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Need for reinterpretation of the main optical transition
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The T2 final state of the main optical transition of EL2 can couple to lattice distortions of a, e,
and ~ symmetry. The stress splitting of the zero-phonon line (ZPL) observed by Kaminska et al.
gives information about the strength of the coupling between the lattice and the T2 final state. We
have obtained that information and have shown that the lattice relaxation associated with the ~
mode used by Kaminska et al. to account for their results cannot be larger than about 70 meV, and
is probably much closer to 45 meV. We find that the lattice relaxation associated with the e modes
is negligible, and we estimate, from analysis of hydrostatic-pressure experiments, that the lattice re-

laxation associated with the a modes is about 90 meV. Thus, the separation of 140 meV between the
peak in the optical absorption at 1.18 eV and the ZPL at 1.04 eV (a separation commonly taken to
be due to lattice relaxation) can be accounted for. If this agreement is interpreted as strengthening
the case that the ZPL and the peak in the optical absorption are related to each other by lattice re-

laxation, it exacerbates well-known problems in understanding the optical absorption. Among these
problems are the intensity of the ZPL, the fact that it moves in a direction opposite to that of the
main peak under hydrostatic pressure, and the fact that it rides up over the beginning of the main

peak when hydrostatic pressure is applied. Our calculation does make it clear that there must be at
least two local modes, one of a symmetry and the other of ~ symmetry, in addition to any of the
perfect-crystal phonon modes usually considered. Although this potentially adds a new feature to
the analysis, it does not by itself resolve the problems with the absorption. We discuss the role that
ionization and recapture may play in resolving these problems and suggest an experiment that
might clarify this issue.

I. BACKGROUND

EL2 is a native midgap donor defect in GaAs which is
of interest in large part because of its optically induced
metastability. It is known that As&„the arsenic antisite
defect, is a main constituent of EL2. There is active con-
troversy over whether EL2 is the isolated As&, or wheth-
er, in addition, EL2 contains another defect complexed
with the As&, . The present work, however, will deal
only with aspects of the optical absorption resulting from
the A

&
~T2 transition at the As&, and not at all with the

question of an additional defect being present in EL2. In
the following, we shall describe some calculations which
were prompted by the need to explore certain incon-
sistencies in the interpretation of the optical transition,
particularly, aspects of it which arise because of coupling
between the electronic state of the defect and the relaxa-
tion of the lattice in which it is embedded.

Let us review the most prominent features of the opti-
cal absorption. The main optical absorption of EL2 has
been identified as being an 3

&
to T2 transition at the neu-

tral AsG, . Experimentally, it is characterized by three
features: (i) A smoothly rising photoionization cross sec-
tion starting at about 0.77 eV. This is ascribed to the
transfer of an electron from a midgap A, level of the
Aso, to the conduction bands. (ii) Superimposed on this
is a broad peak of half-width about 0.15 eV centered on
h v= 1.18 eV. This feature is strongly associated with the

transition to the metastable state and has, in most analy-
ses, been regarded as an intracenter A& to Tz optical
transition. Its broadening is ascribed to lattice relaxa-
tion, with 1.18 eV being the energy of the "vertical transi-
tion" in which the configuration of the lattice is the same
in the initial and final electronic states. (iii) Below this, at
1.04 eV, is a zero-phonon line (ZPL) with multiphonon
transitions spaced above it at intervals of 11 meV.

If the structure at 1.18 eV is the vertical transition, the
Franck-Condon shift d„cis 1.18-1.04 eV=140 meV. In
addition, if the 11-meV phonon is the lattice relaxation
phonon, the Huang-Rhys factor S =dFc/A'e is of or-
der 13. In such a case, a ZPL of relative intensity
e ' =10 would be unobservable. This has prompted
the suggestion that the lattice relaxation phonon is really
24 or 33 meV, approximately two or exactly three of the
observed 11-meV phonons. Both of these phonons are
allowed in GaAs since its phonon spectrum extends up to
about 35 meV. Either would be close to the 29-meV
value needed to account for the 0.15-eV half-width of
the optical absorption, at least in the simplest model.
However, recent measurements of the optical absorption
under hydrostatic pressure have shown that the 1.18-eV
feature shifts to lower energy while the 1.04-eV feature
shifts to higher energy when pressure is applied. More-
over, and perhaps more difficult to explain away, under
hydrostatic pressure, the ZPL is observed to ride up over
the onset of the broad peak. This raises the possibility
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that the two features are not simply the vertical transi-
tion and the associated zero-phonon line, even though
there is ample evidence that they are both part of the
same A I ~T2 transition at the As~, defect. The proper
interpretation of both features is left open by this possi-
bility.

Baj and Dreszer have, in fact, suggested that the two
features might be optical transitions to two different final
states of the EI.2 defect. In the present calculation, the
fact that we find the lattice relaxation to be very close to
the observed 140 rneV weakens the case for Baj and
Dreszer's proposal. This is unfortunate, because from
the standpoint of intellectual simplicity, their suggestion
is the cleanest way out of the difficulties. There is still the
possibility that, due to the inherent uncertainties in our
method of analysis, we have overestimated the lattice re-
laxation and that the Baj and Dreszer proposal will

indeed, as we hope, turn out to be correct. For this
reason, we discuss the implications of their proposal on
our understanding of the optical spectrum and we pro-
pose an experiment whereby it might be tested.

Part of the background for the work we shall describe
is to be found in an earlier paper which was concerned
with the stress splitting of the A I ~T2 transition at the
Aso, in the presence of another defect. In carrying out
those calculations, we rederived the formulas used suc-
cessfully by Kaminska et al. "to describe the results of
their stress-splitting experiments. The underlying as-
sumption was that the final T2 state is coupled to a T-

mode lattice distortion which could represent, e.g., the
displacement of the central As atom from its lattice site.
We noted that one of the parameters used by Karninska
et al. in their fitting, namely, the tunnel splitting parame-
ter b„was really a function only of S and irido, and we
noted that the value of 6 demanded by the fitting re-
quired that S be no greater than 2. Since 5 is an ex-
ponentially decreasing' function of S ", use of the value
SH"=13 obtained from d„clficowould result in a value
of 6 far too small to account for the results of Kamin-
ska et al. However, the value S =2 leads to the fol-
lowing serious problem: Since the maximum phonon en-

ergy in the system cannot exceed 35 meV, dFC cannot
exceed 70 meV, whereas in the conventional interpreta-
tion, dFC is 140 meV. Rather than pursue this contradic-
tion, we had suggested that it might be overcome if one
took into account the displacement of the surrounding
atoms as the As&, moves. The lattice distortion associat-
ed with the four nearest neighbors gives rise to an a
mode, an e mode, and a ~ mode, all of which can couple
to the T2 electronic state. The large fitted value of 6
might not demand such a small and restrictive Huang-
Rhys factor, because both the a and e modes would
reduce the relative size of the tunneling barrier [see Eq.
(9.3), Ref. 9] whose existence gives rise to the exponen-
tially small h. Another way of saying this is that 6 could
be as small as the Jahn-Teller calculation limits it to be
while the additional lattice relaxation needed to make up
the full 140 meV might be contributed by the other
modes.

In the present paper we explore the suggestion that
coupling to the next shell of neighbors might supply the

extra relaxation needed and show that indeed it does. We
have evaluated the couplings to the two other lattice dis-
tortions (that of a symmetry and that of e symmetry), and
we find that they are close to 90 rneV in total, so that if
the ~-mode relaxation is at its maximum value, the total
relaxation is about 160 meV. However, a more detailed
look at the ~-mode contribution suggests that 70 meV is
an upper bound to a relaxation which is probably closer
to 45 meV. This brings the total estimate of lattice relax-
ation close to the observed 140 rneV. As we have already
noted, this is somewhat unfortunate, in that by
strengthening the case that the feature at 1.04 eV and the
peak in the absorption are indeed the ZPL and its associ-
ated vertical transition, it exacerbates the other well-
known problems associated with the optical absorption,
problems which could be resolved if, as Baj and Dreszer
had suggested, these two features really arose from
different final states.

For estimating the contribution of the e modes, we

proceed as follows: It is known that for a given value of
S ", the largest value of 6 is to be found when the cou-
pling to the ~ and e modes are of equal strength. " We
calculate the stress splitting of the final state in this situa-
tion and find that there is no choice of parameters that
can make the calculated result simulate the observed
stress splitting. We conclude that for the calculated
stress splitting to resemble the observed stress splitting,
the coupling to the e mode must be much less than that
to the ~ mode.

We then inake a model which allows us to estimate the
a-mode lattice relaxation. A model is made necessary be-
cause the a-mode coupling does not affect the stress split-
tings, and so there is neither any restriction on its
strength nor any way to learn about it from the stress-
splitting experiments. Input to this model is obtained
from an analysis of hydrostatic pressure measurements.
The inodel gives an a-mode relaxation of about 90 meV.

It is clear, from the fact that the total lattice relaxation
can be accounted for only by coupling to both a and ~
modes, that there must be at least two local phonons in-
volved in the relaxation process, one of a symmetry and
one of r symmetry. (By local phonon is meant either a
discrete lattice mode or a resonance whose vibrational
amplitude is greatest in the irnrnediate neighborhood of
the defect. There is no need to distinguish here between
the two possibilities, although in the strictest sense, it is
only a resonance that can transport vibrational energy
away from the neighborhood of the defect and lead there-
by to lattice relaxation. ) The possibility of more than one
independent local phonon being involved in the lattice re-
laxation has not been seriously considered before, al-
though the phonons above the ZPL have been described
in terms of a single localized phonon plus such other pho-
nons as the perfect-crystal supports. The implications of
the presence of two or more local modes of distortion is a
problem for future study. In the meantime, we should
entertain the proposal that, in spite of the calculated 135
meV of lattice relaxation, the Baj and Dreszer suggestion
is correct, and that the peak in the optical absorption
arises from some final state other than the state that gives
rise to the ZPL. One possibility is that it is a feature of
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the ionization from the 3
&

level to the bands. This ion-
ization would be followed by subsequent recapture into
the T2 state of the ionized AsG, if there is no electric field
present. In this way, the peak in the ionization cross sec-
tion would eventually reflect itself as a peak in the rate of
capture into the T2 level, and from there, as a peak in
o*(h v), the optical cross section for transfer of EL2 to
the metastable state. This last possibility would go far to-
wards resolving some of the puzzles connected with the
optica1 absorption of EL2.

II. CALCULATION ASSUMING EQUAL
e- AND v-MODE COUPLING

It has been argued that a calculation is not necessary to
verify that the coupling to the e lattice mode must be
considerably weaker than that to the ~ mode. In its sim-
plest form, the argument is as follows: The coupling pa-
rameters, which are fitted in order to describe the stress-
splitting experiments, are products of electronic stress-
coupling parameters and Ham reduction factors. ' ' The
sizes of the Harn factors are in turn determined by the
strengths of the couplings between the T2 state and the
various modes of the lattice. The small size of the fitted
e-mode stress-coupling parameter "' ' ' comes about
because the e-mode Harn reduction factor is much small-
er than the ~-mode Ham factor. This must mean that the
Jahn-Teller coupling to the e-mode lattice distortion is
much weaker than that to the ~-mode distortion. Howev-
er, making such an argument ignores the possibility that
it is the e-mode electronic stress-coupling parameter that
is small while the e- and ~-mode Ham factors are similar
in size. In the Appendix, we show that a simple estimate
of the electronic coupling to the lattice does give a small
value of e electronic stress-coupling parameter and so one
has no a priori information about the relative sizes of the
e- and ~-mode Ham factors. It is for this reason that the
calculation described below is necessary to the conclusion
we have reached.

The background for this section of the paper is to be
found in a series of papers by O' Brien where the problem
of a T i or a T2 electronic state equally coupled to a w and
an e lattice mode is discussed. "' ' We draw only on re-
sults of the first paper in the series. " In that paper, it is
shown that the eigenstates of the system are of the form

'PP( g, q ) =QP(8, $ )( sin 8 cosP
~
x & +sin8 sing ~y &

+cos8iz ) ) .

Here ~x ), ~y ), and ~z ) are the electronic wave functions
of the T2 final state, 8 and P are angles which O' Brien in-
troduced to parametrize the lattice distortion Q, and gP
is a spherical harmonic. Only odd values of l are allowed.
Thus the ground state (l = 1) is triply degenerate and, for
the case of interest here, has T2 symmetry. The first ex-
cited state (l =3) is sevenfold degenerate and, for the case
considered here, contains an A, state, a T, state, and a
Tz state. It is within this ten-state manifold (composed of
l=1 and 3 spherical harmonics} that we must calculate
the stress splitting of the lowest three states.

The calculation proceeds in exact analogy to the one
we presented in Ref. 9 and so we need only to mention
the differences between the present calculation and the
earlier one. Here, the basis states are taken in the follow-
ing order: A i, T,~, Ti, T„and T2+p T2y 2zp these refer-
ring to the excited state, and then T2„,T2y, T2„these last
referring to the ground state. It is convenient to label the
second repetition of the T2 representation by the symbol
T3. The unperturbed Hamiltonian is HO=H;5;J where
H,. =6 for i =1,2, . . ., 7 and H;=0 for i =8,9, 10.

The next part of the calculation is setting up a 10X10
stress matrix for each of the three stress directions. The
form of each matrix is known in terms of the group cou-
pling coefficients, ' ' but the evaluation of each matrix
requires knowledge of the Ham reduction factors.
Evaluating them is the only difficult part of the calcula-
tion. We denote the Harn factors by the symbol K~&
where y refers to the symmetry of the operator and
where aP refers to the symmetry of the representations
involved. Let us define these factors precisely.

Using the notation 0—:8,$, we rewrite Eq. (1}as

+P(g, q)=1(P(II) yf„(II)Iv&, (2)

where v) = ~x ), ~y ), or ~z ), and where the f„(0)are
defined by comparing Eqs. (1) and (2). [The normaliza-
tion of Eqs. (1) and (2) is such that integrating over Q is
carried out by integrating 0 over the full unit sphere
even though in doing so, the lattice distortion Q is carried
twice over its allowed range of values. " This has no
effect on what follows. ] The wave functions (1) and (2)
transform like the spherical harmonics because the other
factor in Eq. (2) transforms according to the A t represen-
tation. What is needed, however, are states which trans-
form like irreducible basis functions for the group Td, the
group under which the Hamiltonian of the isolated Aso,
is invariant. A unitary transformation T„(l,m) can be
found to produce them:

%„(g,q)= g T„(l,m)+P(g, q) .
E, m

(3)

I takes on the labels A, , Ti, T2, and T, . The conven-
tion we are using, that T3 arises only from the I =1 rnani-

fold while 3 i, Ti, and T2 arise out of the I =3 manifold,
is easily incorporated into the choice of unitary matrix T.

Now consider a purely electronic operator U)(q)
which, under the group Td, transforms as the A, partner
function for the irreducible representation y. It has nine
matrix elements within the three electronic states

~
v &.

As is well known, there are linear relations among these
elements that arise because the states ~v) are themselves
partner functions for the Tz irreducible representation of
Td. As a consequence these nine elements can be written
under the form

(4)

where ( Tz, v~ 8$ ~ T2, v' ) are the group coupling
coefficients tabulated by Koster et al. ' They are com-
pletely independent of the operator U$(q). The only
number that depends on the operator Ut' specifically is
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V, which is independent of k, v, and v'. Thus, given the

0$ matrices, all the many elements described by Eq. (4)

are trivially obtained once one of them has been calculat-
ed.

In this particular example, the states ~v) and ~v') were
drawn from the same T2 manifold. In general, the states
~v) might have been partner function for any irreducible
representation, say I, while the states

~

v' ) might have
been partners for any other irreducible representation,
say I". The same sort of linear relations among the ma-
trix elements will arise. For the case of interest here (y
taking the labels A &, E, and T2 while I and I" take the
labels A i, Ti, and T2}, the relationship analogous to (4}
1s

(5)

Again the group coupling coefficients appear on the right.
The only numbers which depend on the specific operator
Ut' are Vr(I, I"). As before, these are independent of
A, , p, and l2'. Given the 0( matrices as tabulated by
Kostcr et al. , all the matrix elements for a given y, I,
and I" are again known once one of them is calculated.

Consider now the special case where the states appear-
ing in (5) are the vibronic states defined in (3). The ma-
trix element in (5) can be evaluated explicitly using (2)
and (4) as

(I „~U|'~I"l2, ') = Vr g g [T„(l,m)]'T„.(I', m')(T, v~&r~T2, v') f dQ [gz(Q)]'f„(Q}g&.(0) .
l, m, v I', m', v'

(6)

Comparing (5) with (6), it is clear that the quantity

Kr —Vr(a, P)/Vr

T]
E

EC p=
2

T2

—2&5/15
—2v 5/15 4/15

T3

can be evaluated by equating (5) and (6), taking care only
to choose a set of values of A, , p, and p' for which
(ap, ~8|'~Pp, ') does not vanish. The evaluation will in-

volve only quantities which are known and independent
of the specific operator U)(q). That such a development
would be possible in general was first noted by Ham. '

The task of evaluating the unitary matrix and carrying
out the needed integrations for all the cases we shall need
(y= A „E,and T2,'I and I '= A, , T„T2, and T3) is

straightforward but tedious. It probably could have been
simplified by using some of the deeper symmetry proper-
ties inherent in the relationship between Q and 0, proper-
ties that 0 Brien specifically built into the parametriza-
tion of the lattice distortion. "However, we evaluated the
Ham factors by carrying out the integrations for all need-
ed combinations of y, I, and I", checking at the same
time to verify that the results were independent of A, , p,
and p'. The results we obtained are as follows:

A)K p =5~p. For y=E,

III. RESULTS FOR EQUAL e- AND r-MODE COUPLING

With these values of Kr&, and using Eqs. (5) and (7),
A)

one can evaluate the stress matrices in terms of S ', S,
and S '. These are three parameters which, when multi-
plied by 0, the magnitude of the stress, describe the stress
coupling in the electronic T2 manifold in the same way as
does Vr in Eq. (4}. These parameters and 5 are the same
four parameters as were needed in the earlier analysis
(coupling to the r mode alone) but their values in fitting
this new situation may be di6'erent from those obtained
for the earlier one.

The 10X10 Hamiltonian matrix is diagonalized nu-
merically and the energy of the lowest three states is
studied as a function of the magnitude of the uniaxial
stress for each of the three stress directions indicated.
Figures 1 and 2 give the results of the calculations for
two choices of the four important parameters. These two
figures are sufticient to illustrate the method of fitting the
parameters. Figure 3 is the result of fitting, assuming
coupling to the ~ mode alone, and it can be taken as an
excellent description of the experimental data. "' ' '

First, we describe the fitting procedure. As was the
case earlier, the a~~[100] spectrum depends on S ' and
S and on 6, but because of the very small stress split-
ting, S must be very small. This has the consequence

T3

and for y=T2,

T2

2/5

T3

(8a) E 8480-

01 S400

~~ 8320

~ [[ [~oo] ~ [ ) [no]

Ai

K~p= T)

T2

T3

1

3

—2/&35

2+2

1

15

—2/&35

2Q 3

2
5

(&b)

'l00 200 0 100 200 0 100 200
Stress (MPa)

FIG. 1. Stress splitting of the zero-phonon line of an
A I ~ T2 transition with the T2 final state equally coupled to ~-

and e-mode lattice distortions. The tunneling parameter 5 has
been taken to be 1000 cm ' and the other parameters have been
adjusted to fit the observed stress splitting as much as possible.
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FIG. 2. Same as Fig. 1 except that 5= 100 crn
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FIG. 3. Stress splitting of the zero-phonon line of an

A& ~T2 transition with the T2 final state coupled only to the
~-mode lattice distortion. The parameters have been chosen so
as to provide a near perfect fit to the observed stress splitting.

that the coupling to the higher states is virtually zero and
the resulting spectrum is virtually independent of A. Fit-
ting the energy of the two lines at 0.=0 and at 0.=200
MPa completely determines S ', S, and Eo, where Eo
is the energy of every transition at zero stress. The values
of these three parameters (or more properly, of

A] AlK 'S ', K S, and Eo) are identical to the correspond-
ing parameters as fitted in the earlier analysis where cou-
pling was to the w mode only.

This leaves S ' and b, to be fixed. For cr ~~[111],the ex-
perimental value of the stress splitting at cr =200 MPa is
150 cm '. Satisfying this constraint establishes a relation

between 6 and S '. The arbitrary choice 6=1000 cm
T2

with the corresponding value of S ' gives the spectra
plotted in Fig. 1. This value of 5 was chosen only be-
cause it gives the correct end points of the 0 ~~[111]spec-
trum. There is now very little interaction between the
1=1 and 3 manifolds. All lines that do interact show ap-
proximately the same mild curvature. The result here is
unsatisfactory in that it fails to reproduce the pro-
nounced curvature of the line labeled E5 in Fig. 3. In ad-
dition, the value of b, is unphysically large by at least an
order of magnitude, at least according to the formula
b, =10(%co) /12EJr given in Ref. 11. (EJr, the Jahn-
Teller relaxation energy, is analogous —in this problem
of relaxation of a degenerate state —to dFC, the Franck-
Condon shift, which is the relaxation energy of a nonde-
generate state. ) This value of b implies a Jahn-Teller
coupling so small as to invalidate the derivation of Eq.
(1), but its use does serve to establish the nature of the
difficulty the whole fitting procedure is going to en-
counter.

In Fig. 2, we have taken a more realistic value of 6,
namely, 6 =100 cm . This increases the interaction be-
tween the I = 1 and 3 manifolds and captures the approxi-
mate shape of E5. At this point, we are within the range
of values for which the equations we are using will be val-
id, and we are in a parameter range which could also be
physical interesting. Now however, although we have
obtained approximately the right slope and curvature for
E5, the change does violence to the shape of four other
lines in the spectra. In particular, note how low are their
values at o =200 MPa compared to those in Fig. 3.
There is no way out of this situation: in order to bring
the other lines back to a better fit, we must give up the
pronounced curvature of E5. This situation arises be-
causes there are now so many representations in the l =3
manifold that most lines in the I = 1 manifold are coupled
to higher states. This was not the case for the earlier
analysis (r coupling only) where there was only one state,
A &, in the excited state manifold and where only a few of
the lower lines are coupled to the excited state. We con-
clude from the failure to fit the experimental data that
the e-mode coupling must be far less than that of the ~
mode which, by itself, fits the data perfectly.

IV. ESTIMATE OF THE a-MODE RELAXATION

We now turn to an estimate of the a-mode lattice relax-
ation associated with the A

&
~T2 electronic transition.

We can no longer make use of stress-splitting information
so instead, we make a simple linear model for the lattice
relaxation: Let g be the coordinate for the a-mode lattice
distortion. Q =0 will refer to the equilibrium
configuration with no electrons in the A

&
state or in the

T2 resonance. Let K be the spring constant and let F„
1

or FT be the force constants for adding an electron to
2

the A, or T2 state, respectively. Then the lattice ener-
gies for various electronic states are

E2+(g )
] KQ2

E+(Q )= ,'KQ QF„——
E (Q)= —,'KQ —2QF„

E*(Q)=—,'KQ —Q(F„+Fz.) .

(9a)

(9b)

(9c)

(9d)

Charge states 2+, 1+, and 0 have zero, one, and two
electrons, respectively, in the A

&
state. The excited state

E*(Q) has one of its localized electrons in the A, state
and the other in the Tz.

Each of these energies is of the form

E (Q)= —,'K(g —Q )
—Eo . (10)

When the defect undergoes an electronic transition from
state i, where the lattice coordinate was Q;, to state f,
where the equilibrium lattice coordinate will be Q. , the
amount by which the energy exceeds its minimum value
in state f (the lattice relaxation energy) is

b.E;f=
—,'K(Q' —Qf)

For example, using
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Q2+ —0

Q+ =F„/K,

Q =2F~ /K,

Q*=(F„+Fr)/K,

(12a)

(12b)

(12c)

(12d)

the relaxation energy associated with transfer of an elec-
tron between the A, state and conduction band is

bE, =F„/2K (13a)

while that associated with the A, ~Tz transition is

bE'= —,'K(Q' —
Q ) =(Fr F„)—/2K .

This gives us

bE'=(x —1) b,E, ,

where

(13b)

(14a)

x =Fr /Fq (14b)

F„=de„(Q)/d—Q =(de„/dP)I(dQ IdP), (15a)

Fr =der (Q)/dQ=(diaz. —IdP)I(dQ/dP),

x =Fr /F„=(der IdP)l(de„ /dP) .

(15b)

(16)

The pressure dependences of the two energies can be
extracted from experimental measurements: Dreszer and
Baj ' found that the motion of the EL2 main donor level
(the A, state) was 8.7 meV kbar relative to the I
minimum. This minirnurn itself has a pressure derivative
of 11.8 meVkbar relative to the valence band, which

Equation (14) captures the intuitive idea that if the
charge distribution in the Tz state is not too different
from that in the A, state (with regard to force on the a
mode), then the lattice relaxation associated with
transferring an electron from the A

&
to the Tz state will

be less than that produced by removing the electron from
the A, state altogether.

There are several experimental estimates of hE, . By
fitting the deep-level optical spectroscopy (DLOS) data
on the "0" level (now known to be the A, state of the

Aso, ) Chantre, Vincent, and Bois' arrived at bE, =0. 12
eV. Makram-Ebeid' obtained the value 0. 115+0.05 eV
from the temperature dependence of the electron-capture
cross section using a theory by Ridley. ' Makram-Ebeid
and Lannoo obtained the slightly higher value
0. 14+0.01 eV by interpreting emission kinetics data ac-
cording to a theory of phonon-assisted tunneling.

Let us now consider the evaluation of x: The coordi-
nate Q for the a-mode lattice distortion is the change of
bond length between the central AsG, and any of its four
nearest neighbors. Therefore, the value of Q can be al-

tered by applying hydrostatic pressure to the system. Us-
ing the definition that the levels e„(Q)and er (Q) are

1 2

the energies to add an electron to the 1+ state of the sys-
tem when the lattice coordinate has the value Q, we have

means that the A
&

state moves at 11.8 —8.7 =3. 1

rneVkbar relative to the valence band. On the other
hand, Baj and Dreszer found that the pressure derivative
of the ZPL is 2.4 meVkbar, which means that the final

Tz state of this transition is moving at a rate of
3.1+2.4= 5.5 meV kbar relative to the valence band. On
this basis, we obtain x =5.5/3. 1 = 1.8.

Referring back to the experimental estimate, we take
hE, =0.14 eV as a reasonable value. On this basis, Eq.
(14a) gives bE'=90 meV as an estimate of the a-mode
contribution to the lattice relaxation of the Tz electronic
state after an A, ~ Tz electronic transition.

V. DISCUSSION

In Sec. I of this paper, we showed why the lattice relax-
ation associated with the ~ mode can be 70 meV at most.
We argue now that the actual lattice relaxation is sub-
stantially below this value. The reasoning here is that the
relationship between 6 and Ace, as obtained from the nu-
merical calculations of Caner and Englman, ' shows that
the value of E,~ drops rapidly with %co for a fixed value of

The value of E&~ =70 meV was obtained for fico=35
meV and b, =60 cm '. Keeping this same value of b, (as
is required by the fit to the experiments) and letting the
phonon energy drop to 30, 25, 20, and 10 rneV, we find
values of EJ~ of 54, 40, 24, and 3 meV, respectively.

The localized ~ mode of interest here must have an en-

ergy below the maximum of the GaAs phonon band
structure. To estimate that energy, we have calculated
vibrational frequencies using a Keating model in a cluster
of 123 atoms. We adjusted the Keating parameters to
reproduce the phonon band structure of GaAs, and then
altered them to represent the physics at the antisite.
The alteration consisted of replacing the mass of the gal-
lium atom at the center of the cluster with the mass of
the arsenic atom, and weakening the bond stretching con-
stant between the central arsenic atom and its four
nearest neighbors by 25%. This is to simulate the effect
of having two electrons in an antibonding state at the de-
fect where there would otherwise be eight electrons in
four bonds. The ~ mode which most strongly involves
the central atom drops in energy from 35 to 28 meV un-
der this change. Such a phonon energy corresponds to an

EJ~ of about 45 meV. This is a much more reasonable es-
timate of EJ& than is the maximum value we have dis-
cussed.

The same Keating-model calculation gives two a-mode
phonons which couple strongly with the Tz state. These
two modes have the strongest motion of the nearest-
neighbor atoms. Their energies are 29 and 18 rneV. The
numbers obtained here, 28 meV for the ~ mode and 29
and 18 for the a mode, are subject to such uncertainties
as both the Keating model itself introduces, and those
that our representation of the force change simply as a
25% reduction in bond strength have caused. Nonethe-
less, the fact that there is one ~ mode whose energy is
significantly below the top of the spectrum, and two
strongly coupled a modes of relatively high energy may
prove useful in eventually understanding the fine struc-
ture of the absorption spectrum.



9856 G. A. BARAFF 41

It may be a coincidence, but these energies of 29 and
28 meV are close to what was mentioned in Sec. I as be-
ing needed to account for the 0.15 eV half-width of the
optical absorption. One should perhaps not take this
agreement too seriously because the theory under which
that 0.15-eV width was analyzed is one in which the elec-
tronic state involved in the relaxation is nondegenerate.
The details of the relaxation process change when, as
here, a degenerate state is involved in the relaxation.
Nonetheless, a rough estimate of the strength of the
zero-phonon line relative to the main peak is
exp( E, /—fico, E,/f—ico, ) where E, and co; are the lattice
relaxation and the phonon associated with mode i. In
this case, this estimate is that the ZPL has an intensity
exp( —0. 15/0. 029) or 0.006 of the total.

In Sec. III, we showed that the coupling to the e mode
must be small, implying that the associated lattice relaxa-
tion must be much smaller than that of the ~ modes.

Finally, in Sec. IV, we obtained an estimate of 90 meV
for the lattice relaxation associated with the a modes.
These relaxations add up to a difference of about 135
meV between the vertical transition and the associated
ZPL.

Is it significant that we have found a lattice relaxation
very close to the observed one when there are features of
this situation which differ from those assumed in the
standard treatments of the Jahn-Teller effect? These
treatments all assume electronic states which are discrete
and fully localized. The situation here is that the final T2
state is a resonance, close to the bottom of a band before
relaxation occurs, and below it after. For this reason, the
question is hard to answer without a complete theory of
lattice relaxation when the electronic state involved is a
degenerate resonance lying in a region of rapidly varying
background density of states, which is the situation here.

It should be noted, however, that breaking the conven-
tional relationship between the 1.18- and 1.04-eV features
can resolve some of the puzzles concerning the optical
absorption of EL2, as Baj and Dreszer have already dis-
cussed.

If we assume that the 1.04-eV feature is the zero-
phonon line, it leaves open the question of what the peak
at 1.18 eV represents if it is not the vertical transition as-
sociated with the ZPL. One clue suggests that the peak
could be ionization of an electron from the A

&
midgap

level to the conduction band. That clue is the fact that
the 1.18-eV feature also shows up in the DLOS spectrum
of Chantre et al. ' This spectroscopy is sensitive to elec-
trons transferred from the deep level to the extended
states, and as such, it should not give signals arising from
internal transitions such as the A, to T2 we are discuss-
ing here. In the original interpretation of the DLOS re-
sults, the features were interpreted as transitions from the
localized level to the I, L, and X point conduction-band
minima. It is true that this interpretation fell into disuse
when the optical-absorption measurements of Kaminska
et al. showed that the photocurrent was less than the
optical absorption in a spectral region which correspond-
ed to the spectrum for activating EL2 to its metastable
state. This was taken to mean that the transition of EL2
from its normal to its metastable state was driven by an

X BASIN —.= I BASIN == L BASIN

T2

~hv

A)

VB

FIG. 4. Sketch of the channels by which an electron, ionized
from the A l level, can be captured into the T2 level. One chan-
nel is via an internal optical transition. The other is via ioniza-
tion to an L-valley catch basin in the conduction band, thermal-
ization to the bottom of the valley, and multiphonon capture to
the T2 state. The cross section for this latter process is depen-
dent on the conduction-band structure in the catch basin, and
not on the exact energy of the T2 state.

internal optical transition, not an ionizing one. There is
no reason to doubt that. What we are suggesting howev-
er, is the possibility that the vertical internal optical tran-
sition may be masked by more intense photoionization
which coincidentally takes place at the same energy.

This speculation needs to be tested experimentally of
course. One way of doing so might be a careful compar-
ison of the optical cross section for transferring EL2
from its normal to its metastable state in two types of ex-
periments. One type of experiment would be photocapa-
citance experiment similar to those performed by Vincent
and Bois who discovered the metastability. These ex-
periments took place in a junction where any electrons
ionized to the conduction band are swept away immedi-
ately. As a consequence, the only electrons available to
drive the transition to the metastable state are those
which undergo the A, to T2 internal transition. The oth-
er experiment would be photobleaching experiments
where there is no internal electric field. ' In such case,
electrons ionized to the conduction bands could be recap-
tured by the ionized As~, 's and, judging from the ener-
getics, that recapture would most likely be via states near
the L point into the T2 resonance. Once the electron is in
the T2 state, the transition to the metastable is triggered.

The idea of two cross sections for these two paths of
entry into the T2 state is illustrated in Fig. 4. Among the
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ideas being presented here are that one can think of the
lowest conduction band as being separated into eight
different "catch basins" which together cover the entire
Brillouin zone. Each catch basin consists of a contiguous
region of k space such that if an electron were released
into that region, it would (in the absence of strong
momentum changing collisions) thermalize down into
one of the eight conduction-band minima, arriving there-
by at I, or at one of the three X points or at one of the
four L points. The unrelaxed T2 electronic state lies very
close to the L band minimum, so multiphonon capture
will be very efficient for electrons in this minimum and
not for electrons in the other minima.

Calculation of the rate at which electrons are captured
into the T2 state by multiphonon emission clearly in-

volves knowledge of the number of electrons which have
been ionized out of the A

&
level into the catch basins for

the L points. This number varies with the energy of the
incident light, and we have indicated that variation by
the cross section versus energy sketch placed to the right
of the L valley in Fig. 4. The shape of that curve depends
on the k distribution in the A, state and on the detailed
shape and location of the L-point catch basin, but does
not depend on the energy of the T2 state.

There is also the possibility of direct optical transfer
from the A, state to the T2 state. The cross section for
this process is sketched to the left of the T2 state in Fig.
4. This cross section does depend on the energy of the T2
state of course. In an experiment in which a strong elec-
tric field is present, as in a junction where the electrons
are swept away from the defect, the only way for an elec-
tron to get into the T2 state is via this direct internal
transition. On the other hand, where there is no electric
field, the electrons will thermalize into the various mini-
ma and will be attracted to the ionized defects. There are
now two paths into the T2 state, the direct one and also
multiphonon capture from the L-point catch basins. The
cross section for the total rate of entry to the T2 state will

be the sum of the two separate cross sections.
Suppose that, for some reason, we have overestimated

the amount of lattice relaxation and that the vertical
transition really lies beneath the peak in the optical ab-
sorption. Then the cross section for transferring EL2 to
the metastable would have its maximum in the photo-
capacitance measurements somewhat below where it
would be in the optical bleaching measurements, where
the peak is at 1.18 eV. ' Although o'(hv) has been
measured using photocapacitance by Vincent et al. who
found that the peak was at 1.13 eV, we cannot consider
this to be a confirmation of the suggestion made here un-
til such measurements are repeated with special care to
determine how much of the shift of the peak to an energy
belo~ 1.18 eV is caused by the different temperature at
which the different types of experiments are performed.
Alternatively, the effects of pressure on these two types of
cross section might reveal pressure coefficients of
different magnitude or sign.

Another possibility, suggested by Skowronski, is that
the 1.04-eV feature is not the ZPL at all but is instead an
effective-mass state associated with the L-point
conduction-band minimum. The energy is correct for
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APPENDIX

We shall now show that the electronic coupling con-
stant S is inherently much smaller than the electronic

coupling constant S '. Our starting point is to assume,
as was done in Ref. 9, that the T2 symmetry electronic
states can be regarded as linear combinations of the four
antibonding orbitals which join the central AsG, to each
of its four nearest neighbors, as shown in Fig. 5. We
write the A, and T2 linear combinations of these four as

1
l
s & =, (p I+&2+6+&2),2A' (Ala)

(A lb)

(Alc)

(A1d)

A' and A are normalization factors which would equal 1

if the overlap of the P, orbitals were zero.
Now consider the matrix elements of a 100 stress in the

such an identification, and as von Bardeleben has very re-
cently noted, the pressure coefficient of the final state of
the 1.04-eV feature also matches that of the L point.
This possibility would allo~ the 1.18-eV feature to be the
vertical transition of the internal transition and would
imply that the ZPL has simply not been observed against
the background of absorption caused by ionizing the A,
level to the conduction bands.

The calculation presented in this paper has demon-
strated that we can account for the full energy separation
between the 1.18-eV optical absorption peak and the
1.04-eV ZPL using the existing theories of lattice relaxa-
tion and Jahn-Teller coupling. Our desire to explain the
problems in the optical spectrum by retaining an explana-
tion that the final state of the ZPL and the final state of
the peak in absorption are different can be accommodat-
ed only under two different possibilities. One is that the
conventional theories really do not apply to the situation
encountered here where the relaxing state is a resonance
not far from a band edge. The other possibility is that ei-
ther the 1.18-eV feature has been wrongly understood to
be the vertical transition associated with the ZPL or the
1.04-eV feature has been wrongly understood to be the
ZPL. Sorting out which of these is correct should be
both interesting and possible.
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Comparing (A3) and (A4), we get

—a=2P, (A5)

S '=33,
S =3a .

(A6a)

(A6b)

4
FIG. 5. Diagram showing the As&„its four nearest-neighbor

arsenic atoms designated i =1,2, 3,4, and the four antibonding

orbitals of which the T2 states are linear combinations.

P; basis. The axis lies along the x direction. Since the
111 axes of all four orbitals make the same angle with x,
the expectation value of the stress is the same for all four
P;. We denote that expectation value as o A, where 0 is
the magnitude of the stress. Off-diagonal elements of the
(100) stress, however, depend on how pairs of axes are re-
lated to t'he x direction. As one can see from Fig. 4, the
two pairs of orbitals, tI),-$4 and Pz-$3, have one relation to
the x direction while the other pairs of orbitals, (('t, -

Ijtlz tjtt] $3 fz tY)4 have a different relationship to the x
direction. Thus, the form of the matrix for a (100) stress
1S

B 0 0 0
0 C 0 0

M 't(111): CTp p C p

0 0 0 C

(A7)

Upon transformation to the ~s ), ~x ), ~y ), ~z ) basis, this
becomes

If the orbitals P; and P had not overlapped at the origin,
then a would have been zero and S would have van-
ished.

This is not the case for S '. It remains 6nite even if
there is no orbital overlap. To see this, consider a stress
along the 111 direction, and consider its matrix in the P;
basis. The axis of the tftt, orbital is parallel to the stress
direction while the axes of like other three orbitals all
make the same (nonzero) angle with the stress direction.
In the absence of orbital overlap, the stress will have no
off-diagonal elements in the P; basis, and we have a ma-

trix of the form

A p p a
p A a p

Mt (100)=o'
p g p
a p p

E D E E
M &(111):cT E E D E

E E E D

(ASa)

The stress potential is a local operator. Off-diagonal ele-
ments have a nonzero value only if there is a region of
space near the Aso, where two different orbitals P; and

tI), have appreciable amplitude. For this reason, we can
anticipate that both a/A and P/A are small, of order of
the overlap between different orbitals.

We transform Eq. (A2) to an ~s ), ~x ), ~y ), z ) basis,
working to lowest order in the overlap —that is, using
Eq. (Al) with A=A'=1. The result is

where

D = (B +3C)/4,

E =(B—C)/4 .

(ASb)

(ASc)

Again, compare the lower right-hand 3X3 block of
this matrix with the matrix for a (111) stress taken with
respect to the states ~x ), ~y ), ~z). As given by Eq. (4.6c)
of Ref. 9, it is

M„„(100)=o

A +a+2P
0
0
0

0
A+a —2P

0
0

0
0

0

0
0
0

r

1 S 2 S 2

( ~

@stress~ ) g 2 g t g 2

3

On comparing (AS) and (A9), we obtain

(A9)

The (100) stress is seen to be diagonal in the T2 represen-
tation [the 3 X3 matrix in the lower right-hand corner of
Eq. (A3)]. Compare this with the matrix for the 100
stress as given by Eq. (4.6a) of Ref. 9:

S ' =3(B+3C)/4,
T2S '=3(B—C)/4 .

(A 1pa)

(A 1pb)

In order to relate A, B, and C, we use the fact that the
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A:B:C=3, 9 (Al 1)

expectation value of the stress, taken with respect to an
orbital which is rotationally symmetric about some axis,
is proportional to the square of the cosine of the direction
between the axis and the stress. Using that relationship,
we expect that

(A10b), it gives

2 —p g

Finally, from (A6b) and (A12), we have

S /S '=3a/2A

(A12)

(A13)

This makes Eq. (A6a) agree with Eq. (A10a), while in
a quantity which is of the order of the overlap between
orbitals P; and PJ —i.e., small.
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