc current fiowing through the QWS.

II. THE MODEL

We use a very simple model for the QWS shown in Fig.
1, with the Hamiltonian H given by

H =Ho+HT,

Hp = g [skL, + Vpcos(cot )]ckt.ckL+ ape c
k

+ g [E&tt Vpcos(tot )]c&tt c&tt
p

HT= g TkL(c ckL+H. c. )+ g Tptt(c c~tt+H. c.},
k P

where ckl cpP ckL and cp„are destruction and creation
operators for electrons in the left- and right-hand side
leads of the QWS, respectively. The operators c and c,
respectively, destroy and create electrons in the resonant
level in the quantum well.

The electrons in the leads are considered to be approxi-
mately free with an effective mass m', i.e., ckL and cpz
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FIG. 1. Schematic picture of the quantum-well structure.
The electrons are free in the leads except for the time-dependent
shifting of the energy due to the ac voltage. In the well the only
allowed energy is c0. The matrix elements TI and T& provide
the coupling between the different regions of the structure.

way. Our model of the external field for instance does
not say anything about the details of the electric field in
the barriers and the quantum well.

The use of a tunneling Hamiltonian means that we can-
not describe any of the structure of the tunneling events.
The matrix elements Tkl and T z just tell how large the
overlaps between the different states are. This should be
no restriction as long as the time it takes for an electron
to travel through a barrier is considerably shorter than
all the other time scales in the problem. With other
relevant time scales we mean the lifetime of an electron
inside the quantum well and the period of the external
field.

Finally, we have not taken into account any electron-
electron interactions and we will concentrate on the
properties at zero temperature.

III. CALCULATION
OF THE TRANSMISSION PROBABILITY

are given by eke =kt /2m ', etc. Here and in the follow-
ing calculations units such that Pi= 1 has been used.

To find the correct value for the electron energy ca in
the quantum well one has to solve the Schrodinger equa-
tion in one dimension using the potential which is given
by the shape of the we11. We have only included the reso-
nant level with the lowest energy in the model. This
means that we cannot treat situations where the frequen-
cy of the external field is so large that it can excite elec-
trons to higher energies inside the well.

In this context we want to point out that the Hamil-
tonian we use is in principle one dimensional. All the en-
ergies we have defined refer only to the motion perpen-
dicular to the planes of the barriers. Of course there is
motion also in the directions parallel to the barriers but
since we are not considering any interactions that can
change the parallel momentum k~~ of an electron we actu-
ally solve a one-dimensional problem for each and every
value of k~~.

The effect of the external field is taken care of by the
two terms VDcoscot. The effect of the time-dependent
voltage in our model is thus to make the electron energies
in both leads vary with time. The parameter VD is related
to the ac-voltage amplitude Uz across the well by
Vo eU~/2.

The possibility for an electron to tunnel through the
barriers into and out of the quantum well is modeled by
Hz-. The matrix elements Tkl and T~„can be calculated
using the prescription first given by Bardeen. '

Our model is thus very simple which has the advantage
that only a few parameters are needed to characterize the
situation. On the other hand, a simple model of course
means that one cannot describe all effects in a correct

We begin by calculating the transition probability for
an electron from the left lead to the right lead. Since we
are interested in time-dependent quantities we want to
know how this probability changes with time. Let us
define

P(t)=W "(t)W(t)=[&pR ~U(t, — )~kL &('. (2)

U(t, —~ ) =( i ) f ds f d—~ Tkt T ~c „(s)

Xc(s)c (~)ckt(7) .

The equations of motion for the operators are
idc/dt =[c,HD] etc. and we easily find the following ex-
pression:

Here
~

kL ) and pR ) represent many-electron wave
functions for states with N+1 electrons in total. We
focus our attention on the last electron in these many-
electron states, thus kL means that the extra electron is
in the left lead and has a perpendicular momentum k and
pR means that it is in the right lead with the perpendicu-
lar momentum p. All the other N electrons are supposed
to be in the same one-electron states in both ~kL ) and
ipR ).

The time-development operator U(t, —oo ) is to be cal-
culated in the interaction representation of our Hamil-
tonian so that P(t) expresses the probability for an elec-
tron initially starting in the state kL to be in state pR at
time t. The perturbation term in the Hamiltonian is H~.
Since the tunneling matrix elements Tkl and Tk„both
are very small in all applications we calculate U(t, —~ )

to lowest possible order in these quantities. Thus

(pR ~cz(s)c(s)c (r)et (r)~kL ) =expIi[e zs ckt r (V—0/co)si—n(tos) —( VDco/) ins(cow)]I (O~c(s)c (w)~0) (4)
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where ~0} stands for the vacuum state of the quantum
well. It is possible to factorize out the last expectation
value in Eq. (4) because ~kL }and ~pR }are product wave
functions containing one factor from each lead and also
one factor from the quantum well. When calculating
(O~c(s)c (r)~0) we introduce a broadening of the reso-
nant level due to the finite probability for the electron to
tunnel out of the well. We assume that the decay is ex-
ponential and thus

(O~c(s)c (r)~0}=e x, for s)r .

The broadening I of the resonant level appears to be a
constant in Eq. (5). This is of course not true. The
broadening depends indeed very strongly on such things
as the energy of the resonant level and the bias voltage
across the QWS. Moreover the time dependence in our
problem also means that I varies with time. To be able
to simplify the calculations we will neglect these compli-

=2m g TkL5(E ek—L )+ g Tp~5(e e—R )
k P

(6)

Expressed in another way r(e) is the imaginary part of
the electron self-energy due to the coupling of the reso-
nant level to the states in the leads. The self-energy of
course also has a real part X(e) which enters the calcula-
tion as a shift of the resonant level energy. For c. close to
the band edges I and X are strongly energy dependent,
and then the expectation value (O~c(s)ct(r)~0} will be
more complicated than in Eq. (5). In the rest of this pa-
per we will neglect these dispersion effects since we feel
that they are irrelevant considering the simplicity of our
model. Putting (2}—(5) together we arrive at the follow-
ing integral for A (t ):

cations, but we write down the basic equations for the
energy-dependent broadening. The golden rule gives us

r(E)=r, (e)+r, (s)

A(t)= —Tkt T~tc f ds exp[i[e ss —eos+irs/2 —a sin(cos)]I f drexpIi[Ear ekLr—iI r/2 —asin(co—r)]I

where a = Vo/co. To evaluate the integral we use the Fourier expansion

&ia sing y J (a )&in/

In this equation J„(a) denotes a Bessel function of order n. In order for the s integral to be well defined a conver-
gence factor e ' where 5 is infinitesimally small and positive is introduced. The result for A (t ) reads

exp[i(szz —
ekL nco —mco)t—]e 'J„(a)J (a)

A(t)=Tkt T „ (9)
(s~tc skL nco——mco —i5)(so—ekt —mco i I —/2)—

The time derivative of the transition probability is

dP dA' +A, dA
dt dt dt

=2Re
dt

e i(p+q —n —m )cot

=2 Re tTgg Tpi
(s~z —

ekL pco q—co+i—5)(so ekL q—co+i I—/2)

1 J„(a)J (a)J (a)J (a)
EP BkL, m co —ir r2

(10)

This is the rate at which electrons go into one specific state in the right lead after having started in another specific state
in the left lead.

However, we do not need such detailed information. We just want to know the rate w, (eL, t) at which an electron
with a certain initial energy EL in the left lead tunnels through the QWS into any state in the right lead. Summing the
expression in Eq. (10) over final states we get the following appealingly simple result:

ec(e m)rut J (a)J—(a)
w, (eL, t)=TL1 „g (c,o

—
sL qco+—i I /2)(EO eL —mco i I—/2}—

This simplicity relies heavily on the assumption that I z(E) defined in Eq. (6) is energy independent. Furthermore we
have neglected the real-valued principal part g(s z —e„L —pco —qco) ' of the sum over final states. The latter approxi-
mation is justified physically by the fact that at high bias voltages there are a lot of empty states in the right lead both
below and above the energy where overall energy conservation is satisfied, leading to cancellations in the sum.
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The total number of electrons with initial energy near eL tunneling through the QWS per unit time is

r, r„ e'~ ' 'J (a )J (a )
w(eL, , t)deL = . . deL .

2n. (eo—
EL

—qtt)+il /2)(eo —eL —mao —i I /2)
(12)

u(et )
w)(eL, t )= T(eL, t ) (13)

Here u(eL ) is the velocity of the electron in the left
lead and Eq. (13) just states that the tunneling rate is
equal to the attempt frequency times the transmission

To calculate the current through the structure one has to
integrate w(et, t) over eL and sum over parallel momen-
tum. This will be done in Sec. V.

The most important quantity in a tunneling problem is,
however, the transmission probability for an electron
impinging on the barrier structure with a certain energy.
If we let D denote the normalization length of the left
lead the following relation holds between m& and the
transmission probability T:

probability. From Eq. (6) we get

I L(s)=2m g Tkt5(e e—t }
k

D TL, 2DT~=2m.f d et — 5(e —sL ) =
1T u(et ) u(EL ) sL =s

(14}

In Eq. (14) D/m. is the density of states in perpendicu-
lar momentum space when the basis is built up by stand-
ing wave functions. The factor 1/u(eL ) comes from
changing the integration variable from kL to eL. From
Eq. (14) and the assumption that I L is not depending on
energy we get the following time-dependent transmission
probability:

i(q —m )sttJ
(so—

eL, qto+—i I'/2)(so eL
——mc0 t I /2) (15)

We see that T( eLt} as well as w( eLt) and w(sL, t)
are absolute squares and we can write

transformation is identical to the standard methods' for
summation over Matsubara frequencies.

T(eL, t)= f'(t)f(t)=If(t)I
(16)

IV. RESULTS
FOR THE TRANSMISSION PROBABILITY

immit J (a )f(t)=(rLr„)' '
(eo —

eL
—mto —i 1 /2)

J (a )
— dP e i(a sing —mP)

277 0

and then interpreting the sum in the expression for f(t)
as a sum of residues, f(t ) can be brought into the form

i(r, r, )'"
(t)=

X d exp[ia sin(p —cot ) iph py—]—
0 1 —e e

—2~ —2m.i 5 (18)

where y = I /2iri(t) and b, = ( eo
—

eL ) /i)'ta).

The technique we have used in order to perform this

Sokolovski obtained the same result in a limit in his cal-
culation.

For numerical calculations of the transmission proba-
bility Eq. (16} is the best starting point but the limiting
behavior of f( t ) in some cases becomes more apparent if
the sum is converted into an integral. Using the inverse
of Eq. (8),

The behavior of the transmission probability T(eL, t ) is
mainly determined by the two parameters a and y. To
vary y = I /2))ia) one has to change the frequency to, since
I" is in principle fixed after the device has been built. The
parameter a = Vo/A'co can be changed either by varying
the ac-voltage amplitude V0 or the frequency co. We find
that the limiting behaviors split into two subgroups (low
intensity and high intensity) depending on the value of a.

(i) Low intensity When .Vo/%co is small (a & 1) only
the Bessel functions with index close to zero will give any
considerable contributions to f(t) in Eq. (16). Then if
the broadening of the resonant level is small compared to
the ac frequency (I /2))hatt) « 1 } the transmission probabil-
ity will show peaks at integer values of (Eo—EL ) /A'a). The
physical meaning of this is that only electrons whose un-
perturbed energy is either "correct" from the beginning
or is off resonance by an integer number of photon ener-
gies can tunnel through the QWS. When the level width
is larger than the photon energy %co the effects of this
photon-assisted tunneling cannot be resolved anymore.

In Fig. 2(a) we have plotted the transmission probabili-
ty T as a function of (eo—

eL )fico at two different times.
The parameter values are a =1 and y =0.2. One can see
that the time dependence of the transmission probability
is quite sma11 in this case.
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(ii) High intensity .When a is much larger than 1 we
find a number of interesting results depending on y.

We start by considering the case y »1 while at the
same time y »a. Physically this means that the lifetime
of an electron inside the quantum well is much shorter
than the period of the ac voltage, while the amplitude of
the ac voltage is not too high. We expand the sine func-
tion in the exponent in Eq. (18) in powers of P,
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FIG. 2. The transmission probability T in units of
4I LI z/I' plotted as a function of A=(cp —cL)/A~. Thus
diferent ualues on 5 refer to diferent energy leuels in the left
lead. Each curve corresponds to a particular time t. (a) The
transmission probability with Vp/Ace=1 and I /2ficu=0. 2 plot-
ted at two different times. (b) The parameter values are
Vp/Ace=5 and I /2%co= 10, and we have the adiabatic limit. (c)
In this plot Vp/Ace=100, I /2fim=2, and cot=0. Peak A corre-
sponds to energy levels in the left lead which at the moment
have approximately the same energy as the resonant level.

a sin(P —Iot ) = —a sincot +Pa cosset

+(P a/2)sincot+O(P ) . (19)

Because of the exponential factor e ~~ the integral in
Eq. (18) will get its major contributions from small

P (0&P& 1/y). In this interval P a /2 & a/2y «1 and
we can neglect the P term in Eq. (19) when calculating
the integral. We get for T(t)

T(t ) =
~f(t ) ~'= r, r„ 1

1

[s —s —V cos(cot)] +I' /4
(20)

From this result we see that in this so-called adiabatic
limit the transmission probability is determined by the
instantaneous positions of the energy levels. See Fig. 2(b).

When the condition on the amplitude (a «y ) for the
adiabatic limit is no longer satisfied the transmission
probability shows a more dramatic behavior. In Fig. 2(c)
we have plotted T with the parameter values
a=Volfico=100 and y=l'/2%co=2. One can see that
the transmission probability has a peak (peak A) for elec-
trons with an energy in the left lead that for the moment
is close to the resonant level energy.

However, the curve also shows oscillations in the
transmission probability. These oscillations are the result
of quantum interference phenomena. The peak marked 8
in Fig. 2(c) is due to electrons whose energy in the left
lead coincided with the resonant energy before the time
corresponding to the curve. When the level in question
passed the resonant level, part of the electron wave func-
tion leaked over into the quantum well. Another part of
the electron wave function, however, stayed in the left
lead a little longer before going into the quantum well.
As a result of this the two parts of the wave function will

differ in phase. In Fig. 2(c) electrons with (so—
sL )/fico at

peak B have a phase difference of =2m between these two
parts of the wave function. The result of this is construc-
tive interference.

When the ac voltage is so large that what is happening
from the point of view of an energy level in the left lead
is a quick passing of the resonant level twice every
period, we are in principle facing a level-crossing prob-
lem. In fact the curve in Fig. 2(c) shows a striking quali-
tative agreement with results from calculations on a
clean-cut level-crossing problem. '

If we had plotted the curve in Fig. 2(c) using y =10 we
would have reached the limit where the lifetime of the
electron in the well is so short that the interference effect
can no longer be seen.

Choosing a small y (y «1) while still having a large
amplitude for the ac voltage (a ))I ) will give very com-
plicated results for the transmission probability. The
peaks at integer (so —

EL )/%co typical for photon-assisted
tunneling will appear again, but the time dependence of
the curve will be pronounced, i.e., the largest peaks will
be seen for electrons whose energy at the moment is close
to co.

In all the cases with a »1 the average shape of the
transinission probability (for 6 &a) can be calculated by
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applying the stationary phase approximation to the in-
tegral in Eq. (18). This is done by Sokolovski.

AO

V. CALCULATION OF THE CURRENT

To get the current we start from the rate w(t }, sum
over parallel momenta, and finally integrate over the per-
pendicular energy of the electron in the left lead. We
write

EF EF
j(t}=ef deL gu/(t}=e f del

'
skim, „w(t} .

p /,
p 2

II

2

~OC
1

-1
CI -2
D

e
~ tt
j,

4 ~ ~ ~i e
I
I
I
1 ~ l' jl

em A, EF
1. EF—cl. w

7T 0
(22)

We have also investigated the different frequency com-
ponents of the current through a Fourier analysis:

j (t ) =jp+ y [jkcos(k 8)+j /» n( k 8)],

8=cot, k =1,2, 3, . . . ;

jp= f d8 j(8);2' 0
(23)

(21}

In this equation EF is he Fermi energy of the material
in the left lead, e is the elementary charge, and A, is the
cross-section area of the QWS. The density of states in
parallel momentum space is, including both spin direc-
tions, A, /2n .

The maximum value of the parallel momentum that we
can have for a specific c,L is given by

kl, „=2m '(Ez eL
—), where m' is the effective electron

mass. Putting this into Eq. (24} we get the following in-
tegral to solve for j(t ):

-3
-1BO -140 -100

I I

-60 -20

voltage (f/pp//e}

20 60

FIG. 3. The Fourier components of the tunneling current
through the QWS as a function of the bias voltage. The param-
eter values used are V0/Boo=10 and I /2Aco=4. For compar-
ison we have also plotted the dc current through the same struc-
ture with no ac voltage present. Note that the voltage scale zero
does not correspond to true zero bias but to the situation when
the resonant level coincides in energy with the bottom of the
free-electron band in the left lead.

that the microwave radiation indeed is so intense that the
I-V characteristics of the QWS have been changed. The
large ac components in the current clearly show that the
time dependence in the problem is important. However,
the alternating current is practically impossible to mea-
sure so just as in the phonon case the experimental mani-
festation of the interaction between the tunneling elec-
trons and the ac voltage is best seen in the modification of
the dc current.

j„' =—f d8 j(8)cos(k8);
7T 0

2n.jk'= —f d8 j(8)sin(k8) .
7T 0

In our numerical calculation of the tunneling current
we have estimated our parameter values from recent ex-
perimental data. ' In this experiment a microwave power
of 50 mW is concentrated by a wave guide onto a circular
area of 4 pm diameter. The magnitude of the electric
field in the QWS is in this case =10 V/m. Since 200 A
is a quite typical value for the length of the well and both
the barriers together, we find that 10 meV is a reasonable
value to use for Vo.

The microwave frequencies used are about 250 GHz
corresponding to %co = 1 meV and the Fermi energy of the
material in the leads is =50 meV. Finally the typical lev-
el width I is often around 8 meV. Thus we arrive at
the following reasonably realistic parameter values:
a = Vp lfuo= 10, y = I /2fuu =4.

The result of the current calculation is presented in
Fig. 3. The current as a function of bias voltage with no
ac voltage is also in the diagram as a comparison. We see

VI. CONCLUSIONS

Starting from a simple tunneling Hamiltonian we have
calculated the time-dependent transmission probability
for electrons through a double-barrier structure when
acted on by an ac voltage. Our solution gives the cross-
over from photon-assisted resonant tunneling at high fre-
quencies to other limiting behaviors at low frequency.

We find it especially interesting that, for high intensi-
ties and ratios of level width to frequency in an inter-
mediate regime, the transmission probability shows clear
signatures characterizing Zener tunneling.

Our calculation of the tunneling current clearly shows
that the microwave intensities used in recent experiments
are high enough to alter the current-voltage characteris-
tics of the QWS.
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