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Critical structure in the density of states from non-atom-centered Wannier functions
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It is shown that the highest and most prominent peak in the density of states of fcc Ni at the top
end of the d region can be derived from antibonding Wannier functions of I"» (h symmetry) cen-
tered at ( —,', —,', —,') in units of the lattice constant. It is suggested that there is a close relationship be-

tween high peaks in the density of states of other systems and similar compact bases consisting of
non-atom-centered localized functions.

I. INTRODUCTION

Many properties of metals can be derived from an un-
derstanding of the electronic density of states, N(EF), in
the vicinity of the Fermi level EF. In general those ma-
terials which exhibit narrow and high peak structures in
the density of states near EF also exhibit unusual and in-

teresting superconducting or magnetic behavior. A con-
comitant problem is that materials with very high N(EF)
seem to be rare, probably because such materials are in-
herently unstable.

The root causes for the existence of peaks in the densi-
ty of states were investigated topologically in the mid
1950s and stem from Van Hove critical points or singu-
larities, i.e., places in the Brillouin zone (BZ), k, where

V[e„(k)]=0,

which characterize the structure in N(E). Peaks in the
density of states arise from a confluence in energy of criti-
cal points with lower M& and upper M2 character, i.e.,
critical points where the local mass tensor has one or two
negative mass components. Around these critical points
the local electronic band structure is hyperboloidal; a
plot of local constant-energy contours shows first the pas-
sage from a hyperbola of two sheets to a hyperbola of one
sheet and then the reverse behavior, as the energy is in-
creased. Twice in this procedure the constant-energy
contours will pass through the case of an intersecting
cone, whose surface area is a relative maximum. Because
of the change in the local topology, such behavior leads
immediately to discontinuities in the derivative of the
density of states and the two critical points together
make one single peak if the critical points are close in en-

ergy. There is thus a close relationship of both the ener-

gy surface area and the energy-band dispersion to peaks
in the density of states:

N(E)=
3 g fdk&(e„(k) —E)

(2n )

(2)

where n is a band index, k is a point in the Brillouin zone,
and s„(k) is the energy surface E =e„(k)'. The funda-

mental structure in the density of states of any material is

fully understandable on the basis of such Van Hove
singularities (ignoring for the moment the complications
of fluted and singular critical points ).

Rather less attention has been paid to the nature of the
local behavior (in k) of the electronic wave function
which accompanies a Van Hove singularity. Since a Van
Hove singularity is, by definition, a place in k where the
energy band itself is stationary, what is the consequence
for the k dependence of the wave function? Conversely is
it possible to make useful statements about the nature of
wave functions at critical points which would help to un-

derstand density-of-states peaks in interesting materials?
It is the purpose of the present work to investigate the
question of the relationship of the wave function to
density-of-states structure, which we believe has not been
much raised or considered before. Since we wished to
treat a concrete, simple, and well-studied example, we
will focus in much of what follows on the narrow peak in
the density of states exhibited in nickel near the top of
the 3d region; we expect, however, that most of our argu-
ments will be of more general applicability and validity.

The plan of the paper is as follows. In Sec. II we will

consider the insights that k.p perturbation theory brings
to the critical structure of Ni in the selected energy re-
gion. In Sec. III we will introduce a non-atom-centered
Wannier function (of h symmetry) to describe and gen-
erate the band structure in the neighborhood of the criti-
cal point. In Sec. IV we will formulate a Slater-Koster-
like model Hamiltonian based on these Wannier func-
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tions [centered at the set of Wyckoff points equivalent to
a ( —,', —,', —,

' ), where a is the fcc lattice constant], and com-

pare the band structure based on this model with the re-
sults of standard augmented-spherical-wave (ASW) calcu
lations. In Sec. V we summarize our work and draw our
conclusions.

II. DEVELOPMENT OF k-p HAMILTONIAN

One of the most prominent features in the density of
states of any material with which we are familiar is the
large peak in the density of states associated with the top
end of the d band of the fcc materials: Ni, Pd, and Pt. In
Fig. 1 we show a typical fcc density of states, that of nick-
el. The peak of interest is dominantly associated with
the electronic structure of band 5 whose partial density of
states is shown in Fig. 1 as the dashed curve and whose
area is hatched. Although Fig. 1 is rich in structure, the
number of critical points is modest: there are 27 critical
points or about 5.4 per band. Since the minimum possi-
ble number is four critical points per band, there is not a
very large increase over the minimal possible set. This
says that the electronic structure of Ni is not complicated
or alternatively that the far distant (in a Wannier or
tight-binding sense) neighbor interactions are weak (if
they were strong, one consequence would be a multiplici-
ty of maxima and minima, and a great increase in the
number of critical points beyond the number of 4).

In Fig. 2 the corresponding electronic band structure
of nickel along the high-symmetry directions of the BZ is
shown. The strongest feature of band 5 is the flat line
from the X& doublet to 8'& along Z2. This means that in
this region the mass component along the Z line (X—8')
is very large, about —54. 5 electron masses for the bands
of Fig. 2. Along line S (U —X) and line A (I L) the-
masses are about —0.8 and —2.5, 1-2 orders of magni-
tude smaller than along line Z. There is very little disper-

sion along line Z, revealing the cylindrical or two-
dimensional nature of the electronic structure in this re-
gion. This same structure produces the "jungle gym"
Fermi surface of band 5 in Pd and Pt found to have heavy
mass. Because the topology of the electronic structure
has been altered by the high mass along line Z from that
of a three- to two-dimensional type in this region, there is
a corresponding change in the Van Hove structure. As is
well known, a two-dimensional maximum in the energy
bands generates a jurnp discontinuity in the density of
states, observable at the top end of the band-5 partial
density of states in Fig. 1. The 5-rnRy-wide peak in Fig.
1 around 0.75 Ry is, however, not to be associated with
the top end band-5 structure in general and the two-
dimensional structure around line Z in particular.

From which regions, then, are we to derive this rather
large peak exhibited in Fig. 1? Although the integrated
volume of the peak is 22% of the volume of the BZ or
0.44 of an electron, the sharp and simple kinks of the
density of states with smooth behavior in between strong-
ly suggest that there are two and only two types of criti-
cal singularities in this peak, necessarily of type M& and
M2 if we assume them to be analytic. Based on the ener-

gy of the M2 critical point, one would like to make it
coincident with the high-symmetry point L. If we exam-
ine closely the electronic structure for band 5 shown in
Fig. 2 along three orthogonal directions, then we see that
along line A (I —L), line Q (L —W), and line M (L —U) the
mass tensor appears to be triple negative, i.e., L appears
to be an M3 maximum critical point, which is not recon-
cilable with the shape of the density of states. The
minimum along the line Q is at the correct energy to be
the M, critical point. The simplicity of the structure of
Fig. 1 belies any idea of multiple overlays; the peak struc-
ture has (or can have) only two closely related critical
points. Where are they?
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FIG. 1. Density of states of nickel (Ref. 3). The partial density of states for band 5 is shown as the dashed curve.
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Our procedure will be to fit H'(k) to an expansion in
(k —ko), where ko is chosen at a point of interest in the
zone (i.e., point L or the critical point along line Q). This
can be achieved in the following way: Let H'(ko} be the
Hamiltonian at the point ko, with eigenvalues e'„(ko) and
diagonalizing matrix D(ko}. Let us consider the Hamil-
tonian at a neighboring point k. We can then define the
matrix H":

H"(k)=D (ko)H'(k)D(ko),

0.3
X L QWK rL U xzwu

which is diagonal at kp. What is being done is to trans-

form the Hamiltonian from the variable k Bloch basis to
the local basis at kp. Up to terms quadratic in k —kp, the
matrix elements of H"(k) can be expressed in the form

FIG. 2. Electronic band structure of nickel. The solid lines
form the spin-down electronic band structure generated by
means of the ASW method. The dashed lines are the bands of a
2 X 2 Hamiltonian, designed to fit band 5 (the uppermost band
going through X& and 1.3). The range over which the fit was
performed is denoted by open circles.

To find the two critical points, we wrote a computer
program which searched for the zeros of the gradients of
all energy bands.

There were only two fifth-band critical points around
0.75 Ry —one along line Q, near (n /a) (0.5, 1.0, 1.5),
which was an M, critical point, and the critical point at
L (just visible in Fig. 1 in the full density of states in the
region of the peak is a very small M3 singularity due to
band 3 at point I).

In order to understand the type of singularity at point
L, at the critical point along line Q, and their connectivi-
ty, we developed from the Hamiltonian H used for Figs. 1

and 2 a procedure to make (k p)-like expansions around
these critical points. The original band structure was de-
rived by means of the ASW method in which the gen-
eralized eigenvalue problem is solved:

j=s,p, d
[H,, (k) —e„(k)&i(k)]a,"(k)=0 (3)

where the wave function for band n is given by

%z(r) = g a "(k)4$(r),
j=s,p, d

(4)

H, (k)=(+j,'l~l@g') . (7)

H and S are, respectively, the Hamiltonian and the over-
lap matrix and 4$ is a Bloch state. Upon Lowdin orthog-
onalization the overlap matrix can be transformed away
with conservation of the symmetry of the basis leading to
the eigenvalue problem:

[H .(k) —E„(k)5;~]bi"(k)=0
j =sp, d

expressed in an orthonormal basis

e„"= y [S,,(k}]-'"e~
j=s,p, d

and where

H '(k)=e;(ko)5;J+(k —ko).p;J

+ g (k —ko) d;,~(k —ko)p (9)
a, P=x,y, z

where 5; is the Kronecker 5 and the p; and d;~J~ are con-
stants. The Hamiltonian (9) is comparable to one that
would be obtained by the usual k p method around
k =ko, except that the quadratic term is not diagonal (i.e.,
d;J~%5;J5 & due to a different k dependence of the basis
than for k.p theory). It can be shown, however, that the
constants p,&

are the same in the two methods (apart from
a factor fi/m ), i.e.,

p =—0" —0'jV
V &0 i &0

(10)

where qli,
' are the eigenfunctions of H'(ko) corresponding
0

to the ith eigenvalue. To derive the expansion (9) around
any point ko, we applied Eq. (8) to a sequence of Hamil-
tonians, based on a 3 X 3 X 3 cubical grid centered at kp
augmented with six additional points along the x, y, and z
directions at "(2,0,0)", etc. Hence 33 Hamiltonians were
used in all. Each matrix element at the 33 points was
then least-squares fit to the 20 three-dimensional polyno-
mials made up of all terms up to and including third or-
der in the components of the vector (k —ko). The errors
of the least-squares fit showed that the zeroth-order and
linear terms had a numerical error smaller than 1%, the
six quadratic terms about 10% (as they involve second
derivatives), and the third-order terms were in error by
about 50%. They have been included to improve the
identification of the matrix elements of p with the odd
coefficients. Incompleteness of the basis set introduces
small additional errors in the identification of the linear
terms as the optical transition matrix elements (the band
wave functions are given by a 9 X 9 Hamiltonian, and one
error for example is due to a lack of f-like functions). In
Table I we show the coefficients to use in Eq. (9) in atom-
ic units for the lowest six bands for nickel at point L.

Remarkable is the fact that at point L the degenerate
states for bands 4 and 5 (L3) show a zero coupling to
quadratic order to all the lower bands. In fact, the first
nonzero coupling terms to these bands is actually quartic.
Coupling to band 6 (L2) begins with linear terms, since
such a transition is electric dipole allowed. But this
state is relatively far away in energy.
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TABLE l. The matrix elements p„and d„a {a,p=x, y, z) for use in Eq. (9) for nonmagnetic Ni at
point L in Rydberg atomic units. The distance between point 1" and point X is 0.9437 in these units.
The labeling is L&, L3, L3, L3, L3, and L,' for bands 1 —6, respectively. The couplings to bands 7—9 are
omitted from this list as they are relatively far away in energy.

Bands
3

Diagonal terms
0.4180

Matrix elements of P"
1. 0.0000

0.5961 0.5961 0.7532 0.7532

2.
3.
4
5.
6.

0.0000
0.0000
0.0000
0.0000

—0.2442

0.0000
—0.0001

0.0000
0.0000

—0.0586

0.0000
0.0000
0.0000
0.1014

0.0000
0.0000

—0.5239
0.0000

—0.3025 0.0000

Matrix elements of P~

1. 0.0000
2. 0.0000
3. 0.0000
4. 0.0000
5. 0.0000
6. —0.2442

Matrix elements of P'
1. 0.0000
2. 0.0000
3. 0.0000
4 0.0000
5. 0.0000
6. —0.2442

Matrix elements of D"
1. 1.1222
2. 0.1335
3. —0.2312
4 —0.0969
5. —0.0559
6. 0.0000

Matrix elements of D
1. 1.1222
2. 0.1335
3. 0.2312
4. 0.0969
5. —0.0559
6. 0.0000

Matrix elements of D"
1. 1.1222
2. —0.2669
3. 0.0000
4 0.0000
5. 0.1119
6. 0.0000

0.0000
0.0001
0.0000
0.0000

—0.0586

0.0001
0.0000
0.0000
0.0000
0.1171

0.2533
0.2385
0.0494

—0.0920
—0.0001

0.2534
—0.2382
—0.0495
—0.0920

0.0000

—0.1594
0.0000
0.0000

—0.0063
—0.0002

0.0000
0.0000
0.0000

—0.1014

—0.0001
0.0000
0.0000
0.0000

—0.0242
0.0355

—0.0495
0.0000

—0.0243
0.0356
0.0495
0.0001

0.3886
0, 1213
0.0000
0.0001

0.0000
0.0000
0.5239

0.0000
0.0000
0.0000

—0.5773
—0.1098

0.0000

—0.5772
0.1099

—0.0001

—0.3870
0.0000

—0.0001

0.0000
—0.3025

0.0000
0.6049

—0.4507
—0.0001

—0.4507
0.0000

—0.6410
—0.0002

0.0000

0.0000

1.4192

1.4192

1.4192

Matrix
1 ~

2.
3.
4.
5.
6.

elements of D"~
—0.7530
—0.8814
—0.0002

0.0002
0.2401
0.0000

—0.6233
0.0011

—0.0003
0.0573

—0.0001

0.7677
—0.2882

0.0003
—0.0001

0.8159
0.0002
0.0001

—0.7927
0.0000 —0.6157
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TABLE I. (Continued. )

Bands
3

Matrix
1.
2.
3.
4.
5.
6.

Matrix
1.
2.
3.
4.
5.
6.

elements of D~'
—0.7530

0.4409
—0.7628
—0.2083
—0.1199

0.0000

elements of D"
—0.7530

0.4406
0.7635
0.2078

—0.1202
0.0000

0.4203
0.6013

—0.0998
0.2306
0.0004

0.4193
—0.6020

0.1000
0.2303

—0.0005

—0.2759
—0.1149

0.0997
—0.0004

—0.2749
—0.1152
—0.0997

0.0006

—0.3904
—0.6967

0.0003

—0.3906
0.6965

—0.0005

0.4137
0.0003

0.4139
—0.0004

—0.6157

—0.6157

We have also made k p expansions around the critical
point on line Q. Because of the lowered symmetry the in-
teractions with other bands begin with terms of linear or-
der. These were, however, quite small, reflecting the
closeness of the critical point on line Q to L, and the sym-
metry of the k p expansion at point L discussed above.
We do not list these terms explicitly here. Ho~ever, we
can make the general statement that in the neighborhood
of the critical point on line Q the states are rather weakly
coupled through k p terms. The above considerations
about point L and the critical point on line Q will play an
important role in Sec. III, where they will be used to sim-
plify the development of a Wannier function for bands 4
and 5.

The most surprising result to be derived from Table I is
not that L is a critical point. Due to the degeneracy of
bands 4 and 5 at point L the energy-band structure is
fluted and cannot be quadr atically expanded locally
around point L (and hence not be described by a second
rank mass tensor). This explains the occurrence of the

point L as a critical point in the peak of the density of
states, appearing in spite of a negative mass component
along three orthogonal directions. To illustrate this point
we show in Figs. 3—5 plots of contours of constant energy
around point L in the (110), (110), and (111) planes. In
Figs. 3 and 4 the value of band 5 at point L has been tak-
en as the zero of energy for clarity. In Fig. 5 the value at
the critical point on line Q was used as the zero since we
wished to show explicitly the two nearly degenerate con-
tours representing the Van Hove M& structure. The most
interesting features of the figures are the multiple narrow
apex intersections at point L of the degenerate cones and
the hexagonal fluted behavior exhibited in the (111)
plane. As can be seen, the electronic structure oscillates
on the narrow scale of 30' in angle around point L.
Clearly such a structure cannot be described by means of
a second rank mass tensor. The wide spacing of the con-
tours in these figures reflects the extreme narrowness in
energy of the fifth band.

FIG. 3. Contours of constant energy of nickel in the (110)
plane around point L. The energy at point L has been taken as
the zero of energy.

FIG. 4. Contours of constant energy of nickel in the (110)
plane around point L. The energy at point L has been taken as
the zero of energy.
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FIG. 5. Contours of constant energy of nickel in the (111)
plane around point L. The energy at the critical point on line Q
has been taken as the zero of energy.

HI. NON-ATOM-CENTERED WANNIER FUNCTIONS

If we think about the wave function associated with
critical points in a band, it is helpful to begin by looking
at a one-dimensional system. Here there are only two
types of critical points: maxima and minima, and these
always occur at the high-symmetry points I and X. In
general, each band has two and only two critical points.
For the one-dimensional case, the relation between the
bands and the Wannier functions was completely ana-
lyzed by Kohn. Kohn sho~ed that in a one-dimensional
system with reflection symmetry, the Wannier function
associated with a given band will have either even or odd
symmetry about either an atom-centered position or a po-
sition displaced by half a lattice constant. The point we
would like to underline here is that the whole band is
characterized by a Wannier function of a determined
symmetry around a determined symmetry site (Wyckoff'
site) in the lattice. Especially the behavior of the wave
functions in the region of the critical point would be
strongly correlated with the appropriate type of Wannier
function.

In the case of three dimensions the situation is, of
course, more complicated, with multiple bands and now
four types of critical points. The relation between the
bands and their associated Wannier functions has been
extensively studied in the literature. ' Although it ap-
pears that the situation is not quite so clear-cut as in the
one-dimensional case, it nevertheless remains true that in
most cases a (multiple) band will be characterized by
Wannier functions of a particular type —a given symme-
try at a given Wyckoff site. Here we want to focus atten-
tion on the correlation between the Wannier function
type and the properties of the wave functions at the criti-
cal points of the band, more specifically those critical
points supplying the peak in the density of states. Now
in the present case of fcc nickel there is no doubt that the

X1()L(r) (m =1,2)

(13)

where n is a vector in the unit cell, to be chosen at a
Wyckoff site, and the coefficients c„l contain the phases
between inequivalent L points. They are determined by
symmetry as we see below. The weighting factor e is
some Gaussian parameter and the sum is over all
reciprocal-lattice vectors. Note that in the limit a~ao
(13) becomes simply

QP(r)= g b(k PIL)g& L(r)c„& (m =—1,2)
n, 1

(14)

where 6 is the periodic 5 function.
Returning to (13), we point out that the choice of k-

dependent phase ensures periodicity in k space:
1tP+o(r) =QP(r). This is necessary to obtain ProPerly lo-
calized Wannier functions, as emphasized already by
Kohn. '" Wannier functions for the band (13) are con-

single band 5 giving the dominant contribution to the
peak is a d band. Can we find a more compact or under-
standable representation for this band in terms of Wan-
nier functions, a representation which substantially
reproduces the peak in the density of states?

Our discussion of Sec. II identifies the states of band 5
in the region of the point L and the line Q in the BZ as
generating the peak. As in the point L bands 4 and 5 are
degenerate, we need to consider the eigenstates of bands 4
and 5 together. Furthermore, the states of bands 4 and 5
interact only weakly with the remaining bands in this re-
gion, so that we can effectively exclude the latter from
our considerations.

Having found the region of the point L to be the criti-
cal one (with the line Q, to which we return later), we
shall, in order to develop our argument, construct two
bands of "pure L" character. The two degenerate Bloch
states at point L,

QL (r)=e' 'UL (r); Ul"(r+R)= UL(r); n =1,2

transform as the irreducible representation L3 of D3d
about the lattice sites r =R and also as L 3 about the in-
terstitial Wyckoff sites r=R+r, where ~=a( —,', —,', —,').
Here D3d is the group of the L vector. In particular, the
states are even or odd about the atom-centered and non-
atom-centered (interstitial) sites, respectively.

The complete set of eight states in the star of the k vec-
tor at point L is

f&L(r)=e '
UL(PI 'r), n =1 2, 1=1 2 3 4

where pi (I =1,2, 3,4) with p, =E are four operations of
0& that generate the star. We propose to model bands 4
and 5 by constructing them from suitable combinations
of the Bloch states (12) with a Gaussian weighting about
the L points. Our ansatz will be

3/2
a —a(k+6 —PIL)

n, l G

i (k+ G —
pt L) ~ (r —a')

Xe
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structed in the usual way,
' 1/20

a (r—R—o)=
8m.

e
—ik.R1(im(r )

Jd k (m =1,2)
[Sm(k )]I/2

(15)

integrated over the Brillouin zone, where S (k) is the

normalizing factor for gk(r} and is periodic: S (k+G)
=S (k}. It is more convenient, however, to consider the

localized functions obtained without the normalizing fac-

tor in (15); a simple calculation shows that they are just
modulated Gaussians

"~2

gEO~
(18)

"12The operations in (18) are around r=0 and the D "are
matrices for I,2. The g (r) of (17) transform as I,z

around Wyckoff sites r=R and as I",2 around Wyckoff
sites r=R+T; in particular they are even for the 6rst
sites and odd for the second.

In summary, we have modeled bands 4 and 5 by two
bands (13}of "pure L" character. In the case of choice of
phase o =0 in (13) the bands are generated by lattices of
Gaussians on atom sites given [from (16) and (17)]by

A (r —R —o}=
' 1/20

8m
exp (r —R—o )

—1

4a A (r —R)= 0
8a

' 1/2 —1
exp (r—R)2 g (r)

4a
X gc„&g&L(r) (m =1,2) .

n, l

(16) (m =1,2), (19)

The lattice of states A (r R —o)—is not orthogonal, of
course, but they span the band (13}just as do the orthog-
onal Wannier functions a (r—R —o). The relation be-
tween lattices of Gaussian states and the corresponding
lattices of Wannier functions has been discussed ear-
lier. ' ' From the manner of construction, the states (15}
and (16) have the same symmetry around any given lat-
tice site; since the purpose of this argument is to focus on
the angular symmetry of the Wannier functions we can
confine ourselves to the Gaussians (16) and ignore the in-
correct radial behavior.

We see from (16) very clearly how the centering of the
Gaussians depends on the choice of k-dependent phase in

(13), as we would expect. [The centering of the Wannier
functions (15) will be the same. ] In view of the symmetry
properties of the g$ L (r) [Eqs. (12) and (13)] we shall ob-

I

tain localized functions of the highest symmetry by
centering them either at the atom-occupied Wyckoff sites
cr =0, or at interstitial Wyckoff sites o =T, both of which
have full cubic symmetry Oi, .

The c„l are then completely determined from group
theory. The eight functions f$ L(r} are seen from (ll)

I

and (12) to span a representation of point group O„given
by the equivalent prescriptions

0

(with respect to Wyckoff sites r =R }and

where the A transform as I,2 of 0& around r=R. The
corresponding Wannier functions (15} generating the
same band will transform in the same way. On the other
hand if we choose o =T, the bands are generated by the
non-atom- (interstitially) centered lattice:

1/2
Q

8m
A (r —R —~)=

(m =1,2), (20)

where the A transform as I 12 of 0I, around r=R+T.
We stress that the two choices of o do not lead to the
same bands, as we can check from (13) [except in the lim-
iting case (14) for a~ oo, where it is also easy to see that
the Wannier functions are no longer localized]. We have
here a situation in which we must represent the two
bands as either of a type generated by atom-centered
Wannier functions of (even) symmetry I', z or of a type
generated by interstitial Wannier functions of (odd) sym-
metry I 12. This corresponds precisely to the situation for
one dimension analyzed by Kohn and mentioned earlier.

The height and sharpness of the peak in the density of
states strongly suggests that it is generated by antibond-
ing states. This leads us to make the choice of the inter-
stitially sited Wannier functions in our ansatz for the
bands, or equivalently the modulated Gaussian functions
(20). Since they transform as I",

2 they have the unusually
high symmetry h

2&3
—,'(x —y )xyz, —(3z r)xyz— (21)

r„gc„ig&L(r)=P "gi(r)=p (r} (m =1,2),
n, l

(17)

where

(with respect to Wyckoff sites r=R+r) Since we .need
two bands that are degenerate at point L we must project
out the I &z (I"&2) part of the representation. Then the
correct combination of L states in (16) is obtained by us-
ing a row projection operator on any L state, say l(L(r) of
(11):

(relative to a site R+r as origin). To see this we have
constructed functions of type (21) by projection (17) on a
wave function VL(r) taken from a linear augrnented-
plane-wave (LAPW) program of Koelling. ' Plots in r
space, with r=T as center of symmetry are sho~n in
Figs. 6 and 7. Since we were most interested in the na-
ture of the wave function in the interstitial regions, we
have "un-augmented" the augmented plane waves used
as the basis. This means that for plotting purposes we
have approximated the functions within the atomic
spheres by plane ~aves; the coeScients of the plane
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perfectly; but as discussed in Sec. III we expect the peak
to be accurately reproduced. To that purpose we con-
strue a mo et t model Hamiltonian with a Slater-Koster (SK)

ns. ' Thusrepresentation using this basis of two functions.
we assume that we have a fcc lattice of orthonormal
Wannier functions of the above type organized on the
a ( —' —' —') positions. We develop Bloch functions:27 27 2

m geikR&m( r R 7) (22)
&N R

where r is a ( —' —' —') and R is the set of fcc direct-lattice292%2
vectors. The matrix elements in the SK Hamiltonian for
a eneral fcc vector R invoke at most three real SK pa-
rameters, dependent on the symmetry of R; in Tab ele II
the three types of SK matrix elements in a fcc lattice are
given.

This 2 X2 SK Hamiltonian was fitted to the electronic
structure of nickel. Since we wished to have an accurate
fit to those points of the BZ most involved with the peak

FIG. 9. Contours of constant energy of the two-band model
Hamiltonian of the (110) plane around point L. The energy at
point L has been taken as the zero of energy.

~ ~ R= —'a(l I I ) R= —'a(l, l, n), and R= za(l, m, n). WeTABLE II. Matrix elements of a Slater-Koster Hamiltoman for vectors R= —,a . . . , =
z

define = —'ak rl= —'ak and g= —,'ak, . The basis states are ~1)= —,'xyz(x' —y') and ~2) =(I/2&3)xyz(3z' r'). —
2 "' 2

Vector (I, I, I):

%(1,1)=8E,cos(l ()cos(!rl )cos( lg)

&(2,2) =8E,cos(lg)cos(l7I)cos(lg)

%(1,2) =0

Vector (l, l, n):

&( I, I)=8E,cos( Ig )cos( I rl )cos( n g) +2E, cos( Ig) [cos( n g)cos( I q) +cos( I ()cos(n rl )]
+6E2cos( Ig) [cos(Ig)cos( n g ) +cos( n g)cos( I g )]

%(2, 2) =8E2cos( Ig)cos( Iq )cos( n g ) +2E&cos( I g) [cos( n g)cos( lrl ) +cos(!g)cos( n g ) ]

+6E,cos( I g) [cos( Ig )cos( n rl ) +cos( n g)cos( Ig )]

%(1,2) =2&3E
&
cos( Ig) [cos( n g)cos( I g) —cos( lg)cos( n rl ) ]+2&3E&cos( Ig) [cos( lg)cos( n g) —cos( n g)cos( lrl )

Vector (I,m, n):

%(1,1)= 8E icos(n g)[cos(l g)cos(m rl )+cos(m g)cos( lg)]+ 2E, cos(m g) [cos(lg)cos(n g)+ cos(n g)cos(lg)]

+2E,cos(lg)[cos(mg)cos(ng)+cos{ng)cos(my)]+6E2cos(mg)[cos(1 f)cos(nq)+cos(n()cos(lrl)]

+6E2cos(lg)[cos(mg)cos(n7I)+cos{ng)cos(mg)] —4&3E,cos(mg)[cos(lg)cos(nial)+cos(ng)cos( 7I)]+cos(n )cos(l )

+4V 3E3cos( Ig) [cos( m ()cos( n rg ) +cos( n ()cos( m g ) ]

&(2,2) =6E, c(os')[ c(olsg)c s(one) c+s(on()c s(olg)] 6+Ec s(olg)[ sc(oem)c s(own) +c(os') c(os')
+8E,cos(ng)[cos(I()cos(my)+cos{ m ()cos(lq)]+2E, cos(mg) [cos(lg)cos(n g)+cos(ng)cos(lg)]

+2E,cos(lg) [cos(m g)cos(n g)+ cos{n g)cos(m g)]+4&3E,cos( m g)[cos(lg)cos(n g)+ cos(n g)cos(l g)
—4v'3E3cos(lg) [cos(m g}cos(n g }+cos(n g)cos(m g) ]

%(1,2) =2&3E,cos(m g)[ cos(lg)cos(n —rl)+ cos(n g)cos(lg) ]+2&3E,cos(lg) [—cos(m ()cos(n g)+ cos(n g)cos(m g)

+ 2&3E2cos( m g) [cos( Ig )cos( n rl) cos( n g)co—s( I g ) ]+2&3E2cos( Ig) [cos(m g)cos{n q ) —cos( n ()cos( m g )

+8E,cos( n g) [cos(1()cos(m rl ) —cos( m g)cos{I g) ]+4E,cos( m g) [cos( Ig)cos( n g ) cos(n ()cos(l g)—

—4E,cos( Ig) [cos( m g)cos( n g ) —cos( n g)cos( Ig ) ]
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structure, we made a list of 960 random points in the BZ,
whose band-5 energy fell within 3.57 mRy of the rnid-

point of the peak and 100 more random points within 0.5
mRy of the band-5 energy at point L and the critical
point on line Q. To force the fit to be nearly exact at
point L and the critical point on line Q, these points were
included 150 and 50 times, respectively. The dispersion
in energy of this set was judged as too narrow, so that 520
supplemental points were chosen along syrnrnetry lines.
The range of the supplemental points is shown in Fig. 2
as the small circles. In all, 1880 points were used in the
fit. Table III lists the SK parameters derived from the fit
for the different shells. Up to ten shells were included in
the fit. The two energy bands of the SK Hamiltonian ob-
tained this way are shown in Fig. 2 as the dashed lines.

As can be seen from Fig. 2, the quality of fit in the peak
region near point L and line Q is quite good, being less
than 0.3 mRy in error there, or about 6% of the peak
width. Along the other syrnrnetry lines the error is
larger, but still within a few millirydbergs. The electronic
structure of band 5 derived from the model Hamiltonian
is compared with the corresponding original Ni structure
in three planes involving point L or the critical point on
line Q in three planes in the BZ in Figs. 8, 9, and 10.
These plots show that the Hamiltonian of the non-atom-
centered Wannier functions has reproduced both the
structure and the topology of the peak region.

Finally we show in Fig. 11 the partial density of states
for the model Harniltonian on exactly the same scale as
Fig. 1. It is clear that the peak in the density of states has
been reproduced.

V. DISCUSSION AND CONCLUSIONS

We have shown that the biggest peak in the density of
states of Ni, which exists in the top end of the d-band re-
gion, can be viewed as arising from h states of I &2 sym-
metry centered at the empty Wyckoff positions a( —,', —,', —,

'
)

in real space. The new interpretation allowed us to make
a small (2 X 2) model Hamiltonian which fits the electron-
ic band structure well in the region of the peak. Outside
this region the electronic structure is broadly topological-
ly correct.

FIG. 10. Contours of constant energy of the two-band model
Hamiltonian (111)plane around point L. The energy at the crit-
ical point on line Q has been taken as the zero of energy.

The novel symmetry Wannier function we have
developed around a( —,', —,', —,') is perhaps the maximally
antibonding interstitial state we could have constructed.
That such a state fits the electronic structure of the peak
so well is strongly suggestive that this state generates the
abnormally tall peak in Ni. Evidently the fcc lattice com-
bines with d-like orbitals to produce this special type of
antibonding state. Another system in which a simple but
realistic band structure based on non-atom-centered
Wannier functions has been studied is the "two-
dimensional" metal Hg3AsF6. '

How general is this notion? It is clear, as we men-

0
0
tn

0
00

lD

TABLE III. Fit parameters of the SK Hamiltonian used in

the two-band Hamiltonian (in mRy).

0)
l

co~0
CL

Vector (l, m, n)

(0,0,0)
(1,1,0)
(2,0,0)
(2, 1,1)

(2,2,0)
(3,1,0)
(2,2,2)
(3,2, 1)

(4,0,0)
(3,3,0)
(4, 1,1)

90.1728
—0.1300
—0.1625
—2.9050

0.9575
—0.6725
—1.6375

0.4925
—0.4619

0.0363
0.6050

E2

0
—4.4014

0.1944
—1.1400

1.0325
0.5475
0
0.2025
0.0244
0.5363
0.2200

0
0
0
0
0

—0.3400
0

—0.5025
0
0
0

0
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FIG. 11. Density of states of the model Hamiltonian for
the band designed to fit the original band 5.
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tioned in the Introduction that there are many difFerent

crystal structures related to the fcc structure in the posi-
tions of the atoms. Therefore we do not think that the
special relationship of a maximally antibonding Wannier
function to peaks in the density of states is either limited
or rare. Both the 315 and perovskite structures come to
mind and are suggestive of further study.

We conclude that we have isolated a reason for the ex-
traordinarily high peak of the density of states of Ni.
There is a direct relationship between the highest peaks
in the density of states and Hamiltonians constructed

from Wannier functions of special symmetry centered at
non-atom-centered positions.
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