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We consider the theory of inelastic scattering of atoms by isolated surface defects which have

nearly dispersionless vibrational modes. Explicit calculations are carried out corresponding to the
cases of chemisorbed CO on a Pt(111) surface, or heavy rare gases physisorbed on Pt(111) or
Ag(111) surfaces. The multiphonon intensities are compared with available data. We show that the

multiphonon intensities measured as a function of scattering angle exhibit broad oscillations similar

to those observed in elastic scattering, and the polarization of the Einstein mode has a large eft'ect

on the envelope of these oscillations.

I. INTRODUCTION

Even the most carefully prepared surfaces always con-
tain defects such as steps, kinks, and adsorbates. The de-
fects may arise as a result of the surface preparation pro-
cedure or be deliberately created. ' Understanding the na-
ture of the surfaces requires an understanding of these de-
fects. In scattering experiments, defects usually contrib-
ute to the diffusely reflected background and they cause a
reduction in the intensity or a broadening in the
width ' of the coherently scattered peaks. Recently,
measurements of the elastic diffuse intensity of low-
energy helium atoms at large momentum transfers have
been demonstrated to give a large amount of information
not only about the nature of individual defects, ' ' but
also about their distribution. ' Measurements of the
diffuse inelastic background in similar He scattering ex-
periments have revealed the energies of special modes as-
sociated with isolated adsorbates or defects.

We wish to consider here the inelastic scattering of
low-energy atoms from surface defects; in particular, we
consider defects which have isolated vibrational modes in
the meV range. Such Einstein-like modes can arise in a
number of different ways, for example, the low-energy vi-
brations of chemisorbed molecules such as CO on Pt.
Another example is the case of rare gases physisorbed on
metal ' or graphite substrates. Additionally, clean
but reconstructed surfaces can have features which vi-

brate with nearly Einstein behavior ' and it has been
proposed that such modes can be associated with the
edges of steps.

A defect on the surface breaks the two-dimensional
symmetry, and for scattering events this means that it
contributes to the diffuse intensity. ' However, for Ein-
stein vibrators the isolated frequency gives rise to a num-
ber of coherence effects which can arise when multiple
quantum exchanges are appreciable. In this paper we
carry out explicit calculations of the inelastic scattering
cross section for single and multiple quantum exchange
of Einstein modes. The polarization of the vibrational
displacement, whether it is parallel or perpendicular to
the surface, leads to very significant differences in the pat-
tern of scattered intensity. We find that multiple

reflections between defect and substrate give rise to
characteristic oscillations in the intensity as a function of
scattering angle much in the same way as similar oscilla-
tions arise in the diffuse elastic scattering from isolated
defects. ' ' These oscillations can be used to obtain in-
formation on the size and shape of the defect profile.

II. THE INELASTIC TRANSITION RATE

In low-energy atom scattering all the incident atomic
flux is backscattered, implying a strong interaction pro-
cess which cannot be described by weak scattering theory
such as the Born approximation. Furthermore, we are
most interested in the amplitudes scattered with large
parallel momentum transfers at large angles away from
the specular direction. The appropriate starting point is
the transition rate for a particle of initial momentum A'k;

going to a final state of momentum Rkf

where Tf, is the transition matrix, Ef and E; are the final
and initial energies of the total system of particle plus
crystal, the sum is over final crystal states, and the aver-
age is over initial crystal states. It will also be necessary
to average (l) over the distribution of defects. The Van
Hove transformation casts the transition rate into the
form of a Fourier transform of a time-ordered correlation
function

w (kf, k; ) = f ™dtexp[ i (Ef —e, )t /f—i]

X ( T;t(0)Tf, (t) ),
in which the time dependence of the T operators is given
in the interaction picture by the unperturbed crystal
Hamiltonian, and cf and c; are the final and initial parti-
cle energies, respectively.

At this point we make three assumptions about the de-
fects, they are all identical, they can be represented by
nondeformable hard core scattering centers, and they are
sufficiently dilute so that there is no appreciable multiple
scattering between different defects. (However, multiple
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scattering between defect and surface is important and
must be accounted for. ) At first glance the approxima-
tion of hard cores may seem overly restrictive, but it is
justfied by the fact that we are interested in large angle
scattering, in which the incoming atom strong samples
the hard repulsive core. The soft van der Walls attractive
part of the potential dominates the total cross section,
but scatters only in a small range about the specular
direction. ' These assumptions allow us to write the
transition matrix elements with respect to the particle
states as

( kf ~ T(t)~k, ) = r(kf, k; ) g exp[ik R (t)] (3)

where r(kf, k;) is the transition matrix for scattering
from an isolated defect and the summation runs over all
defect sites. The wave-vector transfer k =kf —k;
=(Kf—K;, kf, +k;, ) with capital letters referring to
vectors parallel to the surface and small letters giving
components in the z direction perpendicular to the sur-
face. The position vector of the defect at site a which ap-
pears in the phase can be written as

R (t)=R +u (t), (4)

where R is the time-independent equilibrium position
and u (t) is the displacement from equilibrium.

The defect vibration amplitude u (t) is a linear com-
bination of the modes of the substrate and the proper
modes of the defect. To a good approximation we can
write the amplitude as the sum of two terms

u (t)=u'(t)+u, (t),
where u~(t) is the displacement due to the Einstein mode

I

vibrations and u (t) is the additional contribution due to
the substrate vibrations. This implies that the defect sim-

ply rides on the substrate and that the two contributions
are independent as expressed by

(k u'(t) k u (0) ) =0 . (6)

The meaning of a dispersionless defect mode is that each
defect vibrates at a single frequency and the vibrations
between neighbors are uncorrelated. In addition, the sin-
gle vibrational frequency will be associated with motion
in a particular direction. These conditions are expressed
as

(k u, (&) k u&(0)) =(k u (t) k u (0))5 &

=Q (u (t)u (0))5,& (7)

where Q is the component of the wave vector k parallel
to the direction of the one-dimensional vibrational dis-
placement u "(t ). In the case of physisorbed noble gases,
the direction of the vibrational motion is normal to the
surface. ' For CO chemisorbed on a Pt(111) surface
the Einstein frequency is identified with a wagging
mode and the displacement is parallel to the surface.
However, even in this latter case we need consider only a
single direction of momentum transfer since in most ex-
periments the incident beam and detector are in the same
plane with the normal to the surface.

If a11 displacements obey the harmonic approximation,
the thermal averages in the transition rate of Eq. (2) can
be readily carried out with the form of the transition
operator (3). Together with the conditions (4) —(7) the re-
sult is

w(kf, k;)= f dt exp[ i(sf ——e)t/ iir]~~(k f, k)~ exp[ —2W'(k) —2W (k)]

X expik R —
R& exp ku' Ok.u&t + ku" Oku" t

a;P
(8)

where the double brackets signify an average over the dis-
tribution of defect positions. The two Debye-Wailer fac-
tors arising from the substrate and defect motions, re-
spectively, with exponents given by

2W'(k)=([k u'(r)] ) and 2W (k)=([k.u~(t}] ), (9)

are independent of site index u if all defects are at the
same position in the surface unit cell.

All inelastic exchanges will arise from the displacement
correlation functions appearing in the final exponentials
of Eq. (8). Since we are considering here the inelastic
contributions due to the Einstein modes, we will ignore
all contributions from the substrate modes except for
their contribution to the Debye-Wailer factor. For an
Einstein mode the frequency distribution function is a 5
function in the Einstein frequency Q, and the displace-
ment correlation function is

(u (0)u "(r))= In(Q)e' '+[n(Q)+1]e
2MQ

(10)

where M is the defect mass and n(Q) is the Bose-Einstein
function. In the multiphonon inelastic interactions with
an Einstein oscillator, all processes involving equal num-
bers of creation and annihilation events contribute to the
inelastic signal. All such events can be summed in the
transition rate of Eq. (9), and for a random distribution of
site positions the result is

w (kf, k, )= ilute(kf, k, }~ exp[ —2W'(k) —2W (Q)]

XID n(Q)[n(Q)+1] 5(sf —s, )

where ri is the defect density and I (x) is the modified
Bessel function of order a. Equation (11) has been used
to explain the large angle diffuse elastic scattering of heli-
um atoms from steps and adsorbates. ' Additional fine
structure details in the observed elastic intensity from
steps have been discussed in terms of lattice gas interfer-



41 INELASTIC SCATTERING FROM EINSTEIN MODES OF. . . 9785

ence arising from nonrandom distributions of posi-
t jOnS 22, 23

Inelastic contributions to the transition rate (8) involv-

ing exchange of a phonons also have contributions com-
ing from all higher-order processes. Because of the vibra-
tional incoherence of the Einstein oscillators as expressed

in Eq. (7) there are no coherences arising from correla-
tions in position distributions, and the averaged summa-
tion over defect sites in (8) yields a factor of i). All order
of phonon exchanges can then be summed to give an ex-
pression for the inelastic transition rate for the exchange
of a phonons: '

(i) (kf, k, )= g~r(kf, k, )~ exp[ —2W'(k) —2W (Q)]I
~R

&n(Q)[n (Q)+1]

X(5(ef—e; —airiQ)tn(Q)/[n (Q)+1]I' +5(sf —e;+ah'Q)[[n(Q)+1]/n (Q)I ) . (12)

III. THE FORM FACTOR

The form factor in the transition rate of Eq. (12) above
is essentially the square modulus of the transition matrix
for scattering by a single defect. In general, the wave
function in the asymptotic region far from the surface is
of the form

0', (R, z~a() )=exp( ik,,z+—iK R}~i)

+ g C„(K)exp[i(K, +K) R+ikf, z]~n )
K;n

(13)

with kf, =[k;,+K, —(K, —K) +2m Q„/A']' where

AQ„ is the total energy difference between the initial crys-
tal state ~i ) and the final crystal state

~
n ). The

coefficients of the outgoing scattered waves of (13) are
proportional to the transition matrix

C„(K)= ~ r(kf, k; )e'~
Lfi kf,

(14)

where (t) is an unimportant phase and L is the area of the
surface.

Since, as discussed above, the large angle diffuse
scattering is predominantly caused by the repulsive hard
core of the potential, we will model the form factor by an
infinitely hard repulsion calculated in the eikonal approx-

Equation (12) can be viewed as consisting of three parts,
the 5 functions for creation and annihilation which give
the conservation of energy between particle and crystal, a
form factor for the scattering center 2qr~r(kf, k; )

~
fi, and

the remaining factors which constitute an inelastic struc-
ture factor. At low temperatures only creation processes
are possible and the inelastic structure factor reduces to
the Poisson distribution exp[ —2W'(Q)]e 'x /a!, with
x =Q (ri/2MQ, modified by the Debye-Wailer factor for
the substrate motion. At high temperatures the Einstein
mode Debye-Wailer factor is partially canceled by the
Bessel function and the temperature dependence goes as
exp[ —2 W'(Q)]/VT.

The diffuse inelastic intensity arising solely from the
defect Einstein modes is contained in Eq. (12). In order
to make comparisons with experiment, the form factor of
the specific defect must be evaluated, and we consider
that question in the next section.

I

imation. In this case the amplitude C„(K) is deter-
mined by applying the boundary condition that the wave
function vanish at the profile of the hard surface located
at the position z =g(R):

)Ii;(R,z =g(R)) =0 . (15)

Usually there are multiple semiclassical hits which may
contribute to scattering at a given final angle, but the
eikonal approximation only accounts for single hits. An
important example occurring in defect scattering is a
second hit involving a backreflection by the mirror sur-
face. Such terms are explicitly accounted for by adding
an "image" contribution to the scattering amplitude cor-
responding to the transfer of perpendicular momentum
q' =k;, —kf, as opposed to q =k;, +kf, for the directly
scattered part. The evaluation of C„(K) after applying
the boundary condition (15} directly to the form of the
wave function (13) is straightforward, and the final result
1s

d R e
—iK R(e —iqg(R) —iq'I'(R)

0, R~a
(a2 g 2)li2 g (g(R)= '

L

(17)

With this choice of profile the Fraunhofer term of the
amplitude (16) can be evaluated exactly. The two il-
luminated face terms admit to an analytic expression in
the stationary phase approximation. Using the notation

k.n=[kf+k; +2kfk;cos(8f+8, )]'
k'-n '= [kf +k, 2kf k;cos(8f 8; )—]'—(18}

(16)

The integral in (16) runs only over the region of the iso-
lated defect; in the language of semiclassical scattering
the first two terms in the integrand are the direct and
backreflected illuminated face contributions, respectively,
and the final term is the shadow or Fraunhofer part.
There is also a term in C„(K) involving an integral over
the entire infinite flat surface, but since that only contrib-
utes to the amplitude near the specular direction it is of
no interest here.

The simplest choice for the defect profile function is a
hemisphere of radius a resting on top of the surface, in
which case



9786 C. W. SKORUPKA AND J. R. MANSON 41

the result is

e
—iak.n

&e
—iak'. n '

C„(K)= ak. n

J, (Ka)

K
(19)

Equation (19) provides a useful closed form approxima-
tion for the scattering amplitude. In actual practice we

found it more convenient to obtain the amplitude by
direct numerical integration of Eq. (16), a procedure
which is valid for smaller values of ka than the stationary
phase approximation of Eq. (19).

IV. CALCULATIONS AND COMPARISON
WITH EXPERIMENT

(20)

For the contribution to the Debye-Wailer factor from the
substrate, it has been shown that only the vibrations nor-
mal to the surface play an important role. Furthermore,
the effect of the attractive well of depth D in the potential
should be taken into account. We parametrize the
Debye-Wailer exponent as

W'(k)=AfiA[(k;, +kf, ) +y][n(Q)+ ,']/k~—(21)

where ka is the Boltzmann constant. In Eq. (21) the pa-
rameter y contains the well depth correction and is
slightly different from the usual practice of refracting the
incident and scattered semiclassical beams through a re-
lation of the form kf, ~kf', =(kf, +2mD/R )' and

similarly for k,, In the comparisons below the parame-
ters A, and y are chosen by matching (21) to the available
experimental data for thermal attenuation of the elastic
specular beams.

Figure 1 shows a calculation of the difFerential
reflection coefficient for the scattering of helium by ad-
sorbates on a hard surface using the form factor calculat-
ed from the hemispherical defect profile of Eq. (17) with
a =2.4 A. All incident conditions and parameters are
chosen to match the experimental conditions for CO ad-
sorbed on a Pt(111) surface, ' and are given in Table I.
Both the diffuse elastic and the single phonon creation in-
elastic intensities are shown. The Einstein energy AQ is 6

For making comparisons with experiment we first note
that the quantity which would normally be measured is
the differential reflection coefficient which is obtained
upon multiplying the transition rate w(kf, k;) by the den-

sity p=m ~kf ~/8' n of final states in phase space and di-

viding by the incident flux j, =fik;, /m. In addition other
factors may be necessary depending on peculiarities of
the experimental configuration. For example, if the
detector acceptance angle subtends only a small portion
of a surface fully illuminated by the incident beam, there
will be an additional factor of I/cos8f to account for the
increase of surface area viewed as the polar angle 8f of
the detector is varied. '

We must also evaluate the Debye-Wailer factors. The
Debye-Wailer exponent for the defect mode (9) is readily
evaluated from the displacement correlation function (10)
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FIG. 1. The differential reflection coemcient as a function of
incident angle for the elastic and one phonon annihilation peak
intensities for He with E; =18.3 meV scattering from a model of
CO adsorbed on a smooth Pt surface. The detector angle is
fixed at 8&D =90' with respect to the incident angle in the sagit-
tal plane.

meV and corresponds to the lowest-energy vibrational
mode of adsorbed CO on Pt, all other modes being too
high in energy to be detected in the experiment. This
lowest-energy mode is a "wagging" mode in which the
motion is parallel to the surface and this means that the
momentum Q is the parallel momentum transform K in
the scattering direction.

The most immediate observation from Fig. 1 is that the
single phonon inelastic intensity exhibits reflection sym-
metry oscillations in much the same way as does the elas-
tic intensity. These arise from the quantum-mechanical
interference between the first two (illuminated face) terms
in the scattering amplitude of Eq. (19). The single pho-
non intensity is usually smaller than the elastic intensity,
but this is not always the case as a crest of the inelastic
intensity may fall on a trough of the elastic signal. Simi-
larly, we find that the two phonon signal or even the
three phonon signal can have a stronger intensity than
the elastic or single phonon intensity at certain angles.
This implies that when attempting to measure a particu-
lar multiphonon signal it is of interest to choose an angle
at which its form factor is large.

Just as is the case for the elastic signa1, the positions
and relative amplitudes of the inelastic reflection symme-
try oscillations give information on the size, profile shape,
and rainbow positions of the defect hard core. We have
noted that the relative positions of the oscillations in the
various multiphonon intensities are sensitive to parame-
ter changes, in this case changes in hemisphere radius
and incoming momentum.

Figures 2 and 3 illustrate the difference in nature be-
tween the diffuse inelastic scattering of helium from a de-
fect which vibrates parallel to the surface and one which
vibrates perpendicularly. Figure 2 is for the CO/Pt pa-
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TABLE I. The calculated inelastic structure factor compared with available experimental intensity measurements for several sys-

tems. Intensities are normalized to the elastic intensity for the case of CO/Pt, and normalized to the single phonon creation intensity
for all other cases. Ts is the surface temperature and the parameters of the Debye-Wailer factor of Eq. (21) are A, =1.27X10
0
A K ' and y =46 A (corresponding to a well depth of approximately 6 meV).

hE (meV) I/Io (expt) I/Io (calc) E, (meV) 0, (deg) ~sD (deg) T, (K)

12
6
0

—6
—12

3.7
—3.7
—7.3

2.9
—2.9
—5.8
—8.7

2.8
—2.8
—5.4
—8.3

3.67
—3.67
—7.18

—10.6

2
1

0
—1
—2

1

—1
—2

1
—1
—2
—3

1
—1
—2
—3

1
—1
—2
—3

0.016
0.067
1

0.16
0.08

0.13
1

0.28

0.4
1

0.25
0.05

0.3
1

0.3
0.1

0.25
1

0.25
0.05

CO/Pt(111)
0.026
0.15
1

0.14
0.0035

Kr/Pt(111)
0.23
1

0.36

Kr/Ar(111)
0.27
1

0.6
0.2

Xe/Ag(111) 2'

0.27
1

0.4
0.14

Ar/Ag(111)"
0.18
1

0.6
0.4

18.3

18.3

18.0

18.0

18.0

29.9

45

45
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FIG. 2. The inelastic structure factor as a function of in-
cident angle for the elastic, and one and two phonon creation
peak intensities. All parameters are the same as for the case of
He scattered by CO adsorbed on Pt shown in Fig. 1.

FIG. 3. The inelastic structure factor as a function of in-
cident angle for the one phonon creation, and the one and two
phonon annihilation peak intensities for the case of He scattered
by Kr adsorbed on a Pt(111) substrate. The incident energy is
18.3 meV, the surface temperature is 25 K, and the fixed angle
between incident beam and detector is OsD =83'.
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rameters of Fig. 1, and plotted is the transition rate with
the form factor factored out. What is left is essentially
the inelastic structure factor which is shown for the zero,
one, and two phonon creation processes. The decrease in
intensity for larger numbers of phonon exchange is main-

ly due to the Debye-Wailer factor. The inelastic intensity
for the exchange of a phonons vanishes near the specular
angle at the point where Q, the parallel momentum ex-
change, is zero. The factor of Q in the Bessel function
of Eq. (12) shows that the small Q dependence goes as

Q . Table I gives a comparison between the calculations
as shown in Fig. 2 and experiment at the measured an-

gles, with all intensities normalized to the elastic intensi-
ty. The qualitative trend of the calculations agrees with
that of the experiment, and the actual relative intensities
are in good agreement considering that the effects of the
form factor are ignored. Figure 3 is similar to Fig. 2 ex-
cept that it is for the case of Kr adsorbed on a Pt(111)
substrate. In this case the vibration is normal to the
surface and Q is the normal momentum transfer which is
always greater than zero under any experimentally
achievable incidence conditions. Thus the signature of
this case is quite different from the parallel vibration case
above. The elastic intensity is not shown because most of
the experiments reported for rare gases on metal sub-
strates are with high coverages of the adsorbates
and our elastic theory is not valid for this case. However,
for inelastic scattering our theory remains valid for a
combination of two reasons, (i) the normally vibrating
Einstein modes of adjacent adsorbates are decoupled and
hence still exhibit the incoherence expressed in Eq. (7)
(this is not the case for the modes of this system associat-
ed with parallel polarization, but these modes are not
seen by helium scattering), and (ii) there is experimental
evidence that multiple scattering between neighboring
adsorbates does not occur in the inelastic exchanges.
This experimental evidence consists of He reflected from
well-mixed solutions with near monolayer coverage of Kr
and Xe on a Pt(ill) substrate. The inelastic intensity
consisted of multiples of the Kr frequency and multiples
of the Xe frequency, but no mixtures of the two, indicat-
ing that there was no multiple scattering between neigh-
boring defects. Table I also gives the comparison of the
calculations of Fig. 3 with experiment and similarly for a
number of other available data. All comparisons except
for that with CO are normalized to the single phonon
creation intensity for the reasons stated above. The ex-
perimental intensities are obtained by comparing relative
peak heights to background levels as obtained from Refs.
24, 26, and 27. In all cases the qualitative trend of the
calculations is correct in spite of the fact that the form
factor has been ignored.

V. CONCLUSIONS

We have considered the diffuse, multiphonon inelastic
scattering intensities for very-low-energy atoms incident
on a dilute distribution of defects on a flat surface. When
these defects have dispersionless, or Einstein vibrational
modes, the energy-resolved differential reflection
coefficient has peaks corresponding to each multiphonon
exchange. When a given multiphonon peak is measured
as a function of scattering angle or momentum exchange,
it exhibits a series of broad oscillations whose origin is
the same as the reflection symmetry oscillations observed
in the diffuse elastic intensity. The oscillations are the
result of interference between two or more semiclassical
paths, arising either from a combination of direct scatter-
ing from the defect and double scattering from the defect
and surface, or from a supernumerary rainbow situation
in which there are more than one possible paths of
scattering from the defect hard core profile. The position
and relative intensity of these oscillations depend strongly
on the size and shape of the hard core profile of the de-
fect.

A single frequency Einstein mode will have a polariza-
tion direction, usually either parallel or perpendicular to
the surface. Parallel and perpendicularly polarized
modes exhibit quite different signatures. The intensity
for the exchange of a phonons scattered from a parallel
mode is proportional to K where E is the parallel
momentum exchanged, hence the intensity vanishes
strongly near the specular direction where K is small.
For perpendicular modes the relevant momentum ex-
change is in the perpendicular direction and this does not
vanish under normal experimental conditions, so the in-
tensity tends to be largest for angles in the neighborhood
of the specular direction.

We have carried out calculations in which the defect is
an adsorbate with a hard core profile modeled by a hemi-
sphere on a flat surface. These clearly indicate the
reflection symmetry oscillations and the polarization
effects. Direct comparison with experiment is made for a
number of different systems and although the number of
angles measured for each system is very limited, the
agreement is encouraging. Our calculations indicate that
more detailed experiments wi11 give information not only
on the energies and polarizations of the multiphonon or
overtone frequencies, but also will have the capability of
giving detailed information on the nature of the defect.
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