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Lattice dynamics of lutetium
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The normal-mode frequencies of lutetium were measured at 295 K by inelastic neutron scattering

along the three main symmetry directions of the hexagonal lattice. The data are analyzed with a
Born-von Karman force model including interactions up to the eighth-nearest neighbors. The
phonon-frequency-distribution function is calculated, and from that the lattice specific heat and the

Debye temperature. The latter are found to be in good agreement with results from other experi-
mental techniques.

I. INTRODUCTION

Our interest in the lattice dynamics of lutetium stems
from recent investigations of hydrogen-ordering proper-
ties occurring in the rare-earth —hydrogen systems at
lower temperatures. ' In one of these works we studied
the influence of hydrogen absorption on phonon proper-
ties of the hexagonal-closed-packed lutetium metal. Gen-
erally, hydrogen loading induces a frequency increase, as
found by measurements essentially restricted to acoustic
branches along two symmetry directions.

The lattice dynamics of the rare-earth metals holmium
and terbium and that of the related scandium and yttri-

um were studied by inelastic neutron scattering around
1970. Yet for lutetium, the most-heavy rare-earth ele-
ment ( A = 175), no complete set of dispersion relations
was available until now. We therefore continued our in-
vestigation of the pure lutetium metal and are able to
present the complete phonon dispersion relations in the
three main symmetry directions. The measured frequen-
cies were analyzed by a Born —von Karman interatomic
force model which reproduces the data quite well. We
used the obtained set of force constants for calculating
the inelastic structure factor and the phonon density of
states. Finally, the lattice specific heat and the Debye
temperature are evaluated and compared to experimental
results found in the literature.
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FICs. 1. Phonon dispersion curves for Lu at 295 K in the three main symmetry directions. The lines represent the results of an
eighth-nearest-neighbor Born—von Karman force model.
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TABLE I. Measured phonon frequencies in Lu at 295 K, in THz.

T, (TOii) Tq(TOl ) T3(TAi) T4(LO) r4(TA~~)

0
0.08
0.1

0.15
0.2
0.3
0.35
0.4
0.45
0.5
0.6
0.7
0.8
0.9
1.0

0.70+0.02
0.86+0.02

1.60+0.05
2.18+0.01

2.45+0.01

2.69+0.01

2.77+0.01
2.83+0.01
2.98+0.01
3.06+0.01

3.54+0.01

2.34+0.01
2.63+0.01
2.78+0.02
2.88+0.05

3.52+0.01

3.26+0.02

0.96+0.01
1.40+0.01

1.82+0.02

3.14+0.01
3.20+0.02

3.27+0.01

3.23+0.01

2.92+0.01
2.55+0.01

2.09+0.01
1.99+0.01

2.21+0.02
2.52+0.02
2.84+0.03
3.07+0.03
3.26+0.05
3.26+0.05

I -K —M: q in units of 2m/a
2.04+0.01 3.63+0.02 2.04+0.01

2.16+0.02

2.46+0.02
2.82%0.02

3.10+0.01

3.08+0.01
3.08+0.01
3.18+0.01

3.39%0.01

0.76+0.01
1.03+0.01
1.50+0.01

1.94+0.01
2.15+0.01
2.34+0.02

2.7120.01
2.36+0.01
1.95+0.01
1.84+0.01

0
0.1

0.2
0.3
0.4
0.5

b )(LA)

0.55+0.01
1.05%0.01
1.54+0.01
2.00+0.01
2.41+0.01

52(LO)

I -A: q in units of 2m/c
3.63+0.02
3.57%0.01
3.45+0.01
3.17+0.01
2.83E0.01
2.41+0.01

hg(TA)

1.90+0.01
1.20+0.01
1.47+0.01

2.04+0.01
2.02+0.02
1.95+0.01
1.84+0.01
1.68+0.01
1.47+0.01

Xi(LO) X3(TA, ) X3(TOj ) X4(TO)( )

0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.14+0.01
1.60+0.01
1.96+0.01
2.31+0.01
2.64+0.01
2.95+0.01
3.16+0.01

3.23+0.01

2.04+0.01

2.28+0.01

2.72+0.01

3.03+0.01

3.33+0.01
3.39+0.01

r-M:

0.53+0.01
0.81+0.01
1.12+0.01
1.32+0.01
1.56+0.01
1.76+0.01
1.95+0.01
2.10+0.01
1.99+0.01

q in units of 2m/a&3
3.63+0.02
3.67+0.01
3.63+0.02
3.5920.01
3.57+0.02
3.55+0.01
3.45+0.01
3.37+0.01
3.31%0.01
3.18+0.01
3.2620.05

0.55+0.01
0.85+0.01
1.09+0.01
1.31+0.01
1.51+0.01
1.67+0.01
1.79+0.02
1.83+0.01
1.84+0.01

2.04+0.01

2.18+0.01

2.41+0.01

2.72+0.01

2.94+0.01

3.06+0.01

II. MEASUREMENTS AND RESULTS

The experiment was carried out on the triple-axis spec-
trometer 2T located at the thermal neutron source of the
Orphee reactor from the Laboratoire Leon Brillouin in
Saclay, France. The measurements were done with a
fixed final energy EI=14.7 meV. A pyrolytic-graphite
filter was mounted between the sample and the analyzer.
We used a copper monochromator, Cu(111}, and a
pyrolytic-graphite analyzer, PG(002). The collimations
were 50'-30'-49'-49', starting with the in-pile collimator.
Some phonon groups which sufFered from unfavorable
structure factors were measured with a focusing mono-
chromator and analyzer. The scans were run in the
constant-Q mode, with the exception of some acoustic
phonons in the vicinity of the I point, which we mea-

sured by constant-energy scans.
The lutetium single crystal was grown by D. A. Hukin,

Clarendon Laboratory, Oxford; its volume was 0.5 cm .
The 99.9% sublimed-grade ingot delivered by Rare Earth
Products, Ltd. , Great Britain, had been zone-refined by
cold-crucible induction heating. The principal gaseous
impurity were several tenths of an at. % of oxygen. The
mosaic spread was 0.5. Some measurements were also
undertaken after two hydrogen-loading and -degassing
procedures, which increased the spread by a factor 2.

In Table I we list the results for the three principal
directions I —K —I, I —M, and I —A, and in Fig. 1 the
dispersion curves are plotted. They look similar to those
found for terbium and holmium. ' The experimentally
determined slopes of acoustic modes governed by the
same elastic constant differ within a few percent. A com-
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Veloc. Direc.
This
work GBS

U44

U44

U44

[0Ã]

[0Ã]
[000]
[00(]
[0Ã]
[000]

3.014
3.127
2.897
1.647
1.630
1.665
1.647
1.630

2.993
2.993
2.895
1.660
1.660
1.660
1.670
1.670

0.7
4.3
0.1

—0.8
—1.8

0.3
—1.4
—2.4

parison with ultrasound data from Greiner et al. gives
deviations of the same order of magnitude (Table II).

TABLE II. Comparison of ultrasound velocities in km/s as
gotten from the initial slopes of the acoustic modes with direct
measurements from Greiner et al. (Ref. 7) (GBS).

Neighbor
n

Typical
coord.

(O, a /&3, c/2)
(a, 0,0)

(0,2a /&3, c/2)
(0,0,c)

(a /2, 5a /2&3, c/2}
(O,a &3,0)

(a, O, c)
(2a,0,0)

Pair of
force constants

{F„,G„)
(dyn/cm}

(19968,1177)
(15 378,347,2200')

(
—2839,—614)

( —4141,—1615)
(1508,—176)

{1688,83)
(394,281)

(
—306, —71)

'Additional force constant (see text).

TABLE III. Force constants for lutetium obtained by a
least-mean-squares fit and an eighth-nearest-neighbor, axially
symmetric interaction model. a,"q = (x;"xk /r )(F„—G„)
+6„5;„,r =[(x;") +(xj") +(xk) ], n =1,2, . . . , 8.

III. MODEL CALCULATIONS

A. Born-von Kirmin fit

The data were analyzed by means of a least-squares-fit
procedure within the frame of a Born —von Karman force
model. The computer program is based on the axially
symmetric model (AS model) proposed by Lehman
et al. , which requires only two independent parameters
per shell. A first attempt taking into account interactions
up to the eighth-nearest neighbors brought about satisfy-
ing results, with the exception of the lower T, (LA)
branch around the K point. The AS model predicts a de-
generate mode for this and the upper T4(LO) branch at
the K point, contrary to the observed degeneracy of the
two lower T, and T4 branches. For terbium Hournann
and Nicklow used a mixed force model which gives quite
good results. They start with general interactions (tensor
forces) up to the fourth-nearest neighbors and continue
with axially symmetric ones to the eighth next-nearest
neighbors.

In the case of the general-tensor-force model (GTF
model), zone-boundary data are necessary to determine
the off-diagonal elements of the dynamical matrices for
the first- and the third-neighbor interaction since they do
not enter in the dispersion relations for the three main
symmetry directions. If one carries out calculations re-
stricted to these three directions, the two force-constant
models differ only in the matrix for the second neighbors
within the first four shells. Besides the common diagonal
elements, the GTF matrix consists of an asymmetric off-

diagonal one, a,2= —a2, . As we did not perform mea-
surements along the zone boundaries, we took advantage
of the described relation between the two force-constant
models in the restricted case and made a second ap-
proach with a slightly modified AS model. For the
second-nearest-neighbor interaction the dynamical ma-
trix is enlarged by an asymmetric off-diagonal element
normally absent in an AS model. This additional force
constant is not concerned by the procedure of variation
of the ordinary AS parameters. Its numerical value was

B. Phonon density of states, lattice specific heat,
and Debye temperature

The final set of force constants was used to calculate
the frequency distribution function g(v) (Fig. 2). The
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FIG. 2. Calculated phonon-frequency-distribution function

g (v) for Lu (unsmoothed computer plot).

chosen after the results for Tb (Ref. 2) and Ho (Ref. 4),
just as our initial set of the other 16 parameters. With
this modification for the second-neighbor shell of the AS
model, we reached a quite suScient agreement between
the calculated and measured eigenfrequencies. In Table
III the values for the force constants are listed.

From this set of force constants we calculated the in-

elastic structure factor

b2
g (q, r)= ge, 'Qexp(ir r, )

2

rnvj q

with q the phonon wave number, ~ a reciprocal-lattice
point, Q the scattering vector, b the coherent-scattering
length, m the atomic mass, and e, the eigenvector of the
sth atom at position r, in the unit cell vibrating in the jth
mode, for a variety of ~ points and the three main sym-
metric directions. In general, ro.ixing of modes belonging
to the same symmetry group is the rule, as was already
demonstrated for other hcp structures in the literature,
e.g., Ref. 2.
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FIG. 3. Lattice specific heat for lutetium calculated from the
phonon density of states. The experimental values of the heat
capacity found by Gerstein et al. (Ref. 9) and the result of the
measurement of the electronic specific heat of Lu of Wells et al.
(Ref. 10) also are shown.
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FIG. 4. Debye temperature as a function of temperature for
Lu determined from the calculated lattice specific heat.

calculation followed the root-sampling method, dividing
the irreducible section of the first Brillouin zone into a
mesh of 17391 points. The width of the histograms,
g(v)b, v, in the plot is 0.04 THz. The phonon density of
states is quite similar to those gotten for terbium and hol-
mium. '4

From the frequency distribution, the lattice specific
heat c„' as a function of temperature at constant volume
was calculated. The result is shown in Fig. 3, where one
also finds the values for c of Gerstein et al. from
calorimetric methods. If the electronic contribution
c,'=y T with y =6.8 mJ K mol ' taken from Ref. 10 is
added, the data are in good agreement.

Finally, we computed the Debye temperature 8 as a
function of temperature from our results for the lattice
specific heat (Fig. 4). For T=O we find 8(0)= 188 K, and
8=159 K in the high-temperature limit. The curve has
a minimum of 155.8 K at 23 K. For comparison, recent
data on the Debye temperature from lutetium obtained
by x-ray measurements indicate 8=157+1 K." In the
zero-temperature limit Tonnies et al. ' derive, from mea-
surements of the elastic constants, 8(0)=184.5 K. If one
is reminded that our value is based on the phonon density
of states at 295 K and no correction due to anharmonici-
ty was made, the difference of 2% is reasonable.

The measured phonon frequencies of lutetium and the
results derived therefrom are close to those found in ter-
bium and holmium (see Table IV). However, a trend to
higher frequencies with increasing atomic weight is visi-
ble, which is in contradiction to a scaling of the frequen-
cies with the inverse of the square root of the atomic
mass. Therefore the interatomic forces in the three met-
als differ to a nonnegligible extent, despite the similarity
of their dispersion curves. The reason for this lies
presumably in the electronic structure, which is support-
ed by the fact that the coefficients y for the electronic
specific heat in Tb and Lu are different. ' A closer in-
spection gives vL„/vTb = 1.25 on the average. With
m„„/m Tb=1.10 we obtain 1.38 as scaling factor for the
force constants of the two metals.

The misfit of the AS model for the lower T, (LA)
branch around the K point is of inherent character. In
the case of hexagonal lattices the classification of the nor-
mal modes by the irreducible representations of the space
groups for the high-symmetry directions and points
yields two doubly degenerate modes v5 and v6 at K,
adopting the notation of Raubenheimer and Gilat. ' The
latter mode is compatible to the T2 and Ti branches,
whereas the compatibility relation for v5 is less stringent.
It belongs to one of the T, and T4 branches. Now the
AS and every other central-force model demand at the K
point v, +vz=2vs. ' With v, (TO() the highest frequency
in Lu at K (Fig. 1), the AS model gives v, ) v~ ) v2 in or-
der to save the sum rule, thus placing the doubly degen-
erate mode in between. The actually observed arrange-
ment of the frequencies is v, & v2 & v~, which violates the
restriction of axial symmetry. Therefore, in principle,
only a more complex force model is able to describe the
real situation.

On the other hand, the stated sole difference in the
dynamical matrices of the two models for the three main
symmetry directions and the good results gotten with the
AS model, apart from the singular failure at the K point,
led us to the assumption that a slight modification con-
cerning the second-neighbor interaction only would be
sufficient to break the restriction of axial symmetry at K.
In fact, the addition of a second matrix with only two
asymmetric xy elements different from zero to the ordi-
nary AS matrix for the second-neighbor interaction
brought the desired result. For simple economical
reasons the additional parameter does not enter the fit
procedure.

Strictly speaking, we make use of a "mixed" force
model with tensor forces for the second neighbors and ax-
ially symmetric forces for the others on the mathematical
basis of the AS model. Further justifications for our pro-
cedure, besides the good quality of the data fit, are the
strong similarity of the frequency distribution obtained
with those of the related elements Tb and Ho calculated
on the basis of a mixed force model as cited, and the
agreement between the calculated and measured values of
the derived properties specific heat and Debye tempera-
ture.
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TABLE IV. Selected normal-mode frequencies in Tb, Ho, and Lu, in THz. The values for Tb and
Ho stem from Refs. 2 and 4.

Tb
Ho
Lu

1.82
1.94
2.04

3.25
3.40
3.63

1.30
1.34
1.47

2.44
2.56
2.41

1.75
1.96
1.99

1.59
1.65
1.84

2.90
3.04
3.26

M2

3.05
3.08
3.39

M i+

2.89
3.05
3.23
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