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Phonon propagation with isotope scattering and spontaneous anharmonic decay
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Calculations of the propagation of high-energy phonons introduced into a crystal at T=O K are
presented. The phonons are assumed to undergo elastic scattering and anharmonic decay processes.
We show that in addition to the "quasidiffusion" component to the phonon propagation (discussed

previously by Levinson and co-workers) there is also a contribution that arrives at close to the time

expected for ballistic propagation. This latter mode of propagation continues to be of substantial

importance even when the elastic scattering is much stronger than the anharmonic processes.

I. INTRODUCTION

In this paper we consider what happens when high-
energy phonons (with energy comparable to k 8D,
8D=Debye temperature) are introduced into a crystal.
The crystal is assumed to be at a sufficiently low tempera-
ture that the thermal phonons can be neglected. In most
crystals, high-energy phonons have a very short mean
free path, even at T=O K. Two classes of scattering pro-
cesses are important.

(1} Elastic scattering arising from the distribution of
isotopic masses, and from other defects.

(2} Spontaneous anharmonic decay in which the origi-
nal phonon splits into two lower-energy phonons.

We write the decay times and mean free paths for these
two processes as 7I,~g, and AI, A„,respectively. The
phonon lifetimes ~1 and ~~ are, in most cases, rapidly de-
creasing functions of phonon energy E. Thus, a high-
energy phonon will diffuse very slowly and will stay close
to the point where it was generated. However, after
several anharmonic decays the average energy of the pho-
nons present will have decreased to the point that Az and
A„are much larger and the diffusion is then rapid.
Thus, to calculate what happens when a high-energy pho-
non is introduced into a crystal, it is necessary to under-
stand the way in which the decay products of the original
phonon cascade down to lower energies, and how the
rapid increase of the mean free path affects their spatial
distribution.

This type of situation occurs in several types of phonon
experiments. In conventional heat-pulse experiments' a
thin metal film evaporated onto one face of a crystal is
heated electrically and radiates phonons. These phonons
are detected by a bolometer film on the other side of the
crystal. If the metal film is heated strongly for a short
time, a fairly small number of high-energy phonons are
injected into the crystal. The decay products of these
phonons are what is detected by the bolometer. In a vari-
ant of this technique a light pulse is absorbed at the sur-
face of a semiconductor. Electrons and holes are pro-
duced, and as these relax towards the band edge, high-
energy phonons are generated. Finally, there are experi-
ments in which an elementary particle is scattered in a

crystal, apd the part of the recoil energy appearing as
phonons is detected. ' In this process the phonons ini-
tially produced are always of high energy and must relax
before they can reach the detector.

An elegant theory of phonon propagation under these
conditions has been proposed by Kazakovtsev and Levin-
son. ' It is argued that after several anharmonic decays
have occurred the phonon distribution as a function of
space and time assumes a scaling form. In addition to
this work, several groups have performed Monte Carlo
simulations of phonon propagation in particular sys-
tems. The relation between the scaling approach and
the results of the Monte Carlo calculations has not been
established, and the range of validity of the scaling theory
is not clear. In this paper we try to resolve these issues.
We will show that for most real crystals of size in the
normal experimental range the scaling theory is a poor
approximation. It should apply, however, for systems
with stronger elastic scattering such as mixed crystals.
We demonstrate these results both by physical arguments
and by comparison of the scaling theory with Monte Car-
lo simulations. In addition, we will present numerical re-
sults for specific crystals of experimental interest.

II. MODEL FOR PHONON RELAXATION

The rate of phonon scattering from the distribution of
isotopic masses is given by

truog~co D(co)

where uo is the volume per atom and D(to) is the phonon
density of states per unit volume. gz measures the isoto-
pic mass disorder and is given by

AM,
g, = gx, (&)

M

where x; is the concentration of isotope i whose mass
differs from the mean atomic mass M by the amount
b,M;. Equation (1) holds for cubic Bravais crystals, and
also for diamond-structure crystals as shown by Tamu-
ra. ' For low frequencies (to « toD ), Eq. (1) reduces to
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where VD is the Debye velocity defined by

3 3X( 3
VD J VJ

In this equation vj is the velocity of the jth polarization
acoustic phonon, and ( ) denotes an angular average.

The anharmonic decay rate cannot be expressed in a
simple way and varies with propagation direction and
phonon polarization. For longitudinal acoustic phonons
with co&&~z, and for some of the transverse phonons
one has"

For the slower branch transverse phonons the decay rate
is zero. ' ' At frequencies comparable to coD one cannot
derive a simple expression for the frequency dependence
of v A. One can argue, however, that it is not necessary to
know the details of the phonon lifetimes at higher fre-
quencies. The point is that in most crystals rt and r„are
very short (10—100 psec) when cp is comparable to tpD,

'

and so the distance that phonons can diffuse before they
decay into the frequency range co&&coD is very small.
This argument fails for crystals such as NaF or solid He
for which there is no isotope scattering, since then there
are always some high-energy transverse phonons that are
completely stable which will propagate ballistically away
from the point of generation. For the majority of crystals
(in which isotope scattering is reasonably strong) the
diffusivity of all high-frequency phonons can be con-
sidered to be very small. Thus, the argument is that there
is no need to keep track of the phonon scattering and de-
cay processes until the phonon frequency has fallen into
the range well below coD. (We will test this idea to some
extent in the computer simulations. )

In the low-frequency range we can write

u—= AE5~ . (10)

For P(E', E) we choose

(E, E) 60E (E' E)—
(E')'

This is the correct form of P in the simplest type of pho-
non decay, namely the relaxation of phonons of a single
polarization by collinear decay processes as occurs in
liquid He. ' Then we obtain

dg dg= —u —ug+12 du'g(u')oo Q

d lnt du M Q

X 1—
Q

' 4/5

' 1/5 2

(12)

Since lnt appears only on the left-hand side of this equa-
tion, we may look for solutions of the form

g(u, t)= g A„P„(u)e
n tn

where P„and A,„areeigenfunctions and eigenvalues from
the equation

dP„
A,„g„=ug„+u

dQ
—12f du'P„(u')

Q Q

4/5

where P(E', E)5E is the probability that in the decay of a
phonon of energy E' a phonon with energy in the range
E,5E is produced. Initially, only high-energy phonons
are present. We are interested in the solution of this
equation after several decays have occurred.

We write

n(E, t)= g(u, t)
E2

1 =BE (6) X 1—
Q

' 1/5 2

where E is the energy in degrees Kelvin. For anharmonic
decay let the decay rate averaged over phonon polariza-
tions and k directions be

1 =AE
A

We will consider the values of A and B for some specific
crystals in Sec. V.

du g(u, t )lu =const .
0

(15)

Therefore, there must be an eigenfunction Pp(u ) with ei-

genvalue zero, and so for large t

The spectrum of eigenvalues determines the behavior of
the solution. Let us assume that there are no negative ei-
genvalues which would lead to an instability.

From energy conservation,

III. SCALING THEORY
g(u t ) Apyp(u) (16)

Consider first the relaxation of a spatially homogene-
ous distribution of phonons under the action of anhar-
monic decay processes. Let the number of phonons in
the energy range E, 5E, be n (E )5E. Then

and

A,P,( AE't )
n(E, t)=

E2
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This is the scaling solution. The rate at which the pho-
non distribution function approaches this limiting form is
determined by the spectrum of the eigenvalues A,„which
is not yet known.

It is straightforward to calculate $0 numerically and
the result' for n (E}from (17}is shown in Fig. 1. Kaza-
kovtsev and Levinson have shown that the asymptotic
forms of n (E,t ) for large and small E have given by" n—(E,r, t)=D(E)V n(E, r, t)+Sn(E, r, t), (21)

(20). One certainly needs (20) to hold at the initial pho-
non energy. In Sec. IV we will discuss this condition in
more detail.

Given Eq. (20), KL (Refs. 4 and 5) argue that one
should be able to describe phonon transport by a
diffusion equation of the form

n(E, t ) ~ E t ~ for AEst &&1;

n(E, t) ~E exp( —AE t) for AEst &&1 .

(18 ) h

(1sb) D(E)=1/3ug)rt(E) (22)

We have used the scaling solution to calculate the rate at
which the average energy of the phanons decreases. The
result is

En E, t E

JI n(E, t)dE

fdu 40(u ) lu

(At)' fdu P (u }lu

0.57
(At)'" (19)

71 &&7 g ~tb (20)

is satisfied, where tb is the time it would take the phonons
to reach the detector if they traveled ballistically, i.e.,
tb=L/un. Since rt and r„depend strongly on energy,
one has to specify what phonon energy is involved in Eq.

Note that in the scaling approximation the average pho-
non energy after time t is independent of the original en-

ergy of the injected phanons. The presence af elastic-
scattering processes has no effect on the phonon distribu-
tion function.

Now suppose that the initial condition is that there are
some high-energy phonons in the region near to the ori-
gin. Kazakovtsev and Levinson (KL) (Refs. 4 and 5) con-
sider what happens when the condition

and Sn(E) represents the rate at which n is changed by
phonon decays, i.e., the right-hand side of Eq. (8). Based
on (21), KL find a scaling solution for the phonon distri-
bution function that should hold for long times, i.e., after
the initially injected phonons have undergone several de-
cays. The main characteristics of this solution are the
folla wing.

(1}At time t the energy of a typical phonon is propor-
tional to ( At)

(2) The distance from the origin that the phonon distri-
bution has spread to after time t is of order

r-uD[r„(E)rt(E)]' [tlr„(E)] (23)

n(E, r, t)~E f(g, g)

with a a constant, and

(25)

where E is the original phonan energy. Using the explicit
forms for r„andrt [Eqs. (6) and (7)] we obtain

g 2/5
t 9/10

D ~1/2

Thus, the distribution spreads more slowly than in ballis-
tic propagation, but faster than in normal difFusion.
[Note that although r in Eq. (23) is written in terms of E,
r is in fact independent of this quantity. ]

(3}The phonon distribution at distance r and time t has
the scaling form

r

un [rt (E)r„(E)]'
t

r„(E)

(26)

(27)

IV. VALIDITY OF SCALING THEORY

(At) E

FICJ. 1. Dependence of phonon distribution function n(E)
on energy in the scaling regime.

The scaling theory is based on the assumption that Eq.
(20) holds, but it is not clear how much greater r„and tb

must be than rt in order for the theory to be a good ap-
proximation. It is easy to see that there are some
diSculties with the diffusion picture associated with the
low-energy part of the phonon spectrum. Consider, the
value of r averaged over the phonon distribution and
weighted by energy, i.e.,

(r ) = JdE Jd r r n(E, r, t)E/E. . . (28)

where E«, is the total energy of the phonons. (r ) will
increase with time as n changes according to Eq. (21).
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The change in n resulting from the operation S does not
lead to any change in ( r ) since it simply changes the en-

ergy distribution of the phonons at a particular space
point. The diffusion term in (21) leads to the following
result:

—(r') =6fdE f d r n(E, r, r)ED(E)/E, , (29)
d

(o) negligible difFusion rate

before dow n-conversion

Now the scaling solution for n is ~E at low E and
D(E) cc E . Hence, the integral over E is logarithmical-
ly divergent at low energy, and so the diffusion theory
gives

(30)

2

(P) phonons difFuse to detector

(p) ballistic prop ag ation
to d etec t or

L =vDri(E2 ) . (32)

Between Ei and Ez the phonons will disuse to the detec-
tor, i.e., they will undergo a series of isotope scatterings.
The energies E, and E2 are

Ei=(v /3L AB)'

E2 =(vD/LB)'

(33)

(34)

The situation is summarized in Fig. 2. Initially, the pho-
nons are in region a with high energy and an extremely
small diffusion coefficient. They cannot reach the detec-
tor before down converting. In P they can diffuse to the
detector without further down conversion and in y they
are able to reach the detector by ballistic propagation.

In the KL theory, which is based upon the diffusion
equation, there is the implicit assumption that all the
phonons reaching the detector do so while in the energy
range P. This assumption is implicit because phonons in

y have such a long mean free path that they cannot be
described by a diffusion coefficient. Recall now that
when phonons down convert the probability distribution
for the energy of the decay products is given by P(E',E)

which is clearly impossible since the sound velocity sets
an upper limit on the velocity of propagation.

The difficulty arises because there are always some
phonons of low enough energy that the diffusion approxi-
mation breaks down. We can look at the problem in an
alternate way by dividing up the range of phonon ener-
gies into distinct regions as follows. Suppose we are in-
terested in the propagation of phonons a distance L from
the source. A phonon of energy E will remain at this en-
ergy for a time of about r„=(AE ) '. In this time the
phonon can diffuse a distance

l(E)=[D(E)r„(E)]'~=v
D[ r(lE) r„( E) 3/]'~ . (31)

Let the energy at which l(E) becomes equal to L be E, .
Hence, phonons with E & E, are unlikely to reach the
detector without further down conversion. Phonons with
E & E ] stand a good chance of reaching the detector be-
fore undergoing further anharmonic decay. However,
these phonons are in two distinct classes. If E is less than
a critical energy E2 they will be able to travel directly to
the detector without further isotope scattering. E2 is
such that

FIG. 2. Diagram showing the different nature of phonon
propagation in different energy ranges.

[Eq. (11)]. Although this probability is peaked at
E =E'/2, it is a broad distribution, and there will always
be a certain number of phonons which pass directly in
one decay from the region a to the region y. These pho-
nons will arrive at the detector at a time close to the
ballistic time tb, and are not accounted for by the scaling
theory.

One can see, therefore, that for the scaling picture to
be a good approximation one needs the condition

' 1/36

N—:
2

B L
81M vL,

» 1 (35)

If, for example, we wanted to have N greater than
some critical value N„we then need to have the isotope
scattering strength B larger than a critical value 8, given
by

B,=
1/5

81 A "vD
36/5

L
(36)

V. COMPUTER CALCULATIONS

We carried out Monte Carlo calculations in which a se-
quence of phonons of energy Eo were generated at the

Thus, to have N, modestly large, e.g., 5, the isotope
scattering rate must be larger than the anharmonic decay
rate by a huge factor. Hence, we expect that the KL
theory, while formally correct in the extreme limit of
strong isotope scattering, may be an inadequate approxi-
mation in many practical cases. In the next section we
investigate this by numerical methods.

Equation (35) gives the interesting result that
N ~L' . Thus, the KL theory should become a better
approximation as the distance from the source to the
detector increases. However, the extremely small power
of L means that the accuracy of the approximation
changes very slowly as L is varied. Hence, for practical
purposes the extent to which phonon propagation in a
particular crystal is well described by the scaling theory
is almost unaffected by the crystal size.
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A. Test of scaling theory

If the initial Eo of the phonons is sufficiently high the
results are expected to be independent of this quantity,
regardless of whether or not scaling theory holds. Pho-
non propagation is then described by the parameters B,
A, vD, and L from which one dimensionless quantity can
be formed. This can be chosen to be N [Eq. (35)] or

B'=B/(A vD/L)' (37}

which can be regarded approximately as the ratio of the
strength of isotope scattering to anharmonic decay.
Thus, all systems with the same N or B' should have the
same time dependence of the received signal when ex-
pressed in reduced time t' = t /t&. This time dependence
for a representative set of values of B ' is shown in Fig. 3.
One can see that even for B'=3000 the scaling theory is

origin with wave vector in a random direction. The pho-
non speed was always vD. Isotope scatterings and anhar-
monic decays occurred at the rates given by Eqs. (6} and
(7},and the probability distribution of the decay products
was governed by Eq. (11). After an isotopic scattering
the phonon wave vector was assigned a random direction,
and after anharmonic decay the wave vector was left un-

changed. The propagation was continued until the pho-
non first reached a distance L from the origin. Thus, the
simulation represents the energy received at a detector on
the surface of a spherical sample of radius L, the surface
of the sample being considered as a perfect absorber of
phonons. In the simulation histograms were constructed
for the phonon energy flux at the detector as a function of
time, and for the number of arriving phonons as a func-
tion of energy. 's

In most of the simulations about 30000 phonons were
allowed to obtain the histograms.

z
0

C)

1
1 (

0 ~ 1

1.5 2. 5 3

U

0.001
ca 1

0.01-

FIG. 4. Ballistic component to the signal as a function of B*

and N. The ballistic component is defined as the part of the en-

ergy flux that arrives no later than 1.2 times the time tb it takes
ballistic phonons to reach the detector. B*and N are defined in

Eqs. (37) and (35), and measure the relative strengths of the iso-

topic and anharmonic scattering.

only a rough approximation, since there is still a
significant signal that arrives at close to the time expected
for ballistic phonons. For B'=3000, N=2. 69. Thus,
the energy range E, E2 of the—P region in Fig. 2 is still
only 1.69 times the width of the y region. Hence, even
for isotope scattering this strong there is a fairly large
probability that a phonon will pass directly from the a re-
gion to y and then arrive at the detector nearly at the
ballistic arrival time.

In Fig. 4 we show the strength of the "ballistic" signal
versus N and B*. The ballistic signal is defined as those
phonons arriving no later than 1.2 times the ballistic ar-
rival time L /vD.

In Figs. 5 and 6 we show the average energy (E ) and
the average arrival time (t ) as a function of N and B'.
The energy is divided by E*,defined by

B ~3
N~1. 03

I

B 30
N~1. 42

0.6

0.4-

N

1.5 2 2. 5 3

I

B 300
N~1. 95

0.2-

I I

B 3000
0

10
I

10 10

20 40

REDUCED TIME

FIG. 3. Energy flux arriving at a detector as a function of the
reduced time t =t/tb, where tb is the ballistic arrival time
L /vD.

FIG. 5. Average energy (E) of the phonons arriving at the
detector as a function of B*and N. E*,B*,and N are defined

in Eqs. (38), (37), and (35), respectively. The solid line shows

(E) proportional to 8 '~ as predicted by scaling theory [Eq.
(40)].
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These numerical results were obtained by starting with
phonons of energy 10E'. The results are unaffected if
the initial energy is increased above this value. The spec-
trum of phonons arriving at the detector is in all cases
similar to the scaling form shown in Fig. 1. However as
expected from the discussion we have given, the phonons
that arrive at close to the ballistic arrival time have a
significantly lower energy than those arriving later. In
Fig. 7 we show this effect for B*=100. It is interesting
that the later-arriving phonons have higher energies even
though they have, of course, had more time to down con-
vert.

B. Calculations for Si and Ge

FIG. 6. Average arrival time (t) {+}of phonons at the
detector as a function of 8 and ¹ tl, is the arrival time for
phonons propagating ballistically, and 8* and N are defined in
Eqs. {37) and (35). The solid line shows (t) proportional to
B'~9 as predicted by scaling theory [Eq. {39}].

E' —= (vD/AL )' (38)

and so

„LB.5i9
10/9 5/9

UD
10/9 A 4/9

VD
(39)

2/9

(E)
L 2/9A 1/9B1/9 Be1/9 (40)

For large enough B, ( t ) and (E ) do depend on B ap-
proxitnately as predicted by Eqs. (39) and (40) (see Figs. 5

and 6).

From the scaling theory (Sec. III) the arrival time of
the phonons should vary as

1—=A E4
L (41)

As an example of these effects, we have carried out cal-
culations for Si and Ge. Of course, since we consider just
one phonon polarization and neglect phonon focusing
and other anisotropic effects, the results are only qualita-
tive. The spontaneous decay rates of acoustic phonons
have been calculated by Berke, Mayer, and Wehner
(BMW). ' Using the same elastic constants as they do,
we obtain the Debye velocities listed in Table I. From
the known isotopic abundances we then obtain values of
B, in essential agreement with other workers. ' ' To ob-
tain a reasonable value of A is more complicated because
A depends on propagation direction and polarization.
BMW present their results in terms of the quantity
a—:I /q, where I' is the decay rate of the phonon ampli-
tude (r= 1/21 ) and q is the phonon wave vector. In Si
the average over directions of a is 5.5 X 10 cgs for lon-
gitudinal phonons and 2X10 ' cgs for fast transverse
phonons. For slow transverse phonons, a is believed to
be small' provided that there is some phonon dispersion
to eliminate collinear processes. From these results we
obtain average decay rates for longitudinal phonons of

trt b&

tit b& 4

with AL =7.0X10 sec 'K . For fast transverse pho-
nons the corresponding formula has AFT=2. 6X10
sec 'K . To obtain an average of A over the whole
spectrum we weight the A's for different polarizations by
the number density of phonons in the different branches
(proportional to v ), and obtain the final value ' for Si
shown in Table I.

For Ge, BMW calculate the decay rates for longitudi-
nal phonons only. This rate (expressed in terms of a)
averaged over the (100), (110), and (111)directions is 0.35

5 & t&tb& 6

0. 5

TABLE I. Debye velocities obtained using the elastic con-
stants of Berke, Mayer, and Wehner (Ref. 19).

Si
E j E

FIG. 7. Energy distribution of phonons arriving at the detec-
tor in different time intervals as indicated. E is defined in Eq.
(38). t& is the arrival time for ballistic phonons. The calculation
is for 8 =100.

Debye velocity
uD (10 cmsec ')

A (sec 'K )

B (sec 'K )

5.91

1.6X 10-4

0.46

3.55

7.4X10-'

7.0
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Si

10

monic decays the signal would have no component arriv-
ing at close to the ballistic time and would have an aver-
age arrival time much later.

It is clear from the results of Fig. 8 that one cannot ex-
pect scaling theory to apply to these crystals, at least for
sample sizes in the normal range. To have the propaga-
tion reasonably well described by the scaling theory one
needs B*~3000. There are probably no crystals in
which the scattering due to the naturally occurring mix
of isotopes gives this large value of B*. Thus, the scaling
theory is only likely to apply well to alloy crystals (e.g.,
Si-Ge alloys} or artificial isotopic mixtures such as
He- He crystals.

0
0

T IM E

I

20

(p sec)
40 VI. SUMMARY

FIG. 8. Energy Aux as a function of time for propagation in

Si and Ge. The detector distance is taken to be 1 cm.

times the rate for Si. To estimate A for Ge we have
therefore taken the A for Si, multiplied it by 0.35, and di-
vided by the ratio of vD in the two crystals.

Given values of uD, A, and B, we can calculate the
quantity B* for a given distance L to the detector. The
result is B*=35 for Si and 174 for Ge. L is taken to be 1

cm, but as noted earlier the dependence of B* on L is
very weak. In Fig. 8 we show the results of a computer
simulation of phonon propagation in these crystals. The
energy of the injected phonons was 10E*, which is 820
and 540 K for Si and Ge, respectively. The average ener-

gy of the phonons arriving at the detector is 34 and 19 K
for Si and Ge, respectively. Thus the average number of
decays was between 4 and 5. Of course, without anhar-

We have given an analysis of the way in which high-
energy phonons injected into a crystal at T=O K propa-
gate under the infiuence of isotope scattering (elastic
scattering) and anhartnonic decays. The principal result
is that the scaling theory of Kazakovtzev and Levinson is
a reasonable approximation only when the elastic scatter-
ing is extremely strong, and that as a consequence the
theory is probably not useful for crystals where the
scattering arises only from the different masses of the nat-
urally occurring isotopes.
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